首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Five transects across the NW Iberian margin were studied in the framework of the EU-funded Ocean Margin EXchange II (OMEX II) project, to determine and establish recent sediment and organic carbon transport and accumulation processes and fluxes.On the Galician shelf and shelf edge, resuspension of sediments resulting in well-developed bottom nepheloid layers was observed at all stations, but transport of suspended sediment appears largely confined to the shelf. On the continental slope, only very dilute bottom nepheloid layers were present, and intermediate nepheloid layers were only occasionally seen. This suggests that cross-slope transfer of particles is limited by the prevailing northerly directed shelf and slope currents.Optical backscatter and ADCP current measurements by the BOBO lander, deployed at 2152 m depth on the Galician slope, indicated that particles in the bottom boundary layer were kept in suspension by tidal currents with highest speeds between 15–25 cm s−1. Net currents during the recording period August 6th–September 10th 1998, were initially directed along-slope toward the NNW, but later turned off-slope toward the SW.The separation of the water masses on the slope from the sediment-laden shelf water by the along-slope current regime is reflected in the recent sedimentary deposits of the Galician shelf and slope. Apart from compositional differences, shelf deposits differ from those on the slope by their higher flux of excess 210Pb (0.57–5.37 dpm cm−2y−1 versus 0.11–3.00 dpm cm−2y−1), a much higher sediment accumulation rate (315.6–2295.9 g m−2y−1 versus 10.9–124.7 g m−2y−1) and organic carbon burial rate (1.01–34.30 g m−2y−1 versus 0.01–0.69 g m−2y−1).In contrast to the observations on the Galician margin, pronounced nepheloid layers occurred in the Nazaré Canyon, which extended to considerably greater water depths. This indicates that significantly greater transport of fine-grained particles in both the INL and the BNL was occurring within the canyon, as reflected in the exceptionally high 210Pb excess flux (up to 34.09 dpm cm−2y−1), mass accumulation rates (maximum 9623.1 g m−2y−1) and carbon burial fluxes (up to 180.91 g m−2y−1) in the sediment. However, radioisotope fluxes in the lower canyon were only slightly higher than at comparable depths on the Galician margin. This suggests that transport and rapid accumulation is focused on the upper and middle part of the canyon, from where it is episodically released to the deep sea. Compared to the Galician margin, the Nazaré Canyon may be considered as an important organic carbon depocenter on short time-scales, and a major conduit for particulate matter transport to the deep sea on >100 y time-scales.  相似文献   

2.
To quantify recent sediment accumulation, carbon fluxes and cycling, three N.W. European Continental Margin transects on Goban Spur and Meriadzek Terrace were extensively studied by repeated box- and multicore sampling of bottom sediments. The recent sediment distribution and characteristics appear directly related to the near-bed hydrodynamic regime on the margin, which at the upper slope break on the Goban Spur results in along-slope and periodic off-slope directed transport of particles, possibly by entrainment of particles in a detached bottom or intermediate nepheloid layer. From the shelf to the abyssal plain the surface sediments on the Goban Spur change from terrigenous sandy shelf sediments into clayey silts. 210Pb activity decreases exponentially down core, reaching a stable background value at 10 cm (shallower stations) to 5 cm (deeper stations) sediment depth. 210Pb profiles of repeatedly sampled stations indicate negligible annual variability of mixing and flux. The 210Pbxs flux to the sediment shows a decreasing trend with increasing water depth. Below about 2000 m the average 210Pbxs flux is about 0.3 dpm cm−2 y−1, a third of the fluxes measured on the shelf and upper slope stations. Sediment mixing rates (Db) correlate with macro- and meiofaunal density changes and are within the normal oceanic ranges. Lower mixing rates on the lower slope likely reflect lower organic carbon fluxes there. Mass accumulation rates on Meriadzek Terrace are at maximum 80 g m−2 y−1, almost twice as high as at Goban Spur stations of comparable depth. A minimum accumulation rate of 16.6 g m−2 y−1 is found at the Goban Spur upper slope break. Organic carbon burial rates are low compared to other margins and range from a lowest value of 0.05 g m−2 y−1 at the upper slope break to 0.11 g m−2 y−1 downslope. A maximum organic carbon burial rate of 0.41 g m−2 y−1 is found on Meriadzek Terrace. Carbonate burial rates increase along the northern transect from the shelf (13 g m−2 y−1) via a low (9.3 g m−2 y−1) on the upper slope break to the deep sea (30.7 g m−2 y−1). Carbonate burial is highest on Meriadzek Terrace (44.5 g m−2 y−1). The N.W. European Margin at Goban Spur and Meriadzek Terrace cannot be considered a major carbon depocenter.  相似文献   

3.
The rate of benthic denitrification in slope and rise sediments of a transect across the N.W. European Continental Margin (Goban Spur) was evaluated from 31 pore water nitrate profiles obtained during six cruises between May and October. All profiles had well separated zones of nitrification and denitrification. High near-surface nitrate concentrations prevented the influx of nitrate from the bottom water. The denitrification rates obtained from steady-state-modelling ranged from 0.13 to 2.56 μmol N cm−2 y−1 and showed an exponential increase both with decreasing water depth and with increasing rate of organic carbon degradation. Denitrification rates in a nearby canyon, which did not follow these relationships, were estimated to be much higher as a result of erosion and redistribution of organic matter. Denitrification at the Goban Spur slope and rise is much lower than previously reported for similar environments in the Pacific resulting predominantly from the different oxygen and nitrate concentrations in the bottom water. A weighted average for the whole slope and rise sediment system shows that 17% of the particulate organic nitrogen input (8.93 μmol N cm−2 y−1) is denitrified and only 1% is buried, the rest being released as nitrate. Although being ten times higher compared with basin sediments, denitrification on the slope and rise is several times lower than on the adjacent shelf.  相似文献   

4.
The composition, density and community structure of the benthic macrofauna were investigated in sediments of the Campeche Canyon in the SW Gulf of Mexico. Total macrofaunal density ranged from 9466±2736 ind m−2 at the continental shelf station to 1550±195 ind m−2 in the canyon. Density values significantly diminished with distance from the coast and depth; only a few stations in the center of the canyon displayed larger density values (E-37 with 4666±1530 ind m−2, E-36 with 5791±642 ind m−2 and E-26 with 6925±2258 ind m−2). Densities were positively correlated to organic nitrogen in the sediment (r=0.82) and coarse silt (r=0.43), and negatively with depth (r=−0.74) and distance from the coast (r=−0.68). At all stations, the polychaete worms contributed most to the multi-species community structure. The nematodes and Foraminifera displayed their highest densities in the center of the canyon. The biomass values declined significantly with depth. We conclude that the macrofauna density and biomass changed in response to organic matter contents in the sediment, both with distance from the coast and with depth.  相似文献   

5.
Cylindrical sediment traps were deployed at various depths in the anoxic water of Framvaren for two periods of one year (1981–1982 and 1983–1984). The traps were emptied three times during 1981–1982 and five times during 1983–1984. The vertical fluxes of total suspended material, organic carbon and nitrogen were calculated on a daily and annual basis. The average annual sediment flux 20 m above the bottom was approximately 60 g m−2 y−1 and the flux of organic carbon was 20 g m−2 y−1. On the basis of an average C/N ratio of 8 and a constant carbon flux below a depth of 20 m, it is concluded that little mineralization of the organic matter takes place in the anoxic water column. Assuming a primary production of the order to 50–100 g m−2 y−1, 22–24% of that reaches the anoxic water masses. Further breakdown of organic matter takes place in the surface sediments.  相似文献   

6.
Lagrangian experiments with short-term, drifting sediment traps were conducted during a cruise on RRS Charles Darwin to the NW coast of Spain to study the vertical flux and composition of settling biogenic matter. The cruise was split into two legs corresponding to (i) a period of increased production following an upwelling event on the continental shelf (3–10 August 1998) and (ii) an evolution of a cold water filament originating from the upwelled water off the shelf (14–19 August). The export of particulate organic carbon (POC) from the upper layer (0–60m) on the shelf was 90–240mgC.m−2.d−1 and off the shelf was 60–180mgC.m−2.d−1. Off shelf the POC flux at 200m was 50–60mg.m−2.d−1. A modest sedimentation of diatoms (15–30mgC.m−2.d−1) after the upwelling was associated with increased vertical flux of chlorophyll a (1.8–2.1mg.m−2.d−1) and a decrease of the POC:PON molar ratio of the settled material from 9 to 6.4. Most of the pico-, nano-, and microplankton in the settled material were flagellates; diatoms were significant during the on shelf and dinoflagellates during the off shelf leg. Off shelf, the exponential attenuation of POC flux indicated a strong retention capacity of the plankton community between 40 and 75m. POC:PON ratio of the settled particulate matter decreased with depth and the relative portion of flagellates increased, suggesting a novel, flagellate and aggregate mediated particulate flux in these waters. Export of POC from the euphotic layer comprised 14–26% of the integrated primary production per day during the on shelf leg and 25–42% during the off shelf leg, which characterises the importance of sedimentation in the organic carbon budget of these waters.  相似文献   

7.
The Portuguese margin in front of the Tagus and Sado rivers is characterized by a narrow shelf incised by numerous canyons and by a large mud deposit. The two estuaries that feed this continental margin have distinct impact. The suspended particulate matter concentration values in the mouth of the Tagus are four times higher than in the Sado. During the summer the surface nepheloid layer is always larger than during the winter when it is restricted near the mouth of the estuary. This nepheloid layer may reach 30 km in length extending westward. The bottom nepheloid layer usually shows higher nephelometer values, and has a typical distribution: it is usually diverted southward in the direction of the Lisbon Submarine Canyon. We estimate the amount of suspended matter being discharged annually from the Tagus estuary to be between 0.4 and 1×106 t. The area covered by fine deposits is about 560 km2. Hence the thickness of sediments deposited annually should be between 0.07 and 0.18 cm. The sedimentation rates calculated from the 210Pb excess vary between 0.16 and 2.13 cm y−1 which correspond to the maximum rate. For a layer of 1 cm thick, 81,000 t of particulate organic carbon (POC) should be trapped. That would represent, with a minimum sedimentation rate between 0.07 and 0.18 cm y−1, an entrapment of 6000–15,000 t POC y−1. The trace metals content of box core samples clearly shows the anthropogenic impact in the uppermost level (5 cm thick) in the Tagus estuary and in all the sedimentary deposits (15 cm thick) on the shelf muddy area. Despite the narrowness of the shelf, a significant part of continental fluxes fails to reach the deep ocean.  相似文献   

8.
Sedimentation rates were determined for the northern Gulf of Mexico margin sediments at water depths ranging from 770 to 3560 m, using radiocarbon determinations of organic matter. Resulting sedimentation rates ranged from 3 to 15 cm/kyr, decreasing with increasing water depth. These rates agree with long-term sedimentation rates estimated previously using stratigraphic methods, and with estimates of sediment delivery rates by the Mississippi River to the northern Gulf of Mexico, but are generally higher by 1–2 orders of magnitude than those estimated by 210Pbxs methods. Near-surface slope sediments from 2737 m water depth in the Mississippi River fan were much older than the rest. They had minimum 14C ages of 16–27 kyr and δ13C values ranging from −24‰ to −26.5‰, indicating a terrestrial origin of organic matter. The sediments from this site were thus likely deposited by episodic mass wasting of slope sediment through the canyon, delineating the previously suggested main pathway of sediment and clay movement to abyssal Gulf sediments.  相似文献   

9.
Near bottom water samples and sediments were taken during five cruises to 6 stations forming a transect across the N.W. European Continental Margin at Goban Spur. Flow velocity spot measurements in the benthic boundary layer (BBL) always increased from the shelf to the upper slope (1470 m) from 5 to 9 cm s−1 in spring/summer and from 15 to 37 cm s−1 in autumn/winter. Decreasing values were detected at the lower slope (2000 m) and the lowest values of ca. 2 cm s−1 at the continental rise at 4500 m water depth. Long term measurements with a benthic lander at 1470 m show that currents have a tidal component and reach maximum velocities up to 20 cm s−1, sufficiently high periodically to resuspend and transport phytodetritus. During these long-term observations, currents were always weaker in spring/summer than in autumn/winter. Critical shear velocities of shelf/slope sediments increased with depth from 0.5 to 1.7 cm s−1 and major resuspension events and Intermediate Nepheloid Layers (INLs) should occur around 1000 m. Chloroplastic Pigment Equivalents (CPE) ranged from 0.0 to 0.21 μg dm−3, Particulate Organic Carbon (POC) from 12 to 141 μg dm−3 and Total Particulate Matter (TPM) from 0.2 to 10.0 mg dm−3. Aggregates in the BBL occurred with a median diameter of 152 to 468 μm. Data on suspended particulate matter in the near-bottom waters showed that hydrodynamic sorting within the particulate organic fraction occurred. Phytodetritus was packaged in relatively large aggregates and contributed little to the total organic carbon pool in nearbottom waters (CPE/POC ca.0.2%). The main organic fraction has low settling velocities and high residence times within the benthic boundary layer. As POC was not concentrated in the near bed region the degree to which carbon is accessible to the benthic community depends on aggregate formation, subsequent settling and/or biodeposition of the POC. Close to the sea bed downslope transport may dominate. Under flow conditions high enough to resuspend fresh phythodetritus from sediments at the productive shelf edge, this could be transported to 1500 m (Goban Spur) or abyssal depth (Canyon site between Meriadzek and Goban Spur) within 21 days.  相似文献   

10.
The Bay of Concepcion (36°40′S; 73°02′W) is a semi-enclosed and shallow embayment in which biogeochemical processes are seasonally coupled to coastal upwelling during the austral spring and summer. The nutrient cycle in the bay is complex due to the combined effects of a pronounced O2 minimum layer and high nutrient concentrations both originating from subsurface equatorial water during coastal upwelling and a rapid rate of sediment nutrient recycling. The sediments are characterized by a high content of organic matter mainly due to the extremely high rates of phytoplankton production and deposition. During the upwelling period, a black flocculent layer frequently covers the sediment–water interface in the inner part of the bay where an extensive mat of Beggiatoa spp. develops. Three approaches are used to analyse the extent to which the benthic system recycles or retains nutrients at two stations, located at the centre (station C, St. C) and mouth (station B, St. B) of the bay for a 1-year period (March 1996–1997): (1) estimation of C and N remineralization rates based on SO42− reduction measurements, (2) calculation of C and N turnover rates using a diagenetic model applied to total organic carbon and total nitrogen vertical distributions and, (3) construction of C and N budgets from direct measurements of sedimentation (from a sediment trap) and estimates of the C and N burial rates. Depth-integrated SO42− reduction rates varied between 3.4 (winter) and 25.5 (summer) mmol m−2 d−1. Estimated C and N oxidation rates ranged between 7.9 and 87.8 mol C m−2 yr−1 and between 0.9 and 6.9 mol N m−2 yr−1, respectively. Each approach yielded minor differences in the C and N remineralization rates (and also minor differences between both studied stations), except when the kinetic model was applied to C and N distribution without including the presence of the flocculent layer. The rates of carbon oxidation and sulphate reduction were considerably higher than in other coastal sediments with similar depositional regime. The C and N burial rates were 2.23 and 0.21 (St. C) and 1.30 and 0.09 (St. B) mol m−2 yr−1, respectively. The C/N ratio of the buried fraction was ca. 10.6 at St. C and 14.4 at St. B. Because the observed differences in burial rates could not be ascribed to distinctive depositional (both stations have similar sediment accumulation rates) and oceanographic (similar O2 concentration and hydrography) conditions, differences may be due to in part spatial heterogeneity in the supply of organic matter. The degree of preservation of organic matter as plankton detritus and nitrogen accumulating bacterial biomass associated with Beggiatoa spp. at St. C may also be involved.  相似文献   

11.
During the CINCS project (Pelagic–benthic Coupling IN the oligotrophic Cretan Sea—NE Mediterranean), a single mooring with two sediment traps (at 200 and 1515m water depth) and two current meters was deployed in the southern Cretan Sea margin at a depth of 1550 m. A second mooring deployed at the 500 m station was lost, as a result of fishing activities. The duration of the study was 12 months (November 1994 to November 1995) with sampling intervals of 15 or 16 days. The traps were retrieved, serviced and the sedimented material was collected every 6 months. In total, 48 samples were collected (24 from each trap) throughout the study period and fluxes of total particulate mass, opal, organic matter, carbonates, and lithogenic component were measured. Natural radionuclides (210Po and 210Pb) were determined for all trap samples. Total mass flux and the fluxes of four major constituents increased with depth, the total mass flux reaching values of nearly 550 mg m−2 d−1 at 1515 m and 187 mg m−2 d−1 at 200 m depth, following the same patterns observed in other experiments (ECOMARGE, SEEP-I, SEEP-II). The mean annual mass fluxes were 209 and 49.8 mg m−2 d−1 at the near bottom and near surface trap respectively. This suggests that lateral transport of particulate matter is of importance in the area. Total mass fluxes at the two depths were characterized by different seasonal fluctuations, although a general decreasing trend was observed from the I (winter) to the II (summer) deployment at both depths. This was mainly a result of reductions in aluminosilicate inputs during the summer dry period. At 200 m depth carbonates were more important during winter, because of a large carbonate input consisting mainly of coccoliths of Emiliania huxleyi, while during the summer decreased fluxes of carbonates and aluminosilicates resulted in a reduction of the mass flux. In contrast, at 1515 m depth the lithogenic component was the dominant component during the winter deployment, indicating a terrigenous input. During the summer period the decrease in mass flux was strongly effected by the decrease in aluminosilicates. There was a diminution in the organic carbon content with a concomitant increase in total mass flux, which, together with the almost negligible increase in the annual 210Pb activity with depth and the increase of 210Po activity with depth could be interpreted as indicating a contribution of resuspended material to the input at 1515 m. The complex mesoscale circulation of the Cretan Sea, consisting of a cyclone (east)–anticyclone (west) system, controls particle transfer in the area. This hydrodynamic system seems to move water masses towards the southern Cretan Sea margin, and consequently carry materials from the open sea to the upper slope and shelf.  相似文献   

12.
秦琳  万世明 《海洋与湖沼》2020,51(4):875-888
大陆边缘盆地是大陆风化剥蚀产物的主要沉积汇,其中有机碳的埋藏通量及其控制机制的研究对于理解全球碳循环具有重要科学意义。本研究基于南海东北部台西南盆地TWS-1岩芯的AMS14C测年、总有机碳、总氮含量和稳定碳同位素组成的分析,探讨了末次盛冰期23ka BP以来南海东北部陆源有机碳的来源、历史和影响机制。与潜在物源端元对比表明,台湾是研究站位沉积物陆源有机碳的主要物源,相对海源其贡献比例约为58%,陆源物质可能主要通过海底峡谷水道和低海平面时期陆架河流输入。重建的陆源有机碳通量在末次冰消期早期(19—13kaBP)和中全新世(7—4ka BP)期间有两个峰值,分别约0.16g/(cm2·ka)和0.09g/(cm2·ka)。综合分析表明,二者分别受控于冰期低海平面时期增强的陆架风化剥蚀和全新世季风强盛期降水驱动的古台湾岛剥蚀。我们的工作表明冰期-间冰期循环中海平面和季风分别驱动的大陆边缘有机碳埋藏可能对全球碳循环和大气CO2浓度演变有重要影响。  相似文献   

13.
Downward fluxes of labile organic matter (lipids, proteins and carbohydrates) at 200 (trap A) and 1515 m depth (trap B), measured during a 12 months sediment trap experiment, are presented, together with estimates of the bacterial and cyanobacterial biomasses associated to the particles. The biochemical composition of the settling particles was determined in order to provide qualitative and quantitative information on the flux of readily available organic carbon supplying the deep-sea benthic communities of the Cretan Sea. Total mass flux and labile carbon fluxes were characterised by a clear seasonality. Higher labile organic fluxes were reported in trap B, indicating the presence of resuspended particles coming from lateral inputs. Particulate carbohydrates were the major component of the flux of labile compounds (on annual average about 66% of the total labile organic flux) followed by lipids (20%) and proteins (13%). The biopolymeric carbon flux was very low (on annual average 0.9 and 1.2 gC m−2 y−1, at trap A and B). Labile carbon accounted for most of the OC flux (on annual average 84% and 74% in trap A and B respectively). In trap A, highest carbohydrate and protein fluxes in April and September, corresponded to high faecal pellet fluxes. The qualitative composition of the organic fluxes indicated a strong protein depletion in trap B and a decrease of the bioavailability of the settling particles as a result of a higher degree of dilution with inorganic material. Quantity and quality of the food supply to the benthos displayed different temporal patterns. Bacterial biomass in the sediment traps (on average 122 and 229 μgC m−2 d−1 in trap A and B, respectively) was significantly correlated to the flux of labile organic carbon, and particularly to the protein and carbohydrate fluxes. Cyanobacterial flux (on average, 1.1 and 0.4 μgC m−2 d−1, in trap A and B, respectively) was significantly correlated with total mass and protein fluxes only in trap A. Bacterial carbon flux, equivalent to 84.2 and 156 mgC m−2 y−1, accounted for 5–6.5% of the labile carbon flux (in trap A and B respectively) and for 22–41% protein pool of the settling particles. These results suggest that in the Cretan Sea, bacteria attached to the settling particles represent a potential food source of primary importance for deep-sea benthic communities.  相似文献   

14.
Rates of sediment accumulation and microbial mineralization were examined at three Kandelia candel forests spanning the intertidal zone along the south coastline of the heavily urbanized Jiulongljiang Estuary, Fujian Province, China. Mass sediment accumulation rates were rapid (range: 10–62 kg m−2 y−1) but decreased from the low- to the high-intertidal zone. High levels of radionuclides suggest that these sediments originate from erosion of agricultural soils within the catchment. Mineralization of sediment carbon and nitrogen was correspondingly rapid, with total rate of mineralization ranging from 135 to 191 mol C m−2 y−1 and 9 to 11 mol N m−2 y−1; rates were faster in summer than in autumn/winter. Rates of mineralization efficiency (70–93% for C; 69–92% for N) increased, as burial efficiency (7–30% for C; 8–31% for N) decreased, from the low-to the high-intertidal mangroves. Sulphate reduction was the dominant metabolic pathway to a depth of 1 m, with rates (19–281 mmol S m−2 d−1) exceeding those measured in other intertidal deposits. There is some evidence that Fe and Mn reduction-oxidation cycles are coupled to the activities of live roots within the 0–40 cm depth horizon. Oxic respiration accounted for 5–12% of total carbon mineralization. Methane flux was slow and highly variable when detectable (range: 5–66 μmol CH4 m−2 d−1). Nitrous oxide flux was also highly variable, but within the range (1.6–106.5 μmol N2O m−2 d−1) measured in other intertidal sediments. Rates of denitrification were rapid, ranging from 1106 to 3780 μmol N2 m−2 d−1, and equating to 11–20% of total sediment nitrogen inputs. Denitrification was supported by rapid NH4 release within surface deposits (range: 3.6–6.1 mmol m−2 d−1). Our results support the notion that mangrove forests are net accumulation sites for sediment and associated elements within estuaries, especially Kandelia candel forests receiving significant inputs as a direct result of intense human activity along the south China coast.  相似文献   

15.
The primary focus of this paper is to better understand carbon burial on the Louisiana continental margin using spatial scales that covered various shelf depositional areas far-field and near-field (sediment and organic carbon inputs relative to river mouth proximity) and covering a variety of sedimentation rates. Box-cores samples were collected in July 2003; cores were collected along two depositional transects extending westward and southward from the Southwest Pass (SW Pass). A key difference between the two transects sampled in this study was the greater occurrence of mobile muds derived from spillover from shallower regions along the westward 50 m isobaths. The dominant mechanism for mixing in the surface active zone (SAZ) on the inner Louisiana shelf was due to physical, not biological, forces. Burial efficiencies for organic carbon (57.2–91.5%) and total nitrogen (44.2–86.9%) ranged widely across all shelf stations. Lower burial efficiencies for bulk organic carbon, total nitrogen, and pigment biomarkers were associated with mobile muds west of Southwest Pass. Chlorophyll a concentrations were significantly higher than pheopigments at depth at the Mississippi River and Southwest Pass stations, making up 40.4 and 77.4% of total pigment concentrations in the (SAZ) and 46.2 and 63.2% in the accumulation zone (AZ), respectively. These results are in agreement with earlier plant pigment studies which showed that a large fraction of the phytodetritus delivered to the inner shelf was derived from coastal and river diatoms. The amount of lignin preserved with depth decreased with increasing residence time in the SAZ and diagenetic zone (DZ) along the canyon transect but not along the western transect. Trends for lignin concentration followed previously identified surface sediment trends indicating overall lower burial of refractory terrestrial material at depth with greater distance offshore.  相似文献   

16.
The Wadden Sea (North Sea, Europe) is a shallow coastal sea with high benthic and pelagic primary production rates. To date, no studies have been carried out in the Wadden Sea that were specifically designed to study the relation between pelagic respiration and production by comparable methods. Because previous studies have suggested that the import of primary-produced pelagic organic matter is important for benthic Wadden Sea carbon budgets, we hypothesised that on an annual average the northern Wadden Sea water column is autotrophic. To test this hypothesis, we studied annual dynamics of primary production and respiration at a pelagic station in a shallow tidal basin (List Tidal Basin, northern Wadden Sea). Since water depth strongly influences production estimates, we calculated primary production rates per unit area in two ways: on the basis of the mean water depth (2.7 m) and on the basis of 1 m depth intervals and their respective spatial extent in the List Tidal Basin. The latter more precise estimate yielded an annual primary production of 146 g C m− 2 y− 1. Estimates based on the mean water depth resulted in a 40% higher annual rate of 204 g C m− 2 y− 1. The total annual pelagic respiration was 50 g C m− 2 y− 1. The P/R ratio varied between seasons: from February to October the water column was autotrophic, with the highest P/R ratio of 4–5 during the diatom spring bloom in April/May. In autumn and winter the water column was heterotrophic. On an annual average, the water column of the List Tidal Basin was autotrophic (P/R 3). We suggest that a large fraction of the pelagic produced organic matter was respired locally in the sediment.  相似文献   

17.
A study of organic carbon mineralization from the Congo continental shelf to the abyssal plain through the Congo submarine channel and Angola Margin was undertaken using in situ measurements of sediment oxygen demand as a tracer of benthic carbon recycling. Two measurement techniques were coupled on a single autonomous platform: in situ benthic chambers and microelectrodes, which provided total and diffusive oxygen uptake as well as oxygen microdistributions in porewaters. In addition, sediment trap fluxes, sediment composition (Org-C, Tot-N, CaCO3, porosity) and radionuclide profiles provided measurements of, respectively input fluxes and burial rate of organic and inorganic compounds.The in situ results show that the oxygen consumption on this margin close to the Congo River is high with values of total oxygen uptake (TOU) of 4±0.6, 3.6±0.5 mmol m−2 d−1 at 1300 and 3100 m depth, respectively, and between 1.9±0.3 and 2.4±0.2 mmol m−2 d−1 at 4000 m depth. Diffusive oxygen uptakes (DOU) were 2.8±1.1, 2.3±0.8, 0.8±0.3 and 1.2±0.1 mmol m−2 d−1, respectively at the same depths. The magnitude of the oxygen demands on the slope is correlated with water depth but is not correlated with the proximity of the submarine channel–levee system, which indicates that cross-slope transport processes are active over the entire margin. Comparison of the vertical flux of organic carbon with its mineralization and burial reveal that this lateral input is very important since the sum of recycling and burial in the sediments is 5–8 times larger than the vertical flux recorded in traps.Transfer of material from the Congo River occurs through turbidity currents channelled in the Congo valley, which are subsequently deposited in the Lobe zone in the Congo fan below 4800 m. Ship board measurements of oxygen profiles indicate large mineralization rates of organic carbon in this zone, which agrees with the high organic carbon content (3%) and the large sedimentation rate (19 mm y−1) found on this site. The Lobe region could receive as high as 19 mol C m−2 y−1, 1/3 being mineralized and 2/3 being buried and could constitute the largest depocenter of organic carbon in the South Atlantic.  相似文献   

18.
The dynamics of primary production and particulate detritus cycling in the Columbia River Estuary are described, with particular reference to mechanisms that account for patterns within the water column, on the tidal flats, and in the adjacent wetlands. Analysis of patterns in phytoplankton flora and biomass and in distribution of detrital particulate organic matter (DPOC) in the water column indicated that salinities of 1–5 delineated an essentially freshwater flora from a marine or euryhaline flora, and that living phytoplankton was converted to DPOC at the freshwater-brackishwater interface. Similarly, the benthic diatom assemblages on tidal flats reflected either the fresh or the brackish nature of the water inundating the flats. Emergent vascular plants were grouped into six associations by cluster analysis, the associations being separated mainly on the bases of different relative abundances of freshwater, euryhaline or brackishwater species, and on whether samples occurred in high or low marsh areas.Annual rates of net areal 24-hr production averaged 55, 16, and 403gC m−2y−1 for phytoplankton, benthic algae, and emergent vascular vegetation, respectively. Total production over the whole estuary was 17,667 metric tons C y−1 for phytoplankton, 1,545mt C y−1 for benthic algae, and 11,325mt C y−1 for emergent vascular plants, for a grand total to 30,537mt C y−1. Phytoplankton biomass turned over approximately 39 times per year on average, while benthic algae turned over about twice and emergent plants once per year.Budgets for phytoplankton carbon (PPOC) and DPOC were developed based on PPOC and DPOC import and export, grazing loss, and in situ production and conversion of PPOC to DPOC. It is suggested that 36,205mt y−1 of PPOC is converted to DPOC in the estuary, principally at the freshwater-brackishwater interface. About 40,560mt y−1 of PPOC is exported to the ocean, and 159,185mt y−1 of DPOC is transported into the marine zone of the estuary (no data are available on DPOC export to the ocean). Thus, the estuary acts principally as a conduit for the transport of particles to the sea, and only secondarily as a converter of viable phytoplankton cells to detrital carbon and as a trap for DPOC.  相似文献   

19.
During the ECOFER experiment (French ECOMARGE program), surficial sediments were sampled on the Aquitanian margin with box corers and analyzed to determine the quantity and quality of organic matter. Sediments from the margin are enriched in organic carbon (mean value 1.35%) in comparison to deep-sea and shelf sediments, due to a fine grain-size sedimentation. As sedimentation rates are high, the margin appears to be an organic depocenter. Some preferential organic enrichment zones were identified in the Cap-Ferret Canyon. There is a supply of continental material from the Gironde estuary, but marine contribution seems more possible than Adour or spanish rivers. No seasonal variations of organic matter were observed at the surface of sediments, suggesting mineralization processes of labile organic matter: average organic carbon consumption was evaluated to 9.0 g C m−2 yr−1. Rapid biological mineralization processes are lower than on the Mediterranean margin, mainly related to significant differences in water temperature. The great width of the canyon, its distance from the continent, and the current circulation pattern prevent any precise recording of the variable organic inputs to the sediment and favor nepheloı̈d transport, resuspension and shelf break processes, which wipe out any print of fresh material input. An organic carbon budget indicates that an equilibrium between organic inputs and organic mineralization+accumulation is not obtainable. The supply of suspended matter could have been minor during the year in question, and sedimentation rates are still imprecise.  相似文献   

20.
Results concerning the concentration of cadmium and lead in Mediterranean waters collected during the 2nd PHYCEMED cruise (Oct. 1983) are discussed. Sampling has been performed at seven stations in the Western Mediterranean Basin, two in the Strait of Gibraltar and the near Atlantic, two in the Sicily Strait and the Eastern Basin.In the Western Basin the observations are in fair agreement with those of PHYCEMED 1. Cadmium has a fairly homogeneous distribution vertically as well as from one station to another, with an average concentration of 8 ng l−1; while lead shows a slight but continuous decrease in concentrations with depth (from at least 50 ng l−1 in surface waters to 20 or 25 ng l−1 at depth). On the other hand, at the basin boundaries, where waters from different origins are present, vertical distributions appear very different. On the basis of calculated water budgets it can be estimated that the Mediterranean Sea discharges about 200 t y−1 of cadmium and about 250 t y−1 of lead into the Atlantic Ocean while 1000 t y−1 of lead are transferred from the Western to the Eastern Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号