首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A tectonic mélange exposed on land is examined to reveal relationships between mélange formation, underplating, and deformation mechanisms, focusing on the deformation of basaltic rocks. The studied Mugi Mélange of the Shimanto Belt is composed of a shale matrix surrounding various blocks of sandstone, pelagic sediments, and basalts. The mélange was formed during Late Cretaceous to early Tertiary times in a subduction zone under PT conditions of 150–200 °C and 6–7 km depth as estimated from vitrinite reflectance and quartz veins fluid inclusions. The mélange represents a range of deformation mechanisms; pressure solution with micro-scale cataclasis in the shale matrix, brittle tension cracking in the blocks, and ubiquitous strong cataclasis in the basal portion of basaltic layers. The cataclastic deformation in the basalts suggests a breakage of a topographic high in the seismogenic depth.  相似文献   

2.
The Ballantrae ophiolite in southern Scotland includes a NEE–SWW-trending serpentinite mélange that contains blocks of mafic blueschist and high-pressure, granulite facies, metapyroxenite (Sm–Nd metamorphic age: 576 ± 32 and 505 ± 11 Ma). Tectonic blocks of mafic schist are less than 3 × 3 m in size, and have greenschist, blueschist or epidote amphibolite facies assemblages corresponding to the high-pressure intermediate-type metamorphic facies series.Adjacent rocks of the serpentinite mélange are hydrothermally-altered MORB-like ophiolitic basalt (prehnite–pumpellyite facies), dolerite (actinolite–oligoclase sub-facies) and gabbro (amphibolite facies), all with assemblages that are diagnostic of the low-pressure metamorphic facies series.The difference in metamorphic facies series and parageneses of minerals between the high-pressure mafic blocks and the adjacent, low-pressure ophiolitic meta-basic rocks suggests that the former were exhumed from > 25 km depth within a cold subducted slab, and were juxtaposed with the latter, the bottom of a MORB-like ophiolite in the hanging wall of a trench. An ENE–WSW-trending, 501 ± 12 Ma volcanic arc belt extends for 3 km south of the serpentinite mélange. We suggest that ridge subduction associated with a slab window created arc-related gabbro (483 ± 4 Ma) at Byne Hill and within-plate gabbro (487 ± 8 Ma) at Millenderdale. Final continental collision created the duplex structure of the Ballantrae complex that includes the HP blocks and serpentinite mélange. These relations define diapiric exhumation in the Caledonian orogen of SW Scotland.  相似文献   

3.
Accretionary complexes record the histories of changes in physical properties of sediments from unlithified sediments to lithified rocks through the deformation processes along subduction interface. The trench sediment suffered various deformation of particulate flow, pressure solution deformation and cataclastic faultings from ductile to brittle regime during accretion in subduction zone. Tectonic mélange is a characteristic rock in on-land accretionary complexes. The dominant deformation mechanism of tectonic mélange formation is pressure solution on the basis of microscopic observation. However, brittle slickenlines are also commonly observed on mélange foliations at the outcrop scale. Although the slickenlines as a brittle failure is common on the surface of the pressure solution foliation, the relationship of their kinetic are still uncertain. Detailed observations of slickenlines suggest that they are formed by reactivation of the mélange foliations, which indicates that the slickenlines are developed after formation of block in matrix texture characterized in mélange. In addition, mélange foliations are cut by faults related to underplating of oceanic materials. Therefore, formation of slickenlines occur before underplating in a relatively deep portion along subduction interface. On the basis of P-T conditions reported from other parts of the Cretaceous Shimanto Belt, the mélange formation and underplating is inferred to have occurred around the seismic front or within the seismogenic zone. The change in deformation mechanisms from pressure solution to brittle failure may be the first change in physical properties from plastic to brittle around seismic front.  相似文献   

4.
SHRIMP U–Pb zircon dating of gabbro, anorthosite, trondhjemite and granodiorite from the Jinshajiang ophiolitic mélange of southwestern China provides geochronological constraints on the evolution of Paleo-Tethys. The ophiolitic mélange is exposed for about 130 km along the Jinshajiang River where numerous blocks of serpentinite, ultramafic cumulate, gabbro, sheeted dikes, pillow lavas and radiolarian chert are set in a greenschist matrix. A cumulate gabbro-anorthosite association and an amphibole gabbro have ages of 338 ± 6 Ma, 329 ± 7 Ma and 320 ± 10 Ma, respectively, which constrain the time of formation of oceanic crust. An ophiolitic isotropic gabbro dated at 282–285 Ma has the same age as a trondhjemite vein (285 ± 6 Ma) cutting the gabbro. These ages probably reflect a late phase of sea-floor spreading above an intra-oceanic subduction zone. At the southern end of the Jinshajiang belt, a granitoid batholith (268 ± 6 Ma), a gabbro massif (264 ± 4 Ma), and a granodiorite (adakite) intrusion (263 ± 6 Ma) in the ophiolitic mélange constitute a Permian intra-oceanic plutonic arc complex. A trondhjemite dike intruded serpentinite in the mélange at 238 ± 10 Ma and postdates the arc evolution of the Jinshajiang segment of Paleo-Tethys.  相似文献   

5.
The Aladag region of eastern Taurides, Turkey, is characterized by an imbricated thrust structure developed during late stage emplacement of the Pozanti-Karsanti ophiolite onto the Menderes-Taurus block in the late Cretaceous. The mid to late Cretaceous dynamothermal metamorphic sole and the underlying unmetamorphosed mélange, here named the Aladag accretionary complex, were accreted to the base of the Pozanti-Karsanti ophiolite during intra-oceanic subduction, transport and final obduction of the ophiolite onto the Menderes-Taurus block.In the dynamothermal metamorphic sole, intensity of deformation and degree of metamorphism increase from the base to the top, and at least three episodes of foliation, lineation and fold development are recognized. The asymmetry of quartz c-axis fabrics, tightness and asymmetry of folds of the same generation, and curvature of fold hinge lines increase from base to top, indicating that non-coaxial progressive deformation prevailed during the development of the metamorphic sole. The mélange is divided into three major thrust fault-bounded tectonic slivers, each of which is characterized by distinctive types of matrix and block lithologies, structures and deformation style. Kinematic analyses of the dynamothermal metamorphic sole and the mélange reveal that the tectonic transport direction of the Pozanti-Karsanti ophiolite during its emplacement was from north-northwest to south-southeast, suggesting that the Pozanti-Karsanti ophiolite was derived from a Neo-Tethyan ocean to the north of the Menderes-Taurus block.  相似文献   

6.
Permian to Cretaceous mélange of the McHugh Complex on the Kenai Peninsula, south-central Alaska includes blocks and belts of graywacke, argillite, limestone, chert, basalt, gabbro, and ultramafic rocks, intruded by a variety of igneous rocks. An oceanic plate stratigraphy is repeated hundreds of times across the map area, but most structures at the outcrop scale extend lithological layering. Strong rheological units occur as blocks within a matrix that flowed around the competent blocks during deformation, forming broken formation and mélange. Deformation was noncoaxial, and disruption of primary layering was a consequence of general strain driven by plate convergence in a relatively narrow zone between the overriding accretionary wedge and the downgoing, generally thinly sedimented oceanic plate. Soft-sediment deformation processes do not appear to have played a major role in the formation of the mélange. A model for deformation at the toe of the wedge is proposed in which layers oriented at low angles to σ1 are contracted in both the brittle and ductile regimes, layers at 30–45° to σ1 are extended in the brittle regime and contracted in the ductile regime, and layers at angles greater than 45° to σ1 are extended in both the brittle and ductile regimes. Imbrication in thrust duplexes occurs at deeper levels within the wedge. Many structures within mélange of the McHugh Complex are asymmetric and record kinematic information consistent with the inferred structural setting in an accretionary wedge. A displacement field for the McHugh Complex on the lower Kenai Peninsula includes three belts: an inboard belt of Late Triassic rocks records west-to-east-directed slip of hanging walls, a central belt of predominantly Early Jurassic rocks records north–south directed displacements, and Early Cretaceous rocks in an outboard belt preserve southwest–northeast directed slip vectors. Although precise ages of accretion are unknown, slip directions are compatible with inferred plate motions during the general time frame of accretion of the McHugh Complex. The slip vectors are interpreted to preserve the convergence directions between the overriding and underriding plates, which became more oblique with time. They are not considered indicative of strain partitioning into belts of orogen-parallel and orogen-perpendicular displacements, because the kinematic data are derived from the earliest preserved structures, whereas fabrics related to strain partitioning would be expected to be superimposed on earlier accretion-related fabrics.  相似文献   

7.
New field, geochronological, geochemical and biostratigraphical data indicate that the central and northern parts of the Cordillera Occidental of the Andes of Ecuador comprise two terranes. The older (Pallatanga) terrane consists of an early to late (?) Cretaceous oceanic plateau suite, late Cretaceous marine turbidites derived from an unknown basaltic to andesitic volcanic source, and a tectonic mélange of probable late Cretaceous age. The younger (Macuchi) terrane consists of a volcanosedimentary island arc sequence, derived from a basaltic to andesitic source. A previously unidentified, regionally important dextral shear zone named the Chimbo-Toachi shear zone separates the two terranes. Regional evidence suggests that the Pallatanga terrane was accreted to the continental margin (the already accreted Cordillera Real) in Campanian times, producing a tectonic mélange in the suture zone. The Macuchi terrane was accreted to the Pallatanga terrane along the Chimbo-Toachi shear zone during the late Eocene, probably in a dextral shear regime. The correlation of Cretaceous rocks and accretionary events in the Cordillera Occidental of Ecuador and Colombia remains problematical, but the late Eocene event is recognised along the northern Andean margin.  相似文献   

8.
西藏松多古特提斯洋研究进展与存在问题   总被引:1,自引:0,他引:1       下载免费PDF全文
青藏高原古特提斯构造域的演化过程一直是国内外地学研究关注的前沿和热点,冈底斯中部松多地区因榴辉岩带的发现,使其成为近年来国内外研究者关注的焦点地区之一。为了更好认识青藏高原古特提斯洋的构造演化历史,本文在综述前人研究的基础上,系统地总结了近年来1∶5万区域地质调查中取得的最新研究进展,初步讨论了唐加-松多地区俯冲增生杂岩带的物质组成和时代。研究表明,西藏冈底斯中部唐加-松多地区保存了相对完整的与古特提斯洋演化以及洋陆转换密切相关的混杂岩,是恢复和反演古特提斯洋演化的理想靶区。松多古特提斯洋洋壳及其消亡的地质记录主要包括晚古生代唐加-松多蛇绿岩、中二叠世洋岛残片、高压变质带、晚三叠世—早侏罗世岩浆作用以及晚三叠世—早侏罗世磨拉石建造。在上述工作基础上,初步探讨了松多古特提斯洋的演化过程,这些地质记录对恢复和反演青藏高原古特提斯构造演化研究具有重要意义。  相似文献   

9.
青藏高原中的古特提斯体制与增生造山作用   总被引:28,自引:12,他引:16  
青藏高原古特提斯体系的特征表现为古特提斯洋盆中多条状地体的存在,多俯冲、多岛弧增生体系的形成和多地体汇聚、碰撞造山的动力学环境,其构架包括4条代表古特提斯洋壳残片的蛇绿岩或蛇绿混杂岩(昆南-阿尼玛卿蛇绿岩带、金沙江-哀牢山-松马蛇绿岩带、羌中-澜沧江-昌宁-孟连蛇绿岩带和松多蛇绿岩带)、5条火山岩浆岛弧带(布尔汗布达岛弧岩浆带、义敦火山岩浆岛弧带、江达-绿春火山岛弧带、东达山-云县火山岛弧带和左贡-临沧岛弧-碰撞岩浆带)、4个陆块或地体(松潘-甘孜地体、羌北-昌都-思茅地体、羌南-保山地体)、3条洋壳深俯冲形成的高压-超高压变质带(金沙江得荣高压变质带、龙木错-双湖高压变质带、松多高(超)压变质带),以及5条弧前增生楔或增生杂岩(西秦岭增生楔、巴颜喀拉-松潘-甘孜增生楔、金沙江增生楔、双湖-聂荣-吉塘-临沧增生楔、松多增生杂岩)。古特提斯洋盆的俯冲增生造山作用普遍存在于青藏高原古特提斯复合造山体中,构成与多条古特提斯蛇绿岩带(缝合带)相伴随的俯冲增生杂岩带(链)。古特提斯俯冲增生杂岩带包括由弧前强烈变形的沉积增生楔、以及高压变质岩、岛弧岩浆岩、蛇绿岩和外来岩块组成的混杂体,代表在洋盆俯冲过程中的活动陆缘的地壳增生。  相似文献   

10.
In the Ladakh–Zanskar area, relicts of both ophiolites and paleo-accretionary prism have been preserved in the Sapi-Shergol mélange zone. The paleo-accretionary prism, related to the northward subduction of the northern Neo-Tethys beneath the Ladakh Asian margin, mainly consists of tectonic intercalations of sedimentary and blueschist facies rocks. Whole rock chemical composition data provide new constraints on the origin of both the ophiolitic and the blueschist facies rocks. The ophiolitic rocks are interpreted as relicts of the south Ladakh intra-oceanic arc that were incorporated in the accretionary prism during imbrication of the arc. The blueschist facies rocks were previously interpreted as oceanic island basalts (OIB), but our new data suggest that the protolith of some of the blueschists is a calc-alkaline igneous rock that formed in an arc environment. These blueschists most likely originated from the south Ladakh intra-oceanic arc. This arc was accreted to the southern margin of Asia during the Late Cretaceous and the buried portion was metamorphosed under blueschist facies conditions. Following oceanic subduction, the external part of the arc was obducted to form the south Ladakh ophiolites or was incorporated into the Sapi-Shergol mélange zone. The incorporation of the south Ladakh arc into the accretionary prism implies that the complete closure of the Neo-Tethys likely occurred by Eocene time.  相似文献   

11.
The southern Andes plate boundary zone records a protracted history of bulk transpressional deformation during the Cenozoic, which has been causally related to either oblique subduction or ridge collision. However, few structural and chronological studies of regional deformation are available to support one hypothesis or the other. We address along- and across-strike variations in the nature and timing of plate boundary deformation to better understand the Cenozoic tectonics of the southern Andes.Two east–west structural transects were mapped at Puyuhuapi and Aysén, immediately north of the Nazca–South America–Antarctica triple junction. At Puyuhuapi (44°S), north–south striking, high-angle contractional and strike-slip ductile shear zones developed from plutons coexist with moderately dipping dextral-oblique shear zones in the wallrocks. In Aysén (45–46°), top to the southwest, oblique thrusting predominates to the west of the Cenozoic magmatic arc, whereas dextral strike-slip shear zones develop within it.New 40Ar–39Ar data from mylonites and undeformed rocks from the two transects suggest that dextral strike-slip, oblique-slip and contractional deformation occurred at nearly the same time but within different structural domains along and across the orogen. Similar ages were obtained on both high strain pelitic schists with dextral strike-slip kinematics (4.4±0.3 Ma, laser on muscovite–biotite aggregates, Aysén transect, 45°S) and on mylonitic plutonic rocks with contractional deformation (3.8±0.2 to 4.2±0.2 Ma, fine-grained, recrystallized biotite, Puyuhuapi transect). Oblique-slip, dextral reverse kinematics of uncertain age is documented at the Canal Costa shear zone (45°S) and at the Queulat shear zone at 44°S. Published dates for the undeformed protholiths suggest both shear zones are likely Late Miocene or Pliocene, coeval with contractional and strike-slip shear zones farther north. Coeval strike-slip, oblique-slip and contractional deformation on ductile shear zones of the southern Andes suggest different degrees of along- and across-strike deformation partitioning of bulk transpressional deformation.The long-term dextral transpressional regime appears to be driven by oblique subduction. The short-term deformation is in turn controlled by ridge collision from 6 Ma to present day. This is indicated by most deformation ages and by a southward increase in the contractional component of deformation. Oblique-slip to contractional shear zones at both western and eastern margins of the Miocene belt of the Patagonian batholith define a large-scale pop-up structure by which deeper levels of the crust have been differentially exhumed since the Pliocene at a rate in excess of 1.7 mm/year.  相似文献   

12.
西南天山高压-超高压变质带是世界上少有的经历深俯冲的增生杂岩带,是古天山洋向北俯冲的结果。针对该俯冲杂岩带内部结构的研究目前仍存在争论。本文以木扎尔特地区一条长约4 km的南北向剖面为例,对西南天山高压-超高压变质带的野外特征、矿物学和变质演化研究进行了综述。目前的研究表明,木扎尔特地区存在超高压和高压两类硬柱石榴辉岩,但绝大部分都经历了强烈的退变质和变形改造,被蓝片岩相或绿片岩相矿物组合取代。这些变基性岩在空间上构成北部和南部两个榴辉岩带,二者为构造接触。木扎尔特超高压硬柱石榴辉岩与其围岩经历相似的峰期压力,构成西南天山超高压带的西端。与东侧阿克牙孜地区超高压榴辉岩相比,它们在变形特征、岩石组合和变质演化方面表现出一定的独特性,很可能说明深俯冲板片在折返过程中沿构造带走向存在差异变质-变形演化。这些基础研究对全面认识冷俯冲增生杂岩带的变质演化及其俯冲和折返的地球动力学机制具有重要意义。  相似文献   

13.
The western cordilleras of the Northern Andes (north of 5°S) are constructed from allochthonous terranes floored by oceanic crust. We present 40Ar/39Ar and fission-track data from the Cordillera Occidental and Amotape Complex of Ecuador that probably constrain the time of terrane collision and post-accretionary tectonism in the western Andes. The data record cooling rates of 80–2 °C/my from temperatures of 540 °C, during 85 to 60 Ma, in a highly tectonised mélange (Pujilí unit) at the continent–ocean suture and in the northern Amotape Complex. The rates were highest during 85–80 Ma and decelerated towards 60 Ma. Cooling was a consequence of exhumation of the continental margin, which probably occurred in response to the accretion of the presently juxtaposing Pallatanga Terrane. The northern Amotape Complex and the Pujilí unit may have formed part of a single, regional scale, tectonic mélange that started to develop at ~85 Ma, part of which currently comprises the basement of the Interandean Depression. Cooling and rotation in the allochthonous, continental, Amotape Complex and along parts of the continent–ocean suture during 43–29 Ma, record the second accretionary phase, during which the Macuchi Island Arc system collided with the Pallatanga Terrane. Distinct periods of regional scale cooling in the Cordillera Occidental at 13 and 9 Ma were synchronous with exhumation in the Cordillera Real and were probably driven by the collision of the Carnegie Ridge with the Ecuador Trench. Finally, late Miocene–Pliocene reactivation of the Chimbo–Toachi Shear Zone was coincident with the formation of the oldest basins in the Interandean Depression and probably formed part of a transcurrent or thrust system that was responsible for the inception and subsequent growth of the valley since 6 Ma.  相似文献   

14.
班公湖—双湖—怒江(中北段)—昌宁—孟连对接带广泛出露特提斯大洋岩石圈俯冲消减过程中产生的不同时代、不同构造环境、不同变质程度、不同变形样式的洋板块构造地层系统、增生混杂的构造—岩石组合体,可识别出增生的远洋沉积岩、海沟浊积岩、古生代—中生代蛇绿岩、蛇绿混杂岩、洋岛-海山消减增生楔、洋底沉积增生杂岩,基底残块以及以蓝片岩、榴辉岩为代表的高压—超高压变质岩带,记录了青藏高原原古特提斯大洋形成演化的地质信息。班公湖—双湖—怒江—昌宁—孟连对接带是青藏高原中部一条重要的原古特提斯大洋自北向南后退式俯冲消亡的巨型增生杂岩带,构筑了冈瓦纳大陆与劳亚-泛华夏大陆分界带。  相似文献   

15.
Ocean Plate Stratigraphy in East and Southeast Asia   总被引:10,自引:1,他引:10  
Ancient accretionary wedges have been recognised by the presence of glaucophane schist, radiolarian chert and mélange. Recent techniques for the reconstruction of disrupted fragments of such wedges by means of radiolarian biostratigraphy, provide a more comprehensive history of ocean plate subduction and successive accretion of ocean floor materials from the oceanic plate through offscraping and underplating.Reconstructed ocean floor sequences found in ancient accretionary complexes in Japan comprise, from oldest to youngest, pillow basalt, limestone, radiolarian chert, siliceous shale, and shale and sandstone. Similar lithologies also occur in the mélange complexes of the Philippines, Indonesia, Thailand and other regions. This succession is called ‘Ocean Plate Stratigraphy’ (OPS), and it represents the following sequence of processes: birth of the oceanic plate at the oceanic ridge; formation of volcanic islands near the ridge, covered by calcareous reefs; sedimentation of calcilutite on the flanks of the volcanic islands where radiolarian chert is also deposited; deposition of radiolarian skeletons on the oceanic plate in a pelagic setting, and sedimentary mixing of radiolarian remains and detrital grains to form siliceous shale in a hemipelagic setting; and sedimentation of coarse-grained sandstone and shale at or near the trench of the convergent margin.Radiolarian biostratigraphy of detrital sedimentary rocks provides information on the time and duration of ocean plate subduction. The ages of detrital sediments becomes younger oceanward as younger packages of OPS are scraped off the downgoing plate.OPS reconstructed from ancient accretionary complexes give us the age of subduction and accretion, direction of subduction, and ancient tectonic environments and is an important key to understanding the paleoenvironment and history of the paleo-oceans now represented only in suture zones and orogenic belts.  相似文献   

16.
Structural studies in the Schistes lustrés nappe west of Bastia, Corsica, demonstrate the existence of a tectonic mélange in which km-scale blocks and smaller lozenges of basement granite gneiss, thick-layered marble and dismembered Mesozoic ophiolite are enveloped in a matrix of calc-schist and blueschist. The main (S1) foliation is developed in both block and matrix and is concordant with lithologie contacts. Blueschist facies metamorphism was syn-kinematic with the main foliation.The S1 in the Schistes lustrés was refolded about ENE-WSW trending, tight similar and monoclinal fold axes (F2). These second folds verge to the southeast and show km-scale axial culminations and depressions that are reflected by topography and residual Bouguer gravity anomalies.Parautochthonous Hercynian basement (Tenda-Corte complex) beneath the western edge of the Schistes lustrés nappe contains a mylonitic foliation which is concordant with the main foliation in the Schistes lustrés. The intensity of deformation in the basement decreases away from this contact and undeformed granites are found 3 km to the west.Whole rock samples of the deformed basement immediately beneath the Schistes lustrés yield an Rb-Sr isochron diagram (n = 4) which has an age of 105 ± 8 Ma (1σ) and initial ratio of 0.7228 ± 0.0005 (1σ). This result is more precise than our preliminary age and initial ratio estimate of 98 ± 14 and 0.7296 ± 0.0068, respectively (Cohen et al., 1979). It is similar to a recently published mid-Cretaceous (90 Ma) 40Ar-39Ar age from glaucophane mineral separates. We interpret this date as the age of a metamorphic overprint related to the emplacement of the Schistes lustrés nappe and associated ophiolites, the formation of the main foliation and blueschist facies metamorphism.These results indicate that the mid-Cretaceous blueschist facies metamorphism documented in the Western Alps formerly extended farther south of its present terminus. The data are consistent with mid-Cretaceous obduction of Tethyan oceanic crust onto the present-day eastern continental margin of Corsica. We postulate that during Eocene—early Oligocene time a polarity flip occurred outboard of the obducted crust and a new, southfacing subduction zone developed. This change in polarity was responsible for the development of southeast-vergent second folds and for the resetting of 40Ar−39Ar and K-Ar geochronologic clocks described in the literature.  相似文献   

17.
Jochen Kolb   《Tectonophysics》2008,446(1-4):1-15
The fabric, mineralogy, geochemistry, and stable isotope systematics of auriferous shear zones in various hydrothermal gold deposits were studied in order to discuss the role of fluids in rock deformation at temperatures between 500 °C and 700 °C. The strong hydrothermal alteration and gold mineralization indicates that effective permeability development goes ahead with high-temperature rock deformation. The economic gold enrichment is often hosted by breccias and quartz veins in the ductile shear zones, which either formed at fast strain rates or by low strain continuous deformation at slow strain rates. Both processes require (1) a close-to lithostatic to supralithostatic fluid pressure and/or (2) a strong rheology contrast of the deformed lithologies that is often developed during progressive hydrothermal alteration. Compartments of high fluid pressure are sealed from the rest of the shear zones by high-temperature deformation mechanisms, e.g. intracrystalline plasticity and diffusion creep, and compaction. In contrast, in mylonites with heterogeneous crystal plastic and brittle deformation mechanisms for the various minerals, an interconnected network of a grain-scale porosity forms an effective fluid conduit, which hampers fluid pressure build-up and the formation of veins.The auriferous shear zones of the various gold mines represent fluid conduits in the deeper crust, 100 m along strike and up to 1000 m down-dip. The hydrothermal fluids infiltrated may be responsible for low magnitude earthquakes in the Earth's lower crust, which otherwise deforms viscously.  相似文献   

18.
大洋岩石圈俯冲增生过程中可能伴随着复杂的深部板片运动过程。高压变质岩无疑是记录这些深部过程的良好载体。最近的研究提出,在特定情况下,双向俯冲中占主导的俯冲板块拖曳另一侧板块发生反向运动,从而短板片可能被另一侧长板片拖出。该研究提示我们关注俯冲增生过程中这种可能的“不正常”的板片运动方式,从而客观而全面地剖析碰撞造山带。现有高压变质岩折返模式中,除了俯冲隧道流模式,其余模式均强调单次快速折返。然而,俯冲反向运动导致的折返过程有所不同:对单个高压变质岩来说仍是快速折返,但是对整体高压变质岩带来说,整个俯冲反向期间必然都存在高压变质岩折返,从而形成较长的折返过程持续时间。对上地壳层次的折返相关构造变形的研究有助于揭示上述过程。  相似文献   

19.
The Mitsuishi ultramafic rock body in Hokkaido, Japan, consists mainly of serpentinized peridotites that originated from a depleted mantle. This study aims to show new evidence of small-scale mélange fabric of serpentinite matrix in the rock body. Each serpentinite block in the serpentine matrix shows large and stable intensities of natural remanent magnetization (NRM). However, the directions of serpentinite blocks' NRM in the matrix are randomly scattered. A Curie temperature (Tc) of 580 °C corresponding to pure magnetite was also observed. Additionally, there is no evidence of heating over 580 °C after serpentinization. The blocks in the matrix must have obtained crystallization remanent magnetization (CRM) during serpentinization. The directions of the blocks' characteristic remanent magnetization (ChRM) are also scattered. It shows that serpentinite blocks were magnetized prior to uplifting. The results of the study indicate that the magnetic carrier of the serpentinite blocks in the matrix is mainly composed of magnetite, and it can keep original magnetization before uplifting. The results also imply that the scattering directions of NRM indicate the presence of small-scale mélange fabric of serpentinite matrix.  相似文献   

20.
The 102 Ma El Potrero pluton, in the western foothills of Sierra San Pedro Mártir, in north-central Baja California, was emplaced during a long period of contractional deformation bracketed between 132 and 85 Ma that affected this segment of the Peninsular Ranges Batholith. The pluton records regional and emplacement related deformation manifested by: (1) a solid-state fabric developed on its eastern contact, which is produced by eastward lateral pluton expansion; (2) cleavage triple point zones in the host-rock NW and SE of the pluton; (3) subhorizontal ductile shear zones indicative of top-to-the-east transport; (4) magmatic and tectonic foliations parallel to regional structural trends and regional shear zones; (5) variable axial ratios of microgranitoid enclaves close to pluton–wall rock contacts; (6) evidence of brittle-emplacement mechanisms in the western border of the pluton, which contrast with features indicating mainly ductile mechanisms toward the east; and, (7) markedly discordant paleomagnetic directions that suggest emplacement in an active tectonic setting. The overall mean for 9 accepted paleomagnetic sites is Dec = 34.6°, I = 25.7° (k = 88.3, α95 = 5.5°), and is deviated  35° with respect to the reference cratonic direction. This magnetization is interpreted to indicate a combination of tilt due to initial drag during vertical diapiric ascent (or westward lateral-oblique expansion) of the adjacent San Pedro Mártir pluton and later rotation ( 15°) by Rosarito Fault activity in the southwest; this rotation may have occurred as eastward contraction acted to fill the space emptied by the ascending San Pedro Mártir pluton. The Rosarito fault may have tilted several plutons in the area (Sierra San Pedro Mártir, El Potrero, San José, and Encinosa). Magnetic susceptibility fabrics for 13 sites reflect mostly emplacement-related stress and regional stress. Paleomagnetic data and structural observations lead us to interpret the El Potrero pluton as a syntectonic pluton, emplaced within a regional shear zone delimited by the Main Mártir Thrust and the younger Rosarito Fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号