首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
El Zeit Bay is a semi-closed area with a rectangular shape which south side is connected witu northwestern side of Red Sea. The study was done to detect the characteristics of the bottom facies at El Zeit Bay. Single-beam seabed echoes combined with diving survey and sediments analyses were used to detect sea bed characteristics. The seabed floor of the study area is characterized by three physiographical distinct bottom facies; sand facies: floral facies and coral patches facies. Sand facies lies at very shallow water it extended from shore line to depth about 2 m. It has very fine sand size intercalated by mud sediments. It is characterized by very poor benthos. Floral bottom facies has medium sand which characterized by rich floral vegetation this flora appear in scattered and irregular forms. It is observed at an average depth from 4 m to 6 m. Coral patches facies is characterized by the presence of coarse sediments. The coral reef covers about 40% of the study area (29.5% hard corals and 10.5% is soft ones) while the rest of the area (60%) is characterized by different benthos. In communities general, his area characterized by high biodiversity.  相似文献   

2.
Beach-nearshore profiles combined with beach and surficial sediment samples were analyzed in conjunction with wave, current, littoral drift and sea-level data to determine the effect of bedrock on morphodynamic processes within the littoral zone of Alexandria on the Mediterranean coast of Egypt. This 14.5-km-long littoral cell is bounded by pronounced embayments and pocket beaches separated by headlands which prevent bypassing of beach sands, in effect making this cell a large, semi-closed basin. The compartmented nature of this cell acts together with the rough irregularity of the rocky seafloor to trap a thin veneer of sediment (<3 m thick), showing proportional mixing between two sedimentary provinces. A modern fine-grained sediment facies consisting of mixed carbonate/siliciclastic sand flanks most of the nearshore zone down to a depth of 8–10 m. Beyond this depth, considered to be the depth of closure, a relict late Pleistocene to mid-Holocene coarse-grained facies composed of biogenic carbonate sand is found. Along a short section of the coastline (km 3–6), the coarser sediment also occupies the nearshore zone. Over most of the study area the two sediment types are mixed in various proportions, largest mixing coinciding with poorest sorting. Profile analyses revealed seasonal changes in sediment volume along the coast which closely follow the cyclicity of seasonal changes in wave climate. The present shoreline orientation, headlands and rough, irregular rocky seabed are reflected in the erosion/accretion pattern, sediment characteristics, and the reversibility of longshore currents and littoral drift. Although there is a marked deficiency in the sediment balance, the sand budget for this cell, including artificial material (2.339*106 m3) has increased slightly by 0.041*106 m3 year–1 as a result of engineering works carried out to widen the coastal road (Corniche). In addition to the physical properties of the bedrock (degree of induration), the accelerating sea-level rise during the Holocene and human influences, the modern morphology of the coast, the erosional seabed features in the nearshore zone, and the texture of seabed sediments are all controlled by the original geometry of the coast which consisted of an elevated subaerial ridge.  相似文献   

3.
4.
Some seasonal water temperature patterns in the Hauraki gulf,New Zealand   总被引:1,自引:1,他引:0  
The changing pattern of water temperature in the Hauraki Gulf at approximately two‐monthly intervals during one and one‐half seasonal cycles in 1965–66 was determined from sea surface temperatures and bathythermograph profiles.

Surface and bottom temperatures ranged from 22.0°c and 20.5°c respectively in March to 12.5°c and 13.0°c in July‐September. Seasonal temperature ranges and short‐term variations were greatest in the shallow south‐west Gulf.

In winter the Gulf water was coolest close to shore. It was typically isothermal in depth but a temperature inversion of approximately l°c frequently formed, probably because of the combination of strong winds and an increased outflow of cool, low salinity water from harbours and bays. A similar inversion in Colville Channel may have been caused by more complex tidal and/or ocean current conditions.

In spring and summer the Gulf became thermally stratified, with warmest temperatures in the shallow areas. Thermoclines were generally irregular in position and size, and probably represented solar heating and minor current boundaries rather than a distinct separation of major water masses. In late summer and autumn bottom temperatures increased and almost equalled the maximum surface temperature.

During autumn surface water temperatures close to land decreased rapidly to return the Gulf to its winter isothermal condition.

Local factors (wind, rainfall, tides, depth of water, and proximity to land) probably influence sea temperatures in the Gulf. Seawards of a line from Cape Rodney to Cape Colville oceanic conditions prevail; water temperatures are more constant and increase to seaward in both winter and summer.

Oceanic and Gulf waters meet and mix in the Rodney‐Colville area, and Gulf water is transported east through Colville Channel. The extent of oceanic water penetration into the Gulf at depth is unknown.  相似文献   

5.
黄河三角洲孤东海域沉积物及水动力   总被引:7,自引:0,他引:7  
根据黄河三角洲孤东近岸海域表层沉积物取样、水文泥沙观测和风浪资料推算,分析沉积物特征和运移趋势,并通过水动力条件(潮流和波浪)探讨沉积物起动和输移特征。结果表明,孤东海域沉积物多为粉砂类物质,由内向外逐渐变细,分选变差,丁坝的修建对周围粒径分布影响明显;沉积物运移趋势受风成余流、岸线轮廓和丁坝工程修建的影响,不同区域表现为不同的输移方向;研究区水动力表现为波浪掀沙、潮流输沙的特征,由于潮流较小,不足以引起泥沙的起动,泥沙起动主要由波浪引起。  相似文献   

6.
Dune erosion is shown to occur at the embayment of beach mega-cusps O(200 m alongshore) that are associated with rip currents. The beach is the narrowest at the embayment of the mega-cusps allowing the swash of large storm waves coincident with high tides to reach the toe of the dune, to undercut the dune and to cause dune erosion. Field measurements of dune, beach, and rip current morphology are acquired along an 18 km shoreline in southern Monterey Bay, California. This section of the bay consists of a sandy shoreline backed by extensive dunes, rising to heights exceeding 40 m. There is a large increase in wave height going from small wave heights in the shadow of a headland, to the center of the bay where convergence of waves owing to refraction over the Monterey Bay submarine canyon results in larger wave heights. The large alongshore gradient in wave height results in a concomitant alongshore gradient in morphodynamic scale. The strongly refracted waves and narrow bay aperture result in near normal wave incidence, resulting in well-developed, persistent rip currents along the entire shoreline.

The alongshore variations of the cuspate shoreline are found significantly correlated with the alongshore variations in rip spacing at 95% confidence. The alongshore variations of the volume of dune erosion are found significantly correlated with alongshore variations of the cuspate shoreline at 95% confidence. Therefore, it is concluded the mega-cusps are associated with rip currents and that the location of dune erosion is associated with the embayment of the mega-cusp.  相似文献   


7.
The Santa Cruz coastal terrace fringes much of the northern Monterey Bay region, California. It consists mainly of a regressive sequence of high-energy, barred nearshore marine sediments deposited during the last (Sangamonian) highstand of sea level. This sequence can be sub-divided into several depth-dependent facies on the basis of paleo-current data and vertical sequence of sedimentary structures. These include a lower shoreface facies deposited in 10–16 m water depth, an upper shoreface facies (including both a storm-dominated assemblage and a surf zone assemblage) deposited in 0–10 m water depth, and a foreshore facies deposited in the swash zone, up to 3.5 m above high tide.

The magnitudes of the storm events responsible for depositing these sediments were estimated by calculating paleo-wave heights using a variety of criteria (e.g., critical threshold equations, breaker depths, berm heights). In addition, the climate and paleogeography during the deposition of these sediments were essentially the same as today, allowing the use of present-day wave statistics to estimate the frequency of these storm events. The largest storms formed offshore-flowing currents (e.g., rip, wind-forced, and possibly storm-surge ebb currents) that resulted in the deposition of approximately 30% of the sediments seaward of the surf zone; however, the magnitude and frequency of these events are unknown. The remaining 70% of the sediment beyond the surf zone was deposited in response to smaller storm waves which were, on the average, at least 1.6 m high; such waves presently occur no more than 15% of the time. Sediments deposited during “fairweather” conditions (i.e., the remaining 85% of the time) have a low preservation potential, and are generally not preserved in this facies. In contrast, surf zone sediments were deposited by a variety of processes associated with waves whose maximum offshore heights were probably ≤ 2.2 m; such waves presently occur up to 92% of the time. Sediments within the swash zone were deposited by waves up to 3 m high, the largest of which presently occur approximately 2% of the time.

Most of the sediments were deposited by storms of intermediate magnitude and frequency; different facies, however, appear to preferentially record events of different recurrence intervals. In particular, surf zone sediments were deposited under relatively small storm and post-storm conditions, whereas sediments deposited farther offshore record increasingly larger, less frequent storm events. Relatively rare events (e.g., the 100 or 1000 yr events) do not appear to have significantly affected sedimentation in these nearshore environments.  相似文献   


8.
9.
A.D Short 《Marine Geology》1984,60(1-4):261-282
The morphology, texture and facies sequence on seven sand beaches, located in low, moderate and high wave energy, microtidal environments in southern Australia were investigated using box coring and Scuba observations. Systematic variation in facies occur both within and between the beaches. Low-energy reflective beaches are limited in lateral and vertical extent and in facies to beach laminations separated by coarse step deposits from finer nearshore cross-lamination facies. Moderate-energy intermediate beaches characterised by rip circulation possess increasingly wider surfzones with ridge and runnel and bar-trough facies separating the beach and step facies from the more extensive nearshore sequence. High-energy dissipative beaches may have 500 m wide surfzones containing multiple bar-trough topography. Fine beach laminations with backwash structures grade into 4–5 m thick bar-trough sequences then the extensive nearshore facies. As wave energy increases from low (Hb < 1 m) to high (Hb > 2.5 m) the vertical extent of the beach to nearshore sequence increases from <10 m to approximately 30 m, and the width from 100 m to several kilometres. Consequently one would expect higher-energy paleo-beach sequences to be represented more by diagonal than vertical facies sequences.  相似文献   

10.
Ephemeral sand waves in the hurricane surf zone   总被引:2,自引:0,他引:2  
Airborne bathymetric LIDAR observations along the Florida panhandle after Hurricane Dennis (2005) show the first unequivocal observations of surf-zone sand wave trains.

These are found in depths of 5m along the trough of the hurricane bar, where hindcasts show strong longshore currents only during severe storms. The waves extend over tens of kilometers of coast after Dennis but are absent from the same area in four other datasets. Observed wavelength to water depth ratios are comparable to river dunes and tidal sand waves but height to depth ratios are smaller, with the largest wave heights around 0.1 times the water depth. The sand wave generation mechanism is hypothesized to be from wind-and-wave-induced longshore currents, which were hindcast to be large during Dennis, with destruction from water wave orbital velocities.  相似文献   


11.
High-resolution side-scan mosaics, sediment analyses, and physical process data have revealed that the mixed carbonate/siliciclastic, inner shelf of west-central Florida supports a highly complex field of active sand ridges mantled by a hierarchy of bedforms. The sand ridges, mostly oriented obliquely to the shoreline trend, extend from 2 km to over 25 km offshore. They show many similarities to their well-known counterparts situated along the US Atlantic margin in that both increase in relief with increasing water depth, both are oriented obliquely to the coast, and both respond to modern shelf dynamics. There are significant differences in that the sand ridges on the west-central Florida shelf are smaller in all dimensions, have a relatively high carbonate content, and are separated by exposed rock surfaces. They are also shoreface-detached and are sediment-starved, thus stunting their development. Morphological details are highly distinctive and apparent in side-scan imagery due to the high acoustic contrast. The seafloor is active and not a relict system as indicated by: (1) relatively young AMS 14C dates (<1600 yr BP) from forams in the shallow subsurface (1.6 meters below seafloor), (2) apparent shifts in sharply distinctive grayscale boundaries seen in time-series side-scan mosaics, (3) maintenance of these sharp acoustic boundaries and development of small bedforms in an area of constant and extensive bioturbation, (4) sediment textural asymmetry indicative of selective transport across bedform topography, (5) morphological asymmetry of sand ridges and 2D dunes, and (6) current-meter data indicating that the critical threshold velocity for sediment transport is frequently exceeded. Although larger sand ridges are found along other portions of the west-central Florida inner shelf, these smaller sand ridges are best developed seaward of a major coastal headland, suggesting some genetic relationship. The headland may focus and accelerate the N–S reversing currents. An elevated rock terrace extending from the headland supports these ridges in a shallower water environment than the surrounding shelf, allowing them to be more easily influenced by currents and surface gravity waves. Tidal currents, storm-generated flows, and seasonally developed flows are shore-parallel and oriented obliquely to the NW–SE trending ridges, indicating that they have developed as described by the Huthnance model. Although inner shelf sand ridges have been extensively examined elsewhere, this study is the first to describe them in a low-energy, sediment-starved, dominantly mixed siliciclastic/carbonate sedimentary environment situated on a former limestone platform.  相似文献   

12.
Hydrology and circulation in central and southern Cook Strait,New Zealand   总被引:2,自引:2,他引:0  
The circulation and hydrology of Cook Strait are defined using both the geostrophic method and the hydrologiieal characteristics of the different water masses. Cool, low salinity water in a branch of the Southland Current, which extends along the east coast of the South Island into Cook Strait, mixes above the depth of the continental shelf with warmer, more saline Subtropical Water from both the D'UrVille Current and the East Cape Current. Subtropical Water derived from the East Cape Current occupies the Cook Strait Canyon; below 100 m this water meets the Subtropical Water of the southwest‐flowing D'Urville Current in a convergence situated in the Oook Strait Narrows. Mixed water derived from all three currents passes eastwards across Cook Strait and up the east coast of the North Island.  相似文献   

13.
El Hamra mooring pier was constructed on the northwestern Mediterranean coast of Egypt to provide shipping services for offshore oil terminals. Although the pier was built on cylindrical piles to avoid the interruption of sediment transport towards the south, unexpected sedimentation has affected navigation and the attached fire-fighting system. To provide a basis for evaluating the sedimentation problem and to provide possible mitigation strategies, a 23-month measurement program was conducted, including measurements of hydrographic surveying, nearshore waves, longshore currents, longshore littoral transport, currents seawards of the breaker zone, and offshore currents. The results confirm that carbonate sediments are transported southwards to the pier embayment from adjacent up-coast ridges by wave-induced currents. These sediments result from extensive civil engineering works (recreational development) up-coast of the El Hamra region, involving leveling of subaerial carbonate ridges and onshore sediment disposal.  相似文献   

14.
B. Manighetti  L. Carter 《Marine Geology》1999,160(3-4):271-300
Side-scan, seismic and surficial sediment data accompanied by current meter records highlight across-shelf sediment transport in Hauraki Gulf, an island-studded embayment off northern New Zealand. Calm weather currents are locally dominated by the tides, with periodic incursions of oceanic water from detached meanders of the East Auckland Current. Under these conditions, bedload transport occurs mainly in three 15–20 km-wide channels, where bathymetric intensification of the flow brings about near-bottom speeds of up to 82 cm s−1 for Colville Channel and 33–44 cm s−1 in Jellicoe and Cradock Channels. Surficial sediments are gravelly to muddy sand, winnowed in places, leaving a lag deposit of mainly biogenic carbonate gravel. Modelling results suggest that in Colville Channel, dominant fine to medium sand modes are mobile for 20–60% of the time, with a net eastward movement for fine sand. In Jellicoe and Cradock Channels, the prevailing direction of transport is southwards across the shelf, with sand mobile for up to 33% of the time. Oceanic incursions have the potential to boost flow in the western Gulf, however such incursions are transitory, and there is no measurable expression of oceanic water in the sedimentary record. Because of their association with prolonged periods of calm weather, the incursions are unlikely to accompany storm events, where their cumulative effect might be important for sediment transport. Near-bottom currents resulting from oceanic incursion may reinforce peak tides inside the Gulf by up to 2–4 cm s−1. Enhancement of prevailing water motions occurs during periods of extreme weather. During cyclone Drena (January 1997), measured flow speeds in Jellicoe Channel reached 48 cm s−1. Furthermore, the disturbance generated large waves that stirred bottom sediments down to over 100 m water depth. Such events are probably the major agent of sediment redistribution in the Hauraki Gulf. The net effect of storm and calm weather currents is to move sediment across the outer to middle shelf where, in the western and central Gulf it accumulates, and in the eastern Gulf it escapes eastward via Colville Channel.  相似文献   

15.
The sedimentary structures, composition, and texture of sediments from the barrier coast complex (Matarangi Beach—Omaro Spit—Whangapoua Harbour) at Whangapoua, Coromandel Peninsula, are described. Sediments are mainly fine sands, rarely muddy or silty, and most are plagioclase feldsarenites, reflecting derivation from a predominantly Tertiary volcanic hinterland. Sediments from each of the modern environments, namely nearshore, foreshore, back‐shore, frontal dunes, tidal flats, and tidal channels, are characterised by a particular combination of sedimentary structures and subtle textural parameters. Dune ridge and barrier flat paleoenvironments on Omaro Spit were successfully identified by comparing their lithologic properties with the modern sediments. ‘Surficial’ sediments of the well‐preserved dune ridge system developed immediately inland from Matarangi Beach closely resemble those in the modern frontal dunes, and the ‘in depth’ dune ridge sediments are more analogous to the present foreshore sands. The barrier flat deposits separating the dune ridge system from Whangapoua Harbour have similar characteristics to the modern tidal flat sediments in the harbour.

Omaro Spit probably began as an offshore bar across the mouth of Whangapoua Harbour, an embayment formed by the post‐glacial drowning of a Late Tertiary dislocated fault‐block. Tidal flat sedimentation within the harbour formed the ancient barrier flat deposits which rise to at least 2 m above the modern harbour flats, suggesting local sea level at the time was higher than at present. During a subsequent cyclic fall in sea level, supratidal aeolian deposition led to a succession of 15 to 18 parallel dune ridges developed on high‐tide berms. Linear regression analyses of dune ridge and swale heights and the height distribution of positive (aeolian) and negative (beach foreshore) skewness values and of contrasting sedimentary structures in dune ridgL paleosediments, together with the stages in dune soil development across the barrier, suggest initial sedimentation occurred from 4000–5000 years ago when local sea level was 2–3 m above present mean high water level. Barrier progradation was interrupted by an important period of coastal erosion during a temporary rise in sea level immediately before deposition in the dune ridge system of a layer of 2000‐year‐old sea‐rafted Leigh Pumice. Sea level probably reached its modern position at Whangapoua about 1000 years ago, since when some evidence suggests the barrier spit may have experienced minor uplift.  相似文献   

16.
Seismic reflection profiles and vibracores have revealed that an inner shelf, sand-ridge field has developed over the past few thousand years situated on an elevated, broad bedrock terrace. This terrace extends seaward of a major headland associated with the modern barrier-island coastline of west-central Florida. The overall geologic setting is a low-energy, sediment-starved, mixed siliciclastic/carbonate inner continental shelf supporting a thin sedimentary veneer. This veneer is arranged in a series of subparallel, shore-oblique, and to a minor extent, shore-parallel sand ridges. Seven major facies are present beneath the ridges, including a basal Neogene limestone gravel facies and a blue-green clay facies indicative of dominantly authigenic sedimentation. A major sequence boundary separates these older units from Holocene age, organic-rich mud facies (marsh), which grades upward into a muddy sand facies (lagoon or shallow open shelf/seagrass meadows). Cores reveal that the muddy shelf facies is either in sharp contact or grades upward into a shelly sand facies (ravinement or sudden termination of seagrass meadows). The shelly sand facies grades upward to a mixed siliciclastic/carbonate facies, which forms the sand ridges themselves. This mixed siliciclastic/carbonate facies differs from the sediment on the beach and shoreface, suggesting insignificant sediment exchange between the offshore ridges and the modern coastline. Additionally, the lack of early Holocene, pre-ridge facies in the troughs between the ridges suggests that the ridges themselves do not migrate laterally extensively. Radiocarbon dating has indicated that these sand ridges can form relatively quickly (1.3 ka) on relatively low-energy inner shelves once open-marine conditions are available, and that frequent, high-energy, storm-dominated conditions are not necessarily required. We suggest that the two inner shelf depositional models presented (open-shelf vs. migrating barrier-island) may have co-existed spatially and/or temporally to explain the distribution of facies and vertical facies contacts.  相似文献   

17.
I~crIOWIn the coastal area, especially at the sandy seashore, wave and nearshore current are the major factors which affect sediment transPOrt and the motyhChdynamics.The numerical models of predicting the beach evolution can be classified intO the medi~term and long-term models according to their space and time scales (De Briend et al., 1993;Watanabe, 1990; Watanabe et al., 1986; Tao, 1996). In the medium-term model the effects ofwave, nearshore current and sediment transport are conside…  相似文献   

18.
近岸波、流作用下结构物附近海岸演变的数值模拟   总被引:5,自引:0,他引:5  
张海文  陶建华 《海洋学报》2000,22(1):117-124
针对与砂质海岸在波浪作用下的演变有关的波浪、近岸流及输沙问题进行了系统的研究,并对结构物附近海岸演变进行了数值模拟。考虑了波浪折射-绕射及波浪破碎的综合作用,在近岸流场的模拟中用沿水深积分形成的K方程模型确定涡粘系数。计算岸滩地形变化时,综合波浪、近岸流作用的底沙和悬沙输沙率,并考虑波浪对泥沙作用的影响。模型对防波堤和近岸沉船附近地形变化进行了模拟,效果良好。  相似文献   

19.
Three years of temperature data along two transects extending to 90 m depth, at Palau, Micronesia, show twice-a-day thermocline vertical displacements of commonly 50–100 m, and on one occasion 270 m. The internal wave occurred at a number of frequencies. There were a number of spectral peaks at diurnal and semi-diurnal frequencies, as well as intermediate and sub-inertial frequencies, less so at the inertial frequency. At Palau the waves generally did not travel around the island because there was no coherence between internal waves on either side of the island. The internal waves at a site 30 km offshore were out-of-phase with those on the island slopes, suggesting that the waves were generated on the island slope and then radiated away. Palau Island was thus a source of internal wave energy for the surrounding ocean. A numerical model suggests that the tidal and low-frequency currents flowing around the island form internal waves with maximum wave amplitude on the island slope and that these waves radiate away from the island. The model also suggests that the headland at the southern tip of Palau prevents the internal waves to rotate around the island. The large temperature fluctuations (commonly daily fluctuations ≈10 °C, peaking at 20 °C) appear responsible for generating a thermal stress responsible for a biologically depauperate biological community on the island slopes at depths between 60 and 120 m depth.  相似文献   

20.
本文采用1986–2019年113景Landsat影像提取高潮线,辅以2015–2019年实测剖面数据,开展了海湾尺度上海岸线的中长期演变过程与驱动机制研究。结果表明:企望湾以中间小型基岩岬角为界划分出的西侧海滩和东侧海滩分别具备4种和3种不同的空间特征;超过一半的区域其海岸线演变表现为非线性行为;Mann-Kendall趋势检验和显著性分析方法较好地解决了已有研究中对研究时段划分缺乏依据的问题;近5年的实测剖面数据也验证了企望湾近期显著的淤积和侵蚀现象。进一步研究表明,自西向东的沿岸输沙过程是近期海岸线演变主要的驱动机制,东侧防波堤因为改变了控制性“岬角”的位置,造成了海湾平面形态不平衡,而中间小型基岩岬角也影响了企望湾侵蚀和淤积的空间差异性。研究结果对于预测未来岸线位置和控制岸线侵蚀风险具有重要的理论和现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号