首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a space-for-time substitution design, we investigated the response of structural instream habitat and fish populations to different riparian management practices throughout a Dairy Best Practice Catchment. We found a significant negative correlation between the upstream area of stock exclusion fencing and deposited instream fine sediment cover. Furthermore, we determined that this relationship emerges when ≥300?m lengths of upstream riparian area were included in the analysis, indicating the scale at which stock exclusion fencing results in a positive instream habitat response. Specifically, for this historically degraded spring-fed stream, our findings indicate that riparian segments with 5 m wide stock exclusion fences (both banks) are required to achieve instream fine sediment cover below 20% in downstream reaches. Fish were sparse and evenly spread throughout the catchment. Fish distributions were not correlated with reach-scale riparian or instream habitat variables, possibly because the available habitat quality gradient was too narrow.  相似文献   

2.
We developed habitat suitability curves (HSC) using generalised additive models (GAMs) for nine benthic macroinvertebrate taxa from a small New Zealand river for hydraulic-habitat modelling assessments of instream flow requirements. We included interaction terms between the primary variables (water depth, velocity, substrate) when significant, to address a longstanding criticism of univariate HSC. To date, only large-river univariate HSC have been available and these have been used in hydraulic-habitat applications on small rivers, despite doubt over the transferability of HSC between rivers of different size and type. We tested the outcome on the predicted abundance–flow relationship of applying the small-river habitat suitability GAMs versus large-river GAMs for two taxa on the same small river. We found the effects of flow allocation were overestimated by the large-river GAMs relative to the small-river GAMs. Further research to develop general HSC for categories of river size and type is needed to better inform hydraulic-habitat modelling applications.  相似文献   

3.
Local scour below a vibrating pipeline under steady current is investigated by a finite element numerical model. The flow, sediment transport and pipeline response are coupled in the numerical model. The numerical results of scour depths and pipeline vibration amplitudes are compared with measured data available in literature. Good agreement is obtained. It is found that pipeline vibrations cause increases of scour depth below the pipeline. The scour pit underneath a two-degree-of-freedom vibrating pipeline is deeper than that under a pipeline vibrating only in the transverse flow direction. The effects of water depth are also investigated. The present numerical result shows that water depth has weak effect on the scour depth. However it does affect the time scale of the scour. The shallower the water depth is, the less time it requires to reaches the equilibrium state of scour. It is found that the vibration forces vortices to be shed from the bottom side of the pipeline. Then vortex shedding around a vibrating pipeline is closer to the seabed than vortex shedding around a fixed pipeline. This contributes to the increase of the scour depth.  相似文献   

4.
Laboratory experiments were carried out to investigate the performance of an air-bubble barrier and to determine the oil volume passage rate through such a barrier under various oil sample, wind, wave and current conditions. Two empirical equations were derived based on the laboratory data. The first equation determines the relationship between current velocity and the minimum airflow rate required to avoid oil flow through the barrier from the surface. The second equation predicts the dimensionless oil volume passage rate through the barrier under the surface per unit width when the required minimum airflow rate is given in order to prevent oil flow through the barrier from the surface. If the current and wind speed are given, both the minimum required airflow rate for avoiding oil flow through the barrier from the surface, and the dimensionless oil volume passage rate through the barrier under the surface per unit width can be determined.  相似文献   

5.
Stability of many ocean structures is affected by seabed scour induced by under-currents. The depth of scour is an important parameter for determining the minimum depth of foundations as it reduces the lateral capacity of the foundations. A review of the literature reveals that there is not much information available in the field of scour in cohesive soils. Hence, a detailed laboratory testing programme on model piles of diameters 50 mm to 110 mm embedded in soft silty clay soil was carried out in a wave flume of 30 m long, 2.0 m wide and 1.7 m deep, which has the capability of simulating steady currents. Scour around the pile due to steady streaming is monitored by using special instrumentation. A procedure has been suggested to predict the ultimate scour depths based on the observed variation in scour depth over a limited time period. The study indicates that the ultimate scour depth is controlled by diameter of obstruction, current velocity, model Reynolds number, flow Froude number, shear stress, and soil characteristics. Based on these results, a few functional relationships are suggested between scour depth and other parameters like Reynolds number, Froude number, and strength of the soil bed.  相似文献   

6.
《Marine Geology》2005,214(4):339-364
Quantitative geomorphologic analysis of shallowly buried, dendritic channel systems on the New Jersey shelf provides estimates of paleo-hydrologic parameters needed to link channel morphology to the former hydrodynamic setting. These channels, observed in 1–4 kHz deep-towed chirp seismic data, formed presumably as fluvial systems when the shelf was exposed during the Last Glacial Maximum (LGM). The presumed fluvial origin of these channels is supported by their incision into underlying Pleistocene strata, a chaotic seismic fill unit at their bases which may be indicative of non-marine gravel lag, and measured stream junction angles that are consistent with a riverine origin. The channels would also have been subjected to estuarine/tidal environments during ensuing sea-level rise. We employ empirically derived hydraulic equations for modern rivers and estuaries to estimate paleo-discharges, velocities and maximum shear stresses, using the preserved and interpolated paleo-channel geometries as a guide. Generally, trunk/main channels have box-like, symmetric cross-sections, with width/depth ratios of >100, whereas smaller, tributary channels have more v-shaped, asymmetric cross-sections with width/depth ratios of ∼40–70. The high width/depth ratios, along with low sinuosities (∼1.1) and slopes (<0.02°), are consistent with braided streams as specified by a modern river classification system. However, the channels show no evidence of braiding. We hypothesize instead that these channel systems are immature, having had insufficient time to develop high sinuosities that would otherwise be expected before they were drowned by the Holocene transgression. Mean paleo-flow estimates for these systems assuming a tidal environment (1.0–1.5 m/s) are consistent with modern tidal creeks comparable to the sizes of channels observed here (<2 km wide and <25 m deep). Estimated tidal shear stresses would be sufficient to initiate sediment transport of grains 2–8 mm in diameter (coarse sand and fine gravel) as bedload and finer grained material in suspension. However, paleo-flow estimates assuming a fluvial environment (1.1–2.0 m/s) are generally too high for a non-tidal creek, given the presumed low hydraulic gradients in this coastal plain setting. Retrodicted fluvial discharge and boundary shear stresses would have been sufficient to transport particles up to ∼15 mm in diameter (gravel) as bedload; these grain sizes are too coarse to be transported by sluggish coastal plain rivers. We conclude that either flows were quite high when this system was first incised fluvially, perhaps due to meltwater pulses following the LGM, or that tidal influences have modified the original fluvial geometry.  相似文献   

7.
Results of an experimental study of the effect of surface proximity on hydrofoil lift are presented. The biplane image theory, a horseshoe vortex model and momentum theory are described in relation to the effect of surface proximity on hydrofoil lift and drag. The biplane image theory and the horseshoe vortex model are shown to predict the same effect on lift, and are seen to be in good agreement with the experimental data. The Payne momentum theory is seen to differ significantly from the measured results. The data indicate a significant reduction in lift at depths less than two chords with very little effect at greater depth.  相似文献   

8.
The purpose of this study is to investigate debris flow surge that is set up with a numerical model using governing equations applied by the dynamics of a liquid–solid mixture. This model is performed by applying the finite difference method to display elapses of time. To measure the behavior mechanisms of the debris flow surge, the following are analyzed: the flow discharge, flow depth, and sediment volume concentration at the end of downstream channel. The flow discharge and flow depth only surge right after the debris flow reaches the downstream channel as the berm width shortens. In contrast, as the berm width lengthens, the flow discharge and water flow recede. As the berm width decreases, the sediment concentration shows a high concentration and a great height difference at the inflection point. Vice versa, when the berm width increases, an inflection point can be seen, but it reveals a low concentration and a low height difference. The numerical model of this study was applied to the coast of South Korea and analyzed. This study will provide information in predicting disasters caused by debris flow and in planning for various counter measures to prevent disasters.  相似文献   

9.
Geoacoustic properties of the seabed have a controlling role in the propagation and reverberation of sound in shallow-water environments. Several techniques are available to quantify the important properties but are usually unable to adequately sample the region of interest. In this paper, we explore the potential for obtaining geotechnical properties from a process-based stratigraphic model. Grain-size predictions from the stratigraphic model are combined with two acoustic models to estimate sound speed with distance across the New Jersey continental shelf and with depth below the seabed. Model predictions are compared to two independent sets of data: 1) Surficial sound speeds obtained through direct measurement using in situ compressional wave probes, and 2) sound speed as a function of depth obtained through inversion of seabed reflection measurements. In water depths less than 100 m, the model predictions produce a trend of decreasing grain-size and sound speed with increasing water depth as similarly observed in the measured surficial data. In water depths between 100 and 130 m, the model predictions exhibit an increase in sound speed that was not observed in the measured surficial data. A closer comparison indicates that the grain-sizes predicted for the surficial sediments are generally too small producing sound speeds that are too slow. The predicted sound speeds also tend to be too slow for sediments 0.5-20 m below the seabed in water depths greater than 100 m. However, in water depths less than 100 m, the sound speeds between 0.5-20-m subbottom depth are generally too fast. There are several reasons for the discrepancies including the stratigraphic model was limited to two dimensions, the model was unable to simulate biologic processes responsible for the high sound-speed shell material common in the model area, and incomplete geological records necessary to accurately predict grain-size  相似文献   

10.
季民  任静  张立国  李婷  孙勇 《海洋学报》2021,43(5):135-144
临界点是海洋流场拓扑结构中的重要构成要素,基于临界点的特征提取对于揭示海洋流场拓扑特征、开展海洋流场拓扑分析具有重要意义。本文基于临界点理论和Sperner引理,综合改进后的双线性插值算法和Sperner完全标号法,对海洋流场数据进行了临界点特征提取。首先,在双线性插值算法中添加滑动窗口处理,筛选临界点的候选网格单元,并采用聚合思想通过降低网格分辨率解决了网格插值中的二义性问题,同时考虑了0值网格存在的9种情形,通过迭代聚合思想滑动筛选候选网格单元,解决了插值网格均为0的情况。其次,提出了基于Sperner完全标号的最小值法临界点提取规则,将速度向量模最小的网格中心作为临界点,解决了实际流场物理场景中非0值的临界点提取。对两次提取结果进行合并、去重等处理,可以得到较为全面的临界点提取与分类结果。最后,通过对多个海域、不同深度流场数据的实验结果分析,证明了综合后的临界点提取方法的有效性及可行性。  相似文献   

11.
Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative “index” velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated  相似文献   

12.
梁建  张杰  马毅 《海洋科学》2015,39(2):15-19
在水深遥感反演半经验模型中,水深控制点和检查点选取是一项非常重要的工作,前者用于建立实测水深值与遥感影像灰度值之间的数量关系,后者用于评价水深反演精度。但前人在相关研究中并未就控制点和检查点的选取数量和比例给出有实验依据的建议,亦未开展其对水深反演精度的影响分析。针对这个问题,作者使用6020个实测水深点和World View-2、GF-1 WFV、Landsat8 OLI 3种多光谱影像,基于三波段水深反演模型开展了81组实验,分析比较了不同数量和比例的控制点与检查点对反演结果的影响,评价过程利用平均绝对误差(Mean Absolute Error,MAE)、平均相对误差(Mean Relative Error,MRE)和反映实测水深与反演水深相关性的决定系数R2等3种参数。结果表明:(1)当控制点数量达到31个时,水深反演精度即趋于稳定;(2)检查点数量在30个时,其评价指标已可以代表模型反演精度;(3)控制点和检查点的数量比例对反演精度并无影响,但控制点选取过多则会产生反演精度降低的现象,采用人工选取检查点时剔除浅水区的异常点即可有效避免这一问题。  相似文献   

13.
The results presented in this paper are the first published estimates of the complete stress tensor in the Cuu Long and Nam Con Son basins, offshore Vietnam. We analysed in situ stress and pore pressure fields in the sedimentary formations using data from petroleum exploration and production wells to evaluate the stress state in these basins. The data were obtained from the seafloor to 4300 m burial depth and include both hydrostatic and overpressured sections. Minimum horizontal stresses were obtained from extended leak-off tests and mini-fracture tests. Maximum horizontal stresses were estimated from drilling-induced fracture parameters and borehole breakout widths in twelve wells using rock properties measured in the laboratory or estimated empirically from wireline logs. Seven data points are located in sediments, and seventeen data points in igneous basement rocks at depths greater than 3000 m.The estimated magnitudes of σH are 70-110% of the σv magnitudes. Considering the errors in the stress magnitude estimates, their relative magnitudes suggest that a borderline normal/strike-slip stress regime presently exists in normally pressured sequences of the Nam Con Son and Cuu Long basins. Of the twenty-four data points, twenty have effective stress ratios at a critical stress state for faulting on the assumption that there are faults present that are optimally oriented for failure with friction coefficients of ∼0.5. The results suggest that the stress state in these basins is generally critical.  相似文献   

14.
Populations of small fish were sampled in 12–20 riffles of the lower reaches of 3 braided rivers in Canterbury, New Zealand, during periods of low, stable flows. In the Ashley, which has been least affected by floods in recent years, the standing stock of fish was severalfold higher than in the Hurunui and Rakaia Rivers, which experienced large floods over much of the time, particularly the Rakaia River. Mean abundance + 1 standard deviation (S.D.) of all species combined, amounted to 5.95 + 2.76 fish m 2 for 10 species in the Ashley, 0.59 + 0.60 fish m 2 for 7 species in the Hurunui, and 0.23 + 0.11 fish m 2for 6 species in the Rakaia. Mean biomass was 24.85 + 9.59, 2.11 + 1.19, and 2.50 ± 3.60 g m 2in the Ashley, Hurunui, and Rakaia Rivers, respectively. The more common species in the Ashley and Rakaia Rivers were torrentfish, longfinned eel, blue‐gilled bully, and upland bully. The same dominant species complex prevailed in the Hurunui River except that the common river galaxias was present instead of the bluegilled bully. The adverse effects of floods on fish, either directly, indirectly, or both, are considered to be a major limiting factor offish populations in braided rivers characterised by highly unstable flows and river beds, and a lack of suitable cover for fish.  相似文献   

15.
The construction of an estuary barrage, an instream structure in the lower reaches of a river, causes significant physical changes in water flow patterns and river morphology, and results in altered environmental conditions. Here, we examined the impact of the Geum River estuary barrage, completed in 1990, on fish assemblages by using a literature search and fresh surveys of fishways in the barrage. We found that fish assemblages upstream and downstream of the barrage were altered following its completion. After construction, more species were found in the freshwater area, with a particularly great increase in freshwater species. Conversely, estuarine and marine species were only consistently caught in the downstream salt-water area, although the number of species increased. In total, 15,829 fish from 47 species and 20 families were identified at the three types (pool and weir, rubble type, and boat passage) of fishways in the barrage. The dominant species were Chelon haematocheilus, an estuarine species, Coilia nasus, a diadromous species, and Erythroculter erythropterus, a freshwater species. The mean total length of fish (101.9 ± 76.0 mm) in the boat passage fishway was approximately 100 mm lesser than those in the pool and weir (207.2 ± 112.8 mm) and rubble type (205.8 ± 112.7 mm) fishways. The boat passage fishway was the most efficient for fish movements. The current fishway system is not sufficient for fish migration, and thus additional ways are required to improve the system such as the boat passage. Few estuarine or diadromous species were found in both freshwater and salt-water areas, but freshwater fishes that accidently moved to salt-water area actively used fishways. Therefore, fishway management in the Geum River estuary barrage has to focus on freshwater fish; however, this may need to change to a focus on migratory fishes depending on ecological life cycles of migratory fish.  相似文献   

16.
The sinking of initially buried irregular blocks into the seabed under wave-induced liquefaction was investigated by experimental methods. Pore-water pressure in the soil, water surface elevation time series and block displacements were measured. Results indicated that initiation of sinking coincides with the instant at which the accumulated pore-water pressure at the bottom level of the block reaches the initial mean normal effective stress. The drag forces and drag coefficients on steadily sinking irregular shaped blocks, as well as spherical and cubical ones, were calculated from the obtained data and compared with the available data in the literature. The results show that the shape of sinking block is of minor importance as far as the kinematics and dynamics of the sinking block is concerned. The conditions at which the sinking terminates are discussed in the light of experiments. Using the approach presented here, the ultimate sinking depths are calculated for the tested cases and compared with the experimental results. The calculated and measured values showed a reasonable agreement when compared. Finally a summary and remarks are presented to calculate the ultimate sinking depth of irregular shaped blocks for practical applications.  相似文献   

17.
A one-dimensional dynamic model of heat and moisture transfer in the soil has been developed. The use of the ERA-40 reanalysis as input data makes it possible to compute characteristics of the soil thermal and hydrological regimes, including watershed runoff, from specified climatic characteristics of the atmosphere. Results are presented of numerical experiments on a comparison of the model estimates of the depths of seasonal thawing with observations at several Siberian stations. For the latter half of the 20th century, the depths of seasonal thawing are mapped and runoff from watersheds of the largest Siberian rivers is computed. The model reproduces observed runoff variations. For the Ob basin, the model-derived runoff estimates agree well with observational data if peat deposits in the upper 2-m layer are taken into account.  相似文献   

18.
The purpose of this study is to evaluate the behavior and mechanism of a debris flow on various slopes through numerical simulation. The numerical simulation consisted of using equations related to mass conservation and momentum conservation in order to consider erosion and deposition, and the Finite Difference Method was applied. As the inflow water discharge in the upstream of the channel increases, the curve of the water discharge exhibits instability and, as time passes, the fluctuation of the high water discharge continues. In regions where the mountain areas and the ocean are connected, it is deduced that the high level of sediment concentration can greatly affect the environment surrounding the ocean. The numerical model of this study was applied in Kangwon Province of South Korea. The results show that when the debris flow reaches downstream, the flow discharge and water flow depth increase. Erosion occurs more than deposition and much of the sediment runs off downstream. The result of the simulation performed at point of sediment discharge runoff is 114,216 m3. This study will provide useful information in predicting disasters caused by debris flow and in planning for various countermeasures to prevent debris-flow-related disasters.  相似文献   

19.
王兆华  杜景龙 《海洋通报》2006,25(6):55-62,84
利用长江口深水航道治理一、二期工程实施前后的水下地形资料,在GIS软件及相关的统计分析软件的支持下,分析了治理工程对北槽拦门沙河段的影响。结果表明:整治工程使得河道平均水深增加,河床上下平顺相接,河床横断面形态趋于均匀,河势趋于稳定。至2005年初,北槽河道上段水深比工程前的1998年初平均增加了1.34m,中段则淤浅0.63m,下段刷深0.81m,河床纵向上变得和缓、平顺;丁坝段的冲刷南侧的强度较北侧大,中下段河槽北偏,深泓从原来的东南-西北走向改呈东西向,全槽形成了一条上下段平顺相接的微弯自然深泓线,河槽的形态也从工程前的宽缓或陡峭形变为均匀的“V”字形;下游河段没有产生新的航道拦门沙。  相似文献   

20.
Observations from a five-mooring array deployed in the vicinity of Sedlo Seamount over a 4-month period, together with supporting hydrographic and underway ADCP measurements, are described. Sedlo Seamount is an elongated, intermediate depth seamount with three separate peaks, rising from 2200 m water depth to summit peaks between 950 and 780 m depth, located at 40°20′N, 26°40W. Currents measured in depth range 750 and 820 m – the layer close to the summit depth of the shallowest southeast peak – showed a mean anti-cyclonic flow around the seamount, with residual current velocities of 2–5 cm s−1. Significant mesoscale variability was present at this level, and this is attributed to the weak and variable background impinging flow. Stronger, more persistent currents were found at the summit mooring as a result of tidal rectification and some weak amplification. Below 1300 m, currents were extremely weak, even close to the seabed. Time series of relative vorticity for the depth layer 750–820 m showed persistent anti-cyclonic vorticity except for two periods of cyclonic vorticity. A mean relative vorticity of −0.06f (f=the local Coriolis frequency) was calculated from a triangle of current meters located at the flanks of the seamount. Modelling results confirmed that anti-cyclonic flow above the seamount was likely due to Taylor Cone generation driven by a combination of steady impinging and tidally rectified flow. The closed circulation pattern over the seamount was found to extend to ∼150 m above the summit level, consistent with simple idealised theory and the supporting hydrographic observations. At shallower depths (<500 m) model simulations predicted a predominantly cyclonic recirculation most likely controlled by topographic steering along the zonal axis of the seamount. There was some indication of flow reversal at these depths from Acoustic Doppler Current Profiler (ADCP) measurements carried out at one hydrographic survey. The model results were in good agreement with observations at the seamount summit, but were unable to reproduce the mesoscale variability patterns recorded in shallower layers. Kinetic energy patterns derived from the model revealed high variability in the oceanic far field downstream of the seamount summit probably as a result of complex flow interaction along the chain of seamount peaks. Possible impacts of the flow dynamics on the biological functioning at Sedlo Seamount and its surroundings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号