首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The amalgamation of South (SCB) and North China Blocks (NCB) along the Qinling‐Dabie orogenic belt involved several stages of high pressure (HP)‐ultra high pressure (UHP) metamorphism. The new discovery of UHP metamorphic rocks in the North Qinling (NQ) terrane can provide valuable information on this process. However, no precise age for the UHP metamorphism in the NQ terrane has been documented yet, and thus hinders deciphering of the evolution of the whole Qinling‐Dabie‐Sulu orogenic belt. This article reports an integrated study of U–Pb age, trace element, mineral inclusion and Hf isotope composition of zircon from an eclogite, a quartz vein and a schist in the NQ terrane. The zircon cores in the eclogite are characterized by oscillatory zoning or weak zoning, high Th/U and 176Lu/177Hf ratios, pronounced Eu anomalies and steep heavy rare earth element (HREE) patterns. The zircon cores yield an age of 796 ± 13 Ma, which is taken as the protolith formation age of the eclogite, and implies that the NQ terrane may belong to the SCB before it collided with the NCB. The ?Hf(t) values vary from ?11.3 to 3.2 and corresponding two‐stage Hf model ages are 2402 to 1495 Ma, suggesting the protolith was derived from an enriched mantle. In contrast, the metamorphic zircon rims show no zoning or weak zoning, very low Th/U and 176Lu/177Hf ratios, insignificant Eu anomalies and flat HREE patterns. They contain inclusions of garnet, omphacite and phengite, suggesting that the metamorphic zircon formed under eclogite facies metamorphic conditions, and their weighted mean 206Pb/238U age of 485.9 ± 3.8 Ma was interpreted to date the timing of the eclogite facies metamorphism. Zircon in the quartz vein is characterized by perfect euhedral habit, some oscillatory zoning, low Th/U ratios and variable HREE contents. It yields a weighted mean U–Pb age of 480.5 ± 2.5 Ma, which registers the age of fluid activity during exhumation. Zircon in the schist is mostly detrital and U–Pb age peaks at c. 1950 to 1850, 1800 to 1600, 1560 to 1460 and 1400 to 1260 Ma with an oldest grain of 2517 Ma, also suggesting that the NQ terrane may have an affinity to the SCB. Accordingly, the amalgamation between the SCB and the NCB is a multistage process that spans c. 300 Myr, which includes: the formation of the Erlangping intra‐oceanic arc zone onto the NCB before c. 490 Ma, the c. 485 Ma crustal subduction and UHP metamorphism of the NQ terrane, the c. 430 Ma arc‐continent collision and granulite facies metamorphism, the 420 to 400 Ma extension and rifting in relation to the opening of the Palaeo‐Tethyan ocean, the c. 310 Ma HP eclogite facies metamorphism of oceanic crust and associated continental basement, and the final 250 to 220 Ma continental subduction and HP–UHP metamorphism.  相似文献   

2.
Both oceanic and continental HP rocks are juxtaposed in the Huwan shear zone in the western Dabie orogen, and thus provide a window for testing the buoyancy‐driven exhumation of dense oceanic HP rocks. The HP metamorphic age of the continental rocks in this zone has not been well constrained, and hence it is not known if they are of the same age as the exhumation of the HP oceanic rocks. In situ laser ablation (multiple collector) inductively coupled plasma mass spectrometry (LA‐(MC‐)ICP‐MS), U–Pb, trace element and Hf isotope analyses were made on zircon in a granitic gneiss and two eclogites from the Huwan shear zone. U–Pb age and trace element analysis of residual magmatic zircon in an eclogite constrain its protolith formation at 411 ± 4 Ma. The zircon in this sample displays εHf (t) values of +6.1 to +14.4. The positive εHf (t) values up to +14.4 suggest that the protolith was derived from a relatively depleted mantle source, most likely Palaeotethyan oceanic crust. A granitic gneiss and the other eclogite yield protolith U–Pb ages of 738 ± 6 and 700 ± 14 Ma, respectively, which are both the Neoproterozoic basement rocks of the Yangtze Block. The zircon in the granitic gneiss has low εHf (t) values of ?14.2 to ?10.5 and old TDM2 ages of 2528–2298 Ma, suggesting reworking of Palaeoproterozoic crust during the Neoproterozoic. The zircon in the eclogite has εHf (t) values of ?1.0 to +7.4 and TDM1 ages of 1294–966 Ma, implying prompt reworking of juvenile crust during its protolith formation. Metamorphic zircon in both eclogite samples displays low Th/U ratios, trace element concentrations, relatively flat heavy rare earth element patterns, weak negative Eu anomalies and low 176Lu/177Hf ratios. All these features suggest that the metamorphic zircon formed in the presence of garnet but in the absence of feldspar, and thus under eclogite facies conditions. The metamorphic zircon yields U–Pb ages of 310 ± 3 and 306 ± 7 Ma. Therefore, both the oceanic‐ and continental‐type eclogites share the same episode of Carboniferous eclogite facies metamorphism. This suggests that high‐pressure continental‐type metamorphic rocks might have played a key role in the exhumation and preservation of oceanic‐type eclogites through buoyancy‐driven uplift.  相似文献   

3.
Although ultrahigh‐pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east‐central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high‐pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle‐derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two‐fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition.  相似文献   

4.
The north Qilian high‐pressure (HP)/low‐temperature (LT) metamorphic belt is composed mainly of blueschists, eclogites and greenschist facies rocks. It formed within an Early Palaeozoic accretionary wedge associated with the subduction of the oceanic crust and is considered to be one of the best preserved HP/LT metamorphic belts in China. Here we report new lawsonite‐bearing eclogites and eclogitic rocks enclosed within epidote blueschists in the North Qilian Mountains. Five samples contain unaltered lawsonite coexisting with omphacite and phengite as inclusions in garnet, indicating eclogite facies garnet growth and lawsonite pseudomorphs were observed in garnet from an additional 11 eclogites and eclogitic rocks. Peak pressure conditions estimated from lawsonite omphacite‐phengite‐garnet assemblages were 2.1–2.4 GPa at temperatures of 420–510 °C, in or near the stability field of lawsonite eclogite, and implying formation under an apparent geothermal gradient of 6–8 °C km?1, consistent with metamorphism in a cold subduction zone. SHRIMP U‐Pb dating of zircon from two lawsonite‐bearing eclogitic metabasites yields ages of 489 ± 7 Ma and 477 ± 16 Ma, respectively. CL images and mineral inclusions in zircon grains indicate that these ages reflect an eclogite facies metamorphism. An age of 502 ± 16 Ma is recorded in igneous cores of zircon grains from one lawsonite pseudomorph‐bearing eclogite, which is in agreement with the formation age of Early Ordovician for some ophiolite sequences in the North Qilian Mountains, and may be associated with a period of oceanic crust formation. The petrological and chronological data demonstrate the existence of a cold Early Palaeozoic subduction zone in the North Qilian Mountains.  相似文献   

5.
A typical HP/MT (high pressure/medium temperature) eclogite from Xiongdian, northwestern Dabie Mountains, has been geochronologically studied using the single-zircon U-Pb, 40Ar-39Ar and Sm-Nd methods. Prismatic zircons occurring as inclusions within garnets define a minimum crystallization age of 399.5±1.6 Ma. 40Ar-39Ar dating on amphibole gives a plateau age.of 399.2 ± 4 Ma, which is interpreted as a retrogression age of amphibolite facies. This integrated study enables us to conclude that the age of high-pressure metamorphism is older than 399.5 ± 1.6 Ma, suggesting Caledonian collision between the North China and Yangtze plates. Round zircon within the aggregate of quartz and muscovite gives a concordant age of 301± 2 Ma, reflecting a later retrogression event. An age profile of post-eclogite metamorphism is documented, including amphibolite facies metamorphism at 399.2 Ma shortly after eclogitization and later retrogressive metamorphism at 301 Ma. Sm-Nd mineral isochron of garnet+omphacite gives  相似文献   

6.
Laser ablation inductively coupled plasma mass spectrometry analyses of U–Pb isotopes and trace elements in zircon and titanite were carried out on epoxy mounts and thin sections for ultrahigh‐pressure (UHP) eclogite in association with paragneiss in the Dabie orogen. The results provide a direct link between metamorphic ages and temperatures during continental subduction‐zone metamorphism. Zircon U–Pb dating gives two groups of concordant ages at 242 ± 2 to 239 ± 5 Ma and 226 ± 2 to 224 ± 6 Ma, respectively. The Triassic zircon U–Pb ages are characterized by flat heavy rare earth element (HREE) patterns typical of metamorphic growth. Ti‐in‐zircon thermometry for the two generations of metamorphic zircon yields temperatures of 697 ± 27 to 721 ± 8 °C and 742 ± 19 to 778 ± 34 °C, respectively. We interpret that the first episode of zircon growth took place during subduction prior to the onset of UHP metamorphism, whereas the second episode in the stage of exhumation from UHP to HP eclogite facies regime. Thus, the continental subduction‐zone metamorphism of sedimentary protolith is temporally associated with two episodes of fluid activity, respectively, predating and postdating the UHP metamorphic phase. The significantly high Ti‐in‐zircon temperatures for the younger zircon at lower pressures indicate the initial ‘hot’ exhumation after the peak UHP metamorphism. There are two types of titanite. One exhibits light rare earth element (LREE) enrichment, steep MREE–HREE patterns and no Eu anomalies, and yields Zr‐in‐titanite temperatures of 551 to 605 °C at 0.5 GPa, and the other shows LREE depletion and flat MREE–HREE patterns, and gives Zr‐in‐titanite temperatures of 782–788 °C at 2.0 GPa. The former is amenable for U–Pb dating, yielding a discordia lower intercept age of 252 ± 3 Ma. Thus, the first type of titanite is interpreted to have grown in the absence of garnet and plagioclase and thus in the early stage of subduction. In contrast, the second one occurs as rims surrounding rutile cores and thus grew in the presence of garnet during the ‘hot’ exhumation. Therefore, there is multistage growth of zircon and titanite during the continental subduction‐zone metamorphism. The combined studies of chronometry and thermobarometry provide tight constraints on the P–T–t path of eclogites during the continental collision. It appears that the mid‐T/UHP eclogite facies zone would not only form by subduction of the continental crust in a P–T path slightly below the wet granite solidus, but also experience decompression heating during the initial exhumation.  相似文献   

7.
A U -Pb zircon age of 2774±24 Ma for eclogite from the Bixiling rock body of Anhui Province, central China, indicates that the Dabieshan coesite-bearing eclogite was probably formed in the Late Archaean. A phengite Ar-Ar isochron age of 662±13 Ma for the eclogite confines also an upper limit age of its subsequent retrograde metamorphism in the Precambrian. The results of isotopic dating for such type of eclogite coincide with the geological features of its restricted occurrence within the Archaean metamaorphic terrain composed of the Dabie Group. It is believed that the Dabieshan coesite-bearing eclogite terrain might be a Late Archaean ultra-high-pressure metamorphic belt. The Dabie Mountains area was the eastward extension of the southern Qinling structural belt during the Triassic. Both the Dabie Group and the coesite-bearing eclogite hosted therein underwent a late-stage dynamic metamorphic event. The present authors have obtained a muscovite Ar-Ar isochron age of 192.6±2.8 Ma from plagioclase gn  相似文献   

8.
The Huwan Shear Zone (HSZ) is an eclogite bearing transpressive wrench zone located along the Shangdan Suture that juxtaposes the Paleozoic Qinling and Mesozoic Hong'an–Dabie orogenic terrains. The region preserves a complex history that bridges the gap between adjacent orogenic terrains. Simultaneous in-situ trace element, U–Th–Pb and Lu–Hf‐isotope analysis of zircon grains from samples of the Xiongdian and Sujiahe eclogite identify a late Carboniferous to early Permian period of high pressure metamorphism, ca. 283 to 306 Ma. Zircon grains are observed to respond to metamorphic overprint via a two stage process: (1) An initial prograde stage of fluid catalyzed interface coupled dissolution–reprecipitation, involving exsolution of a non-ideal solid solution thorite (ThSiO4) end member and loss of highly incompatible components (LREE and Pb), (2) A second stage of coupled zircon dissolution, coarsening, and new rim growth in equilibrium with garnet at high pressure conditions.We identify Proterozoic whole rock Sm–Nd and zircon grain Lu–Hf isotopic evidence which challenges the traditional interpretation that the Xiongdian and Sujiahe eclogite formed in response to early Paleozoic mantle melting and oceanic crust generation. We argue the Huwan Shear Zone contains no conclusive evidence of early/middle Paleozoic oceanic crust, but rather Proterozoic crustal components analogous to those found in the Northern Qinling Terrain and associated with formation of the Shangdan Suture. We present a simpler geodynamic model involving continuous convergence and accretion of terrains onto the southern margin of the North China Block during the Paleozoic Qinling and Mesozoic Dabie orogenies.  相似文献   

9.
超高压变质岩的折返过程是陆陆碰撞边界演化的关键问题。南倾的花凉亭-弥陀剪切带位于南大别低温-超高压变质 带和中大别中温-超高压变质带之间,矿物拉伸线理倾伏向为SE,逆冲和走滑分量大致相等。电子背散射衍射分析表明: 花凉亭-弥陀剪切带大多数样品的石英组构记录了上盘向NW的剪切变形,反映了中大别超高压变质岩向SE的快速折返, 而部分样品的石英具有上盘向SE的剪切指向,与早白垩世花岗岩穹隆发育导致的区域伸展有关。对前人的岩石学和年代学 成果进行总结,发现大别山进变质和超高压变质峰期/退变质的锆石U-Pb年龄从南往北逐渐变新,南大别和中大别在215~ 225 Ma同时经历了高压榴辉岩相退变质作用,在191~195 Ma经历了绿片岩相变质作用。超高压变质岩的白云母和黑云母的 40Ar/39Ar年龄靠近郯庐断裂时偏年轻,可能受到郯庐断裂活动的影响。南大别和中大别变质峰期温压的等值线与花凉亭-弥 陀剪切带的走向斜交,反映了超高压变质岩的斜向折返。因此,南大别低温-超高压变质带在~236 Ma最先开始折返,之后 中大别和北大别依次发生快速折返,具有不同折返速率和折返角度的构造岩片通过韧性剪切带调节相对运动。  相似文献   

10.
大别山北部榴辉岩及英云闪长质片麻岩的锆石U-Pb年龄分析表明:北部榴辉岩相峰期变质时代为226~230Ma左右;北部塔儿河一带英云闪长质片麻岩经历过印支期变质事件;大别山北部与南部超高压岩石中一致的(226~230Ma)高压或超高压变质年龄表明,北部镁铁-超镁铁质岩带中部分岩石也曾作为扬子俯冲陆壳的一部分,在印支期发生过高压或超高压变质作用;本区锆石发生过两期变质增生事件,一是印支期高压或超高压变质,另一期是燕山期热变质事件;榴辉岩及英云闪长质片麻岩的原岩形成时代为晚元古代;锆石U-Pb年龄可用多期变质增生模型来解释。  相似文献   

11.
In order to decipher the origin of eclogite in the high‐P/T Sanbagawa metamorphic belt, SHRIMP U–Pb ages of zircons from quartz‐bearing eclogite and associated quartz‐rich rock (metasandstone) were determined. One zircon core of the quartz‐rich rock yields an extremely old provenance age of 1899 ± 79 Ma, suggesting that the core is of detrital origin. Eight other core ages are in the 148–134 Ma range, and are older than the estimated age for trench sedimentation as indicated by the youngest radiolarian fossil age of 139–135 Ma from the Sanbagawa schists. Ages of metamorphic zircon rims (132–112 Ma) from the quartz‐rich rock are consistent with metamorphic zircon ages from the quartz‐bearing eclogite, indicating that eclogite facies metamorphism peaked at 120–110 Ma. These new data are consistent with both the Iratsu eclogite body and surrounding highest‐grade Sanbagawa schists undergoing coeval subduction‐zone metamorphism, and subsequent re‐equilibration under epidote amphibolite facies conditions during exhumation.  相似文献   

12.
The general classification of intermediate-acid intrusive rocks in the metamorphic zone of Gaoligong Mountains as one of the metamorphic terranes of Proterozoic Gaoligong Mountains is problematic regarding the intrusion stage and age, as well as the subsequent metamorphism and deformation. In this study, we investigated granitic gneiss in the metamorphic zone of Gaoligong Mountains based on the 1:50,000 regional geological survey of Qushi Street (2011-2013) and SHRIMP U-Pb zircon geochronology. Results showed that the SHRIMP U-Pb zircon dating of granitic gneiss ranged from 163.5±5.7 Ma to 74.0±2.0 Ma. Thus, the granitic gneiss was grouped into orthometamorphic rocks (metamorphic intrusions). The dating data of granite rocks associated with intense metamorphism and deformation were divided into three groups, 163.5±5.7 to 162.3±3.1 Ma, 132.2-101.0 Ma and 99.4±3.5-74.0±2.0 Ma, which respectively represented three independent geologic events including an important magma intrusion with superimposed metamorphic effects in the late Middle Jurassic, regional dynamic metamorphism and superimposed reformation of fluid action in the early Cretaceous, and dynamic metamorphism dominated by ductile shear and metamorphism starting from the late Cretaceous.  相似文献   

13.
Eclogite lenses in marbles from the Dabie-Sulu ultrahigh-pressure (UHP) terrane are deeply subducted meta-sedimentary rocks. Zircons in these rocks have been used to constrain the ages of prograde and UHP metamorphism during subduction, and later retrograde metamorphism during exhumation. Inherited (detrital) and metamorphic zircons were distinguished on the basis of transmitted light microscopy, cathodoluminescence (CL) imaging, trace element contents and mineral inclusions. The distribution of mineral inclusions combined with CL imaging of the metamorphic zircon make it possible to relate zircon zones (domains) to different metamorphic stages. Domain 1 consists of rounded, oblong and spindly cores with dark-luminescent images, and contains quartz eclogite facies mineral inclusion assemblages, indicating formation under high-pressure (HP) metamorphic conditions of T = 571-668℃and P = 1.7-2.02 GPa. Domain 2 always surrounds domain 1 or occurs as rounded and spindly cores with white-luminescent images. It contains coesite edogite facies mineral inclusion assemblages, indicating formation under UHP metamorphic conditions of T = 782-849℃and P > 5.5 GPa. Domain 3, with gray-luminescent images, always surrounds domain 2 and occurs as the outermost zircon rim. It is characterized by low-pressure mineral inclusion assemblages, which are related to regional amphibolite facies retrograde metamorphism of T = 600-710℃and P = 0.7-1.2 GPa. The three metamorphic zircon domains have distinct ages; sample H1 from the Dabie terrane yielded SHRIMP ages of 245±4 Ma for domain 1, 235±3 Ma for domain 2 and 215±6 Ma for domain 3, whereas sample H2 from the Sulu terrane yielded similar ages of 244±4 Ma, 233±4 Ma and 214±5 Ma for Domains 1, 2 and 3, respectively. The mean ages of these zones suggest that subduction to UHP depths took place over 10-11 Ma and exhumation of the rocks occurred over a period of 19-20 Ma. Thus, subduction from~55 km to > 160 km deep mantle depth took place at rates of approximately 9.5-10.5 km/Ma and exhumation from depths >160 km to the base of the crust at~30 km occurred at approximately 6.5 km/Ma. We propose a model for these rocks involving deep subduction of continental margin lithosphere followed by ultrafast exhumation driven by buoyancy forces after break-off of the UHP slab deep within the mantle.  相似文献   

14.
Understanding convergent margin processes requires determination of the onset and the termination of subduction, the duration of subduction‐zone metamorphism, and the subduction zone polarity. Garnet growth and intracrystalline zonation can be used to constrain the timing, duration and kinetics of tectonometamorphic processes. An eclogite from the Huwan shear zone in the Hong'an orogen was investigated with combined pseudosection analysis and multiple geochronologies. The pseudosection analysis illustrates that garnet growth is continuous and along an early near‐isothermal trajectory followed by a near‐isobaric heating path from 1.9 GPa/500 °C to 2.4 GPa/575 °C and subsequent near‐isothermal decompression. 40Ar/39Ar dating of an amphibole inclusion in garnet from the eclogite yielded an age of 310 ± 5 Ma, which is consistent with a U–Pb age of 305 ± 3 Ma for the metamorphic zircon within uncertainty. Garnet core and rim material produced Lu–Hf ages of 296.9 ± 3.8 and 256.9 ± 3.9 Ma respectively; the latter is consistent with its Sm–Nd age of 254.3 ± 4.6 Ma for the same aliquots. Similarly, limited zircon U–Pb ages of c. 257 Ma were obtained in zircon rims with garnet inclusions. These ages were interpreted to bracket the period of garnet growth and the difference of up to c. 40 Ma is best explained by protracted garnet growth. We propose that the rocks represent detachment of part of the downgoing slab and remained free of significant compression/decompression or heating/cooling close to the subduction channel, most likely underplating the mantle wedge, for a long time. These rocks were incorporated into the following subduction channel due to the successive entry of the buoyant materials, and exhumed at some time later than c. 254 Ma. The increasing observations of protracted garnet growth and long‐lived subduction in various orogens worldwide demand more sophisticated geodynamic models.  相似文献   

15.
We report two new eclogite localities (at Kanayamadani and Shinadani) in the high‐P (HP) metamorphic rocks of the Omi area in the western most region of Niigata Prefecture, Japan, which form part of the Hida Gaien Belt, and determine metamorphic conditions and pressure–temperature (PT) paths. The metamorphic evolution of the eclogites is characterized by a tight hairpin‐shaped PT path from prograde epidote–blueschist facies to peak eclogite facies and then retrograde blueschist facies. The prograde metamorphic stage is characterized by various amphibole (winchite, barroisite, glaucophane) inclusions in garnet, whereas the peak eclogite facies assemblage is characterized by omphacite, garnet, phengite and rutile. Peak PT conditions of the eclogites were estimated to be ~600°C and up to 2.0 GPa by conventional cation‐exchange thermobarometry, Ti‐in‐zircon thermometry and quartz inclusion Raman barometry respectively. However, the Raman spectra of carbonaceous material thermometry of metapelites associated with the eclogites gave lower peak temperatures, possibly due to metamorphism at different conditions before being brought together during exhumation. The blueschist facies overprint following the peak of metamorphism is recognized by the abundance of glaucophane in the matrix. Zircon grains in blueschist facies metasedimentary samples from two localities adjacent to the eclogites have distinct oscillatory‐zoned cores and overgrowth rims. Laser ablation inductively coupled plasma mass spectrometry U–Pb ages of the detrital cores yield a wide range between 3,200 and 400 Ma, with a peak at 600–400 Ma. In the early Palaeozoic, proto‐Japan was located along the continental margin of the South China craton, providing the source of the older population of detrital zircon grains (3,200–600 Ma) deposited in the trench‐fill sediments. In addition, subduction‐related magmatism c. 500–400 Ma is recorded in the crust below proto‐Japan, which might have been the source for the younger detrital zircon grains. The peak metamorphic age was constrained by SHRIMP dating of the overgrowth rims, yielding Tournaisian ages of 347 ± 4 Ma, suggesting subduction in the early Carboniferous. Our results provide clear constraints on the initiation of subduction, accretion and the development of an arc‐trench system along the active continental margin of the South China craton and help to unravel the Palaeozoic tectonic history of proto‐Japan.  相似文献   

16.
Quartz veins in high‐pressure to ultrahigh‐pressure metamorphic rocks witness channelized fluid flow that transports both mass and heat during collisional orogenesis. This flow can occur in the direction of changing temperature/pressure during subduction or exhumation. SHRIMP U‐Pb dating of zircon from a kyanite‐quartz vein within ultrahigh‐pressure eclogite in the Dabie continental collision orogen yields two age groups at 212 ± 7 and 181 ± 13 Ma, which are similar to two groups of LA‐ICPMS age at 210 ± 4 and 180 ± 5 Ma for the same sample. These ages are significantly younger than zircon U‐Pb ages of 224 ± 2 Ma from the host eclogite. Thus the two age groups from the vein date two episodes of fluid flow involving zircon growth: the first due to decompression dehydration during exhumation, and the second due to heating dehydration in response to a cryptic thermal event after continental collision. Laser fluorination O‐isotope analyses gave similar δ18O values for minerals from both vein and eclogite, indicating that the vein‐forming fluid was internally derived. Synchronous cooling between the vein and eclogite is suggested by almost the same quartz–mineral fractionation values, with regularly decreasing temperatures that are in concordance with rates of O diffusion in the minerals. While the quartz veining was caused by decompression dehydration at 700–650 °C in a transition from ultrahigh‐pressure to high‐pressure eclogite‐facies retrogression, the postcollisional fluid flow was retriggered by heating dehydration at ~500 °C without corresponding metamorphism. In either case, the kyanite–quartz vein formed later than the peak ultrahigh‐pressure metamorphic event at the Middle Triassic, pointing to focused fluid flow during exhumation rather than subduction. The growth of metamorphic zircon in the eclogite appears to have depended on fluid availability, so that their occurrence is a type of geohygrometer besides geochronological applicability to dating of metamorphic events in orogenic cycles.  相似文献   

17.
High‐P (HP) eclogite and associated garnet–omphacite granulite have recently been discovered in the Mulantou area, northeastern Hainan Island, South China. These rocks consist mainly of garnet, omphacite, hornblende, quartz and rutile/ilmenite, with or without zoisite and plagioclase. Textural relationships, mineral compositions and thermobarometric calculations demonstrate that the eclogite and garnet–omphacite granulite share the same three‐stage metamorphic evolution, with prograde, peak and retrograde P?T conditions of 620–680°C and 8.7–11.1 kbar, 820–860°C and 17.0–18.2 kbar, and 700–730°C and 7.1–8.5 kbar respectively. Sensitive high‐resolution ion microprobe U–Pb zircon dating, coupled with the identification of mineral inclusions in zircon, reveals the formation of mafic protoliths before 355 Ma, prograde metamorphism at c. 340–330 Ma, peak to retrograde metamorphism at c. 310–300 Ma, and subsequent pegmatite intrusion at 295 Ma. Trace element geochemistry shows that most of the rocks have a MORB affinity, with initial εNd values of +2.4 to +6.7. As with similar transitional eclogite–HP granulite facies rocks in the thickened root in the European Variscan orogen, the occurrence of relatively high P?T metamorphic rocks of oceanic origin in northeastern Hainan Island suggests Carboniferous oceanic subduction leading to collision of the Hainan continental block, or at least part of it, with the South China Block in the eastern Palaeo‐Tethyan tectonic domain.  相似文献   

18.
Fluid availability during high‐grade metamorphism is a critical factor in dictating petrological, geochemical and isotopic reequilibration between metamorphic minerals, with fluid‐absent metamorphism commonly resulting in neither zircon growth/recrystallization for U‐Pb dating nor Sm‐Nd isotopic resetting for isochron dating. While peak ultra‐high pressure (UHP) metamorphism is characterized by fluid immobility, high‐pressure (HP) eclogite‐facies recrystallization during exhumation is expected to take place in the presence of fluid. A multichronological study of UHP eclogite from the Sulu orogen of China indicates zircon growth at 216 ± 3 Ma as well as mineral Sm‐Nd and Rb‐Sr reequilibration at 216 ± 5 Ma, which are uniformly younger than UHP metamorphic ages of 231 ± 4 to 227 ± 2 Ma as dated by the SHRIMP U‐Pb method for coesite‐bearing domains of zircon. O isotope reequilibration was achieved between the Sm‐Nd and Rb‐Sr isochron minerals, but Hf isotopes were not homogenized between different grains of zircon. The HP eclogite‐facies recrystallization is also evident from petrography. Thus this process occurred during exhumation with fluid availability from decompression dehydration of hydrous minerals and the exsolution of hydroxyl from nominally anhydrous minerals. This provides significant amounts of internally derived fluid for extensive retrogression within the UHP metamorphosed slabs. Based on available experimental diffusion data, the consistent reequilibration of U‐Pb, Sm‐Nd, Rb‐Sr and O isotope systems in the eclogite minerals demonstrates that time‐scale for the HP eclogite‐facies recrystallization is c. 1.9–9.3 Myr or less. This provides a maximum estimate for duration of the fluid‐facilitated process in the HP eclogite‐facies regime during the exhumation of deeply subducted continental crust.  相似文献   

19.
The Qinling‐Tongbai‐Dabie‐Sulu orogenic belt comprises a Palaeozoic accretion‐dominated system in the north and a Mesozoic collision‐dominated system in the south. A combined petrological and geochronological study of the medium‐to‐high grade metamorphic rocks from the diverse Palaeozoic tectonic units in the Tongbai orogen was undertaken to help elucidate the origins of Triassic ultrahigh‐pressure metamorphism and collision dynamics between the Sino‐Korean and Yangtze cratons. Peak metamorphic conditions are 570–610 °C and 9.3–11.2 kbar for the lower unit of the Kuanping Group, 630–650 °C and 6.6–8.9 kbar for the upper unit of the Kuanping Group, 550–600 °C and 6.3–7.7 kbar for the Erlangping Group, 770–830 °C and 6.9–8.5 kbar for the Qinling Group and 660–720 °C and 9.1–11.5 kbar for the Guishan complex. Reaction textures and garnet compositions indicate clockwise P–T paths for the amphibolite facies rocks of the Kuanping Group and Guishan complex, and an anticlockwise P–T path for the granulite facies rocks of the Qinling Group. Sensitive high‐resolution ion microprobe U–Pb zircon dating on metamorphic rocks and deformed granite/pegmatites revealed two major Palaeozoic tectonometamorphic events. (i) During the Silurian‐Devonian (c. 440–400 Ma), the Qinling continental arc and Erlangping intra‐oceanic arc collided with the Sino‐Korean craton. The emplacement of the Huanggang diorite complex resulted in an inverted thermal gradient in the underlying Kuanping Group and subsequent thermal relaxation during the exhumation. Meanwhile, the oceanic subduction beneath the Qinling continental arc produced magmatic underplating and intrusion, leading to granulite facies metamorphism followed by a near‐isobaric cooling path. (ii) During the Carboniferous (c. 340–310 Ma), the northward subduction of the Palaeo‐Tethyan ocean generated a medium P/T Guishan complex in the hangingwall and a high P/T Xiongdian eclogite belt in the footwall. The Guishan complex and Xiongdian eclogite belt are therefore considered to be paired metamorphic belts. Subsequent separation of the paired belts is inferred to be related to the juxtaposition of the Carboniferous eclogites with the Triassic HP metamorphic complex during continental subduction and exhumation.  相似文献   

20.
Ultrahigh temperature (UHT) metamorphism is traditionally recognized by the development of characteristic mineral associations in Mg–Al-rich metapelitic rocks. However, recognition of UHT metamorphism in non-supracrustal rocks is more difficult. UHT metamorphic conditions are recorded by a migmatite from the North Dabie Terrane (NDT) of the Dabie orogen, east China. The migmatite is composed of intercalated layers of melanosome and K-feldspar-rich leucosome. Zircon grains in the migmatite have a core–rim structure comprising a metamorphic core and an anatectic rim. The metamorphic cores have low U contents (mainly <657 ppm) and low Th/U ratios (<0.2), and are depleted in heavy rare earth element (HREE). The metamorphic domains yield concordant 206Pb/238U ages ranging from 205.1 ± 4.8 Ma to 248.0 ± 4.1 Ma with a weighted mean of 217.7 ± 4.3 Ma (n = 20, MSWD = 4.2). They contain a granulite-facies inclusion assemblage of garnet + clinopyroxene + plagioclase + quartz + rutile. Conventional geobarometry and Ti-in-zircon thermometry constrain PT conditions to approximately 11–12 kbar and 900–950 °C, suggesting UHT metamorphism. The discovery of Triassic UHT metamorphism in the Dabie orogen, which was previously best known for ultrahigh pressure metamorphism, provides new insights into the thermal structure and geodynamics of the orogeny during continental collision. The anatectic rims of zircon grains have relatively high U contents and low Th/U ratios (<0.14), and are enriched in HREE. They yield concordant 206Pb/238U ages of 133.6 ± 1.1 Ma to 156.4 ± 2.2 Ma, indicating that anatexis occurred during post-collisional collapse of the Dabie orogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号