首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract Eclogites occur in three districts of the northern and southern parts of Tien-Shan. Three eclogites collected from the Aktyuz, Makbal and Atbashy districts were analyzed; the P-T paths of three eclogites were estimated by analyzing compositional growth zoning and retrograde reaction of garnet and omphacite. Aktyuz and Makbal eclogites have not preserved the prograde path. An Aktyuz eclogite that underwent a quartz eclogite facies metamorphism (about T = 600°C, P = 12 kbar) has recorded three stages of retrograde metamorphism. Four stages of retrograde metamorphism were recognized in a Makbal eclogite; the garnet-omphacite geothermometer gave about T = 560°C at 20 kbar as the highest metamorphic condition. Garnet from a garnetchloritoid-talc schist of the Makbal district includes quartz pseudomorphs after coesite; some units evidently underwent a low-temperature part of coesite eclogite fades metamorphism. Prograde and retrograde paths were recognized in an Atbashy eclogite; five stages of metamorphic reaction were observed in the Atbashy sample. The prograde path from stage I to stage III has been recorded in garnet and omphacite in which quartz pseudomorphs after coesite are included. The peak metamorphism of stage III took place at about 660°C at 25 kbar. The stages IV and V are retrograde. UHP eclogite facies metamorphism took place twice in Kyrghyzstan. The Aktyuz and Atbashy eclogites gave Rb-Sr mineral-isochron ages of about 750 Ma and 270 Ma, respectively. The K-Ar age of paragonite from the Makbal eclogite is about 480 Ma.  相似文献   

2.
R. Y. Zhang    J. G. Liou  W. G. Ernst 《Island Arc》1995,4(4):293-309
Abstract Altered quartz-rich and nearly quartz-free eclogitic rocks and completely retrograde quartz-rich garnet amphibolites occur as blocks or lenses in gneisses at Weihai, northeastern tip of the Sulu ultrahigh-P belt. Eclogitic rocks with assemblage garnet ± clinopyroxene ± coesite + rutile have experienced three-stage metamorphic events including ultrahigh-pressure eclogite, granulite and amphibolite facies. Granulite metamorphic event is characterized by formation of the hypersthene + salite + plagioclase ± hornblende corona between garnet and quartz + clinopyroxene. P-T conditions for the three-stage recrystallization sequence are 840 ± 50°C, >28 kbar, about 760±50°C, 9 kbar, and ~650°C, <8 kbar respectively. Most country rock gneisses contain dominant amphibolite-facies assemblages; some garnet-bearing clinopyroxene gneisses recrystallized under granulite-facies conditions at about 740±50°C and 8.5 kbar; similar to granulite-facies retrograde metamorphism of the enclosed eclogitic blocks. Minor cale-silicate lenses within gneisses containing an assemblage grossular + salite + titanite + quartz with secondary zoisite and plagioclase may have formed within a large pressure range of 14-35 kbar. Eclogitic boudins and quartzo-feldspathic country rocks may have experienced coeval in situ UHP and subsequent retrograde metamorphism. The established nearly isothermal decompression P-T path suggests that this area may represent the interior portion of a relatively large subducted sialic block. The recognized UHP terrane may extend eastward across the Yellow Sea to the Korean Peninsula.  相似文献   

3.
Hideki Masago 《Island Arc》2000,9(3):358-378
Abstract In the Barchi–Kol area, located at the westernmost part of the Kokchetav ultrahigh pressure (UHP) to high-pressure (HP) massif, northern Kazakhstan, metabasites from the epidote amphibolite (EA) facies to the coesite eclogite (CEC) facies are exposed. Based on the equilibrium mineral assemblages, the Barchi–Kol area is divided into four zones: A, B, C and D. Zone A is characterized by the assemblage: epidote + hornblende + plagioclase + quartz, with minor garnet. Zone B is characterized by the assemblage: garnet + hornblende + plagioclase + quartz + zoisite. Zone C is defined by the appearance of sodic–augite, with typical assemblage: garnet + sodic–augite + tschermakite–pargasite + quartz ± plagioclase ± epidote/clinozoisite. Zone D is characterized by the typical eclogite assemblage: garnet + omphacite + quartz + rutile, with minor phengite and zoisite. Inclusions of quartz pseudomorph after coesite were identified in several samples of zone D. Chemical compositions of rock-forming minerals of each zone were analyzed and reactions between each zone were estimated. Metamorphic P-T conditions of each zone were estimated using several geothermobarometers as 8.6 ± 0.5 kbar, 500 ± 30 °C for zone A; 11.7 ± 0.5 kbar, 700 ± 30 °C for zone B; 12–14 kbar, 700–815 °C for zone C; and 27–40 kbar, 700–825 °C for zone D.  相似文献   

4.
J. Liu  J. G. Liou 《Island Arc》1995,4(4):334-346
Abstract Kyanite-anthophyllite schist preserves the first record of high pressure in the amphibolite-facies unit of the SW Dabie Mountains, whereas ultrahigh- and high-pressure (UHP and HP) metamorphism has been well documented by the occurrence of coesite, diamond and mafic eclogite in the SE Dabie Mountains. Textural evidence indicates that minerals of the kyanite-anthophyllite schist formed mainly in two stages: (i) garnet + kyanite + antho-phyllite + rutile formed at pressure in excess of 1.2 GPa at T < 650°C; (ii) cordierite±staurolite formed by reaction of anthophyllite + kyanite at P < 0.5 GPa, T∼530°C. Plagioclase and ilmenite replaced garnet and rutile respectively during decompression. In a still later stage, secondary biotite recrystallized, accompanied by sillimanite replacing kyanite, and spinel replacing staurolite. The P-T information suggests that the amphibolite unit in the SW Dabie Mountains is part of the Triassic collision belt between the Sino-Korean and Yangtze cratons. The P-T paths of the UHP eclogite in the eastern Dabie Mountains and the HP kyanite-anthophyllite schist in the SW Dabie Mountains show similar decompression and equivalent late stage Barrovian-style metamorphism. Emplacement of voluminous granitoid at middle crustal levels between 134–118 Ma contributed to the development of the Barrovian-type metamorphism in the Dabie Mountains.  相似文献   

5.
Yui  Kouketsu  Masaki  Enami 《Island Arc》2010,19(1):165-176
Aragonite and omphacite-bearing metapelite occurs in the albite–biotite zone of the Togu (Tohgu) area, Besshi region, Sambagawa metamorphic belt, central Shikoku, Japan. This metapelite consists of alternating graphite-rich and graphite-poor layers that contain garnet, phengite, chlorite, epidote, titanite, calcite, albite, and quartz. A graphite-poor layer contains a 1.5-cm ivory-colored lens that mainly consists of phengite, calcite, albite, and garnet. Aragonite, omphacite, and paragonite occur as inclusions in the garnet of the ivory lens. The aragonite has a composition that is close to the CaCO3 end-member: the FeCO3 and MnCO3 components are both less than 0.3 mol% and the SrCO3 component is about 1 mol%. The aragonite + omphacite + quartz assemblage in garnet indicates equilibrium conditions of P  > 1.1–1.3 GPa and T  = 430–550°C. Quartz grains sealed in garnet of the aragonite and omphacite-bearing sample and other metapelites in the Togu area preserve a high residual pressure that is equivalent to the Sambagawa eclogite samples. These facts suggest that: (i) the Togu area experienced eclogite facies metamorphism; and (ii) thus, eclogite facies metamorphism covered the Sambagawa belt more extensively than previously recognized.  相似文献   

6.
Petrogeneses of impure dolomitic marble and enclosed eclogite from the Xinyan area, Dabie ultrahigh-pressure (UHP) metamorphic terrane, central China were investigated with a special focus on fluid characteristics. Identified carbonate-bearing UHP assemblages are Dol + Coe ± Arg (or Mgs) ± Ap, Dol + Omp ± Coe ± Ap ± Arg (or Mgs), Phen + Omp + Coe + Dol ± Arg and Dol + Coe + Phen + Rt ± Omp ± Arg ± Ap. Retrograde assemblages are characterized by symplectitic replacement of Tr–Ab and Di–Ab after omphacite, and Phl–Pl symplectite after phengite. The P–T conditions of UHP metamorphism were estimated to be P > 2.7 GPa and T > 670 °C by the occurrence of coesite inclusions in garnet in enclosed eclogite and garnet–clinopyroxene geothermometer. The P–T conditions of initial amphibolitization were estimated to be 620 < T < 670 °C and 1.1 < P < 1.3 GPa by calcite–dolomite solvus thermometer and mineral parageneses. Phase relations in P–T– X CO 2 space in the systems NaAl–CMSCH and KCMASCH were calculated in order to constrain fluid compositions. Compositions and parageneses of UHP-stage minerals suggest the presence of fluid in UHP and exhumation stages. Occurrence of retrograde low-variance assemblages indicates that fluid composition during amphibolitization was buffered. A metastable persistence of magnesite and very restricted occurrence of calcite, magnesite and dolomite suggest a low fluid content in the post-amphibolitization stage.  相似文献   

7.
H. Tabata  S. Maruyama  & Z. Shi 《Island Arc》1998,7(1-2):142-158
The ultrahigh- and high-pressure (UHP–HP) metamorphic belt of the Dabie Mountains, central China, formed by the Triassic continental subduction and collision, is divided into four metamorphic zones; from south to north, the greenschist facies zone, epidote amphibolite to amphibolite facies zone, quartz eclogite zone, and coesite eclogite zone, based on metabasite mineral assemblages. Most of the coesite-bearing eclogites consist mainly of garnet and omphacite with homogeneous compositions and have partially undergone hydration reactions to form clinopyroxene + plagioclase + calcic amphibole symplectites during amphibolite facies overprinting. However, the least altered eclogites sometimes contain garnet and omphacite that preserve compositional zoning patterns which may have originated during their growth at peak temperature conditions of ∼ 750 °C, suggesting a short duration of UHP metamorphic conditions and/or consequent rapid cooling during exhumation. Systematic investigation on peak metamorphic temperatures of coesite eclogite have revealed that, contrary to the general trend of metamorphic grade in the southern Dabie unit, the coesite eclogite zone shows rather flat thermal structure (T = 600 ± 50 °C) with the highest temperature reaching up to 850 °C and no northward increase in metamorphic temperature, which is opposed to the previous interpretations. This feature, along with the preservation of compositional zonation, implies complicated differential movement of each eclogite mass during UHP metamorphism and the return from the deeper subduction zone at mantle depths to the surface.  相似文献   

8.
Abstract Dolomite marble from the Kumdy–Kol area of the Kokchetav Massif contains abundant microdiamond, mainly in garnet and a few in diopside. The mineral assemblage at peak metamorphic condition consists of dolomite + diopside + garnet (+ aragonite) ± diamond. Inclusions of very low MgCO3 calcite and almost pure calcite occur in diopside and are interpreted as aragonite and/or aragonite + dolomite. Single-phase Mg–calcite in diopside with a very high MgCO3 component (up to 21.7 mol%) was also found in diamond-free dolomitic marble, and is interpreted as a retrograde product from aragonite + dolomite to Mg–calcite. The dolomite stability constrains the maximum pressure (P) at < 7 GPa using previous experimental data, whereas the occurrence of diamond yields the minimum peak pressure–temperature (P–T) condition at 4.2 GPa and 980 °C at X co 2 = 0.1. The highest MgCO3 in Mg–calcite constrains the minimum P–T condition higher than 2.5 GPa and 800 °C for the exhumation stage. As these marbles were subjected to nearly identical P–T metamorphic conditions, the appearance of diamond in some carbonate rocks was explained by high X co 2. A low X co 2 condition refers to high oxidized conditions and diamond (and/or graphite) becomes unstable. Difference in X co 2 for marble from the same area suggests local heterogeneity of fluid compositions during ultrahigh-pressure metamorphism.  相似文献   

9.
An introduction to ultrahigh-pressure metamorphism   总被引:6,自引:0,他引:6  
Abstract Ultrahigh-pressure (UHP) metamorphism refers to mineralogical and structural readjustment of supracrustal protoliths and associated mafic-ultramafic rocks at mantle pressures greater than ∼ 25 kbar (80-90 km). Typical products include metapelite, quartzite, marble, granulite, eclogite, paragneiss and orthogneiss; minor mafic and ultramafic rocks occur as eclogitic-ultramafic layers or blocks of various dimensions within the supracrustal rocks. For appropriate bulk compositions, metamorphism at great depths produces coesite, microdiamond and other characteristic UHP minerals with unusual compositions. Thus far, at least seven coesite-bearing eclogitic terranes and three diamond-bearing UHP regions have been documented. All lie within major continental collision belts in Eurasia, have similar supracrustal protoliths and metamorphic assemblages, occur in long, discontinuous belts that may extend several hundred kilometers or more, and typically are associated with contemporaneous high-P blueschist belts. This paper defines the P-T regimes of UHP metamorphism and describes mineralogical, petrological and tectonic characteristics for a few representative UHP terranes including the western gneiss region of Norway, the Dora Maira massif of the western Alps, the Dabie Mountains and the Su-Lu region of east-central China, and the Kokchetav massif of the former USSR. Prograde P-T paths for coesite-bearing eclogites require abnormally low geothermal gradients (approximately 7°C/km) that can be accomplished only by subduction of cold, oceanic crust-capped lithosphere ± pelagic sediments or an old, cold continent. The preservation of coesite inclusions in garnet, zircon, omphacite, kyanite and epidote, and microdiamond inclusions in garnet and zircon during exhumation of an UHP terrane requires either an extraordinarily fast rate of denudation (up to 10 cm/year) or continuous refrigeration in an extensional regime (retreating subduction zone).  相似文献   

10.
W. Cui  X. Wang 《Island Arc》1995,4(4):347-361
Abstract According to field occurrence and P-T condition, eclogites of southern Henan and northern Hubei Provinces can be divided into two types: medium temperature (MT) and low temperature (LT) eclogites. MT eclogite occurs as layers or lenticular bodies within migmatized gneiss of the Dabie Group. This study is the first to report an occurrence of the assemblages coesite and kyanite + talc in this area. Garnet exhibits a distinct prograde compositional zoning and has mineral inclusions with rotational textures indicating syntectonic growth. Five evolutionary stages are outlined. (1) Pre-eclogite stage, determined by the inclusions of barroisite + zoisite + quartz in the cores of zoned garnets. (2) Eclogite stage, characterized by garnet + omphacite + kyanite ± talc + coesite + rutile, represents the peak metamorphism. The peak conditions are estimated to be T = 600-700°C, P >27 kb. (3) Glaucophane stage, without an appearance of plagioclase, is assigned to a transitional stage. Blades of glaucophane form rims around garnet grains as a result of the reaction talc + jadeite = glaucophane. This marks the beginning of retrograde metamorphism. (4) Symplectite stage, where eclogitic minerals break down, and Amp + Pl symplectite develops around garnet or omphacite; (5) Later retrograde stage is represented by epidote-amphibolite assemblages. Low temperature eclogite appears as blocks in the Qijiaoshan Formation (part of the Susong Group). Four stages can be identified: (1) Pre-eclogite stage, amphibole + epidote + sphene inclusions occur in garnet core; (2) Eclogite stage, consists of garnet + omphacite + rutile + quartz + phengite + glaucophane + zoisite. The peak conditions are T = 490-560°C, P <15 kb; (3) Symplectitic stage, is characterized by the breakdown of eclogitic minerals; (4) Greenschist facies stage, is recorded by a greenschist facies assemblage. The difference between the two types of eclogites suggests contrasting processes. A model is proposed whereby partial melting of continental crust and the emplacement of tonalite occurs during the exhumation of ultrahigh-pressure eclogite terrain.  相似文献   

11.
Shunsuke Endo 《Island Arc》2010,19(2):313-335
Evidence for eclogite‐facies metamorphism is widespread in the Western Iratsu body of the oceanic subduction type Sanbagawa Belt, Southwest Japan. Previous studies in this region focused on typical mafic eclogites and have revealed the presence of an early epidote‐amphibolite facies metamorphism overprinted by a phase of eclogite facies metamorphism. Ca‐rich and titanite‐bearing eclogite, which probably originated from a mixture of basaltic and calc‐siliceous sediments, is also relatively common in the Western Iratsu body, but there has been no detailed petrological study of this lithology. Detailed petrographic observations reveal the presence of a relic early epidote‐amphibolite facies metamorphism preserved in the cores of garnet and titanite in good agreement with studies of mafic eclogite in the area. Thermobarometric calculations for the eclogitic assemblage garnet + omphacite + epidote + quartz + titanite ± rutile ± phengite give peak‐P of 18.5–20.5 kbar at 525–565°C and subsequent peak‐T conditions of about 635°C at 14–16 kbar. This eclogite metamorphism initiated at about 445°C/11–15 kbar, implying a significantly lower thermal gradient than the earlier epidote‐amphibolite facies metamorphism (~650°C/12 kbar). These results define a PT path with early counter‐clockwise and later clockwise trajectories. The overall PT path may be related to two distinct phases in the tectono‐thermal evolution in the Sanbagawa subduction zone. The early counter‐clockwise path may record the inception of subduction. The later clockwise path is compatible with previously reported PT paths from the other eclogitic bodies in the Sanbagawa Belt and supports the tectonic model that these eclogitic bodies were exhumed as a large‐scale coherent unit shortly before ridge subduction.  相似文献   

12.
Abstract The Kokchetav Massif of northern Kazakhstan is unique because of the abundant occurrence of microdiamond inclusions in garnet, zircon and clinopyroxene of metasediments. In order to determine precise pressure–temperature (P–T) conditions, we have systematically investigated mineral inclusions and the compositions of major silicates in Ti–clinohumite–garnet peridotite and diamond-grade eclogite from Kumdy–Kol. It was found that garnet peridotites from Kumdy–Kol contain assemblages of garnet, olivine, Ti–clinohumite and ilmenite. The garnet contains inclusions that are indicative of both ultrahigh pressure (UHP) and retrograde conditions. Inclusions of hydrous phases such as chlorite, amphibole and zoisite were formed at the post-UHP stage. The study also found that eclogite from Kumdy–Kol contains albite–augite symplectites after omphacitic pyroxene. The core of pyroxene (sodic augite) contains high K2O (up to 1wt%; average 0.24wt%). Phengite is included in the core. Applying the K2O-in-augite geobarometry, which is based on recent experiments, and the garnet–clinopyroxene (Grt–Cpx) geothermometer for peak metamorphism, the eclogites yield P–T estimates of > 6 GPa and > 1000 °C, and the diamond-grade eclogites yield lower temperature estimates at 900–1000 °C and 5 GPa.  相似文献   

13.
Abstract To investigate the regional thermobaric structure of the diamondiferous Kokchetav ultrahigh‐pressure and high‐pressure (UHP–HP) massif and adjacent units, eclogite and other metabasites in the Kulet and Saldat–Kol regions, northern Kazakhstan, were examined. The UHP–HP massif is subdivided into four units, bounded by subhorizontal faults. Unit I is situated at the lowest level of the massif and consists of garnet–amphibolite and acidic gneiss with minor pelitic schist and orthogneiss. Unit II, which structurally overlies Unit I, is composed mainly of pelitic schist and gneiss, and whiteschist locally with abundant eclogite blocks. The primary minerals observed in Kulet and Saldat–Kol eclogites are omphacite, sodic augite, garnet, quartz, rutile and minor barroisite, hornblende, zoisite, clinozoisite and phengite. Rare kyanite occurs as inclusions in garnet. Coesite inclusions occur in garnet porphyroblasts in whiteschist from Kulet, which are closely associated with eclogite masses. Unit III consists of alternating orthogneiss and amphibolite with local eclogite masses. The structurally highest unit, Unit IV, is composed of quartzitic schist with minor pelitic, calcareous, and basic schist intercalations. Mineral assemblages and compositions, and occurrences of polymorphs of SiO2 (quartz or coesite) in metabasites and associated rocks in the Kulet and Saldat–Kol regions indicate that the metamorphic grades correspond to epidote–amphibolite, through high‐pressure amphibolite and quartz–eclogite, to coesite–eclogite facies conditions. Based on estimations by several geothermobarometers, eclogite from Unit II yielded the highest peak pressure and temperature conditions in the UHP–HP massif, with metamorphic pressure and temperature decreasing towards the upper and lower structural units. The observed thermobaric structure is subhorizontal. The UHP–HP massif is overlain by a weakly metamorphosed unit to the north and is underlain by the low‐pressure Daulet Suite to the south; boundaries are subhorizontal faults. There is a distinct pressure gap across these boundaries. These suggest that the highest grade unit, Unit II, has been selectively extruded from the greatest depths within the UHP–HP unit during the exhumation process, and that all of the UHP–HP unit has been tectonically intruded and juxtaposed into the adjacent lower grade units at shallower depths of about 10 km.  相似文献   

14.
Yasuo  Miyagi  Akira  Takasu 《Island Arc》2005,14(3):215-235
Abstract   Prograde eclogites occur in the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt of central Shikoku. The Tonaru mass is considered to be a metamorphosed layered gabbro, and occurs as a large tectonic block (approximately 6.5 km × 1 km) in a high-grade portion of the Sambagawa schists. The Tonaru mass experienced high- P /low- T prograde metamorphism from the epidote-blueschist facies to the eclogite facies prior to its emplacement into the Sambagawa schists. The estimated P – T conditions are T  = 300–450°C and P  = 0.7–1.1 GPa for the epidote-blueschist facies, and the peak P – T conditions for the eclogite facies are T  = 700–730°C and P  ≥ 1.5 GPa. Following the eclogite facies metamorphism, the Tonaru mass was retrograded to the epidote amphibolite facies. It subsequently underwent additional prograde Sambagawa metamorphism, together with the surrounding Sambagawa schists, until the conditions of the oligoclase–biotite zone were reached. The high- P /low- T prograde metamorphism of the eclogite facies in the Tonaru mass and other tectonic blocks show similar steep d P /d T geothermal gradients despite their diverse peak P – T conditions, suggesting that these tectonic blocks reached different depths in the subduction zone. The individual rocks in each metamorphic zone of the Sambagawa schists also recorded steep d P /d T geothermal gradients during the early stages of the Sambagawa prograde metamorphism, and these gradients are similar to those of the eclogite-bearing tectonic blocks. Therefore, the eclogite-bearing tectonic blocks reached greater depths in the subduction zone than the Sambagawa schists. All the tectonic blocks were ultimately emplaced into the hanging wall side of the later-subducted Sambagawa high-grade schists during their exhumation.  相似文献   

15.
A second occurrence of chrome-rich clinopyroxene has been discovered as inclusions in orthopyroxene in orthopyroxenite from Maowu, the Dabie Mountains, Central China. The average formula for chrome-rich clinopyroxene can be expressed as (Na0.39Ca0.54)0.93(Mg0.57Fe2+0.06Fe3+0.01Cr0.24Al0.15)1.03Si2.02O6, with a maximum amount of kosmochlor component of 28.52 mol%. The unit cell parameters obtained from a single-crystal are a  = 9.614 Å, b  = 8.800 Å, c =  5.240 Å, β = 106.59°, space group C2 / c . The indices of refraction are α = 1.697, β = 1.704, γ = 1.726. Chrome-rich clinopyroxene, which coexists with chromite, chromian rutile and chromian pyrope, crystallized at a temperature of 1025 °C and very high pressure, and therefore represents a mantle relic. Together with the appearance of low-pressure inclusion mineral assemblage and the estimation of physical–chemical conditions for matrix minerals, the Maowu eclogite–ultramafic complex is considered to be formed during ultrahigh-pressure metamorphism from the mantle-derived protolith.  相似文献   

16.
Abstract The talc (Tlc) + phengite (Phn) + albite (Ab) assemblage is newly confirmed in MnOtotal-rich (1.65 wt% in average) piemontite-quartz schists from the intermediate- and high-grade part of the Sanbagawa belt, central Shikoku, Japan. Talc is in direct contact with Phn, Ab and chlorite (Chl) with sharp boundaries, suggesting that these four phases mutually coexist. Other primary constituents of the Tlc-bearing piemontite-quartz schist are spessartine, braunite, hematite (Ht), crossite/barroisite and dolomite. Phlogopite (Phl) rarely occurs as a later stage mineral developing along the rim of Phn. The studied piemontite-quartz schist has mg# (= Mg/(Mg + Fe2+)) ~ 1.0, because of its high oxidation state. Schreinemakers' analysis in the KNMASH system and the mineral assemblage in the Sanbagawa belt propose a possible petrogenetic grid, in which the Tlc–Phn assemblage is stable in a P-T field surrounded by the following reactions: lower-pressure limit by Chl + Phl + quartz (Qtz) = Phn + Tlc + H2O as proposed by previous workers; higher-pressure limit by glaucophane + Qtz = Tlc + Ab + H2O; and higher-temperature limit by Tlc + Phn + Ab = Phl + paragonite + Qtz + H2O. Thermodynamic calculation based on the database of Holland & Powell (1998) , however, suggests that the Tlc–Phn stability field defined by these reactions is unrealistically limited around 580–600 °C at 11.6–12.0 (± 0.7) kbar. Schreinemakers' analysis in the KNMA-Fe3+-SH system and the observed mineral assemblage predict that Chl + crossite = Tlc + Ab + Ht + H2O is a preferable Tlc-forming reaction in the intermediate-grade part of the Sanbagawa belt and that excess Ab + hematite narrows the stability field of the Tlc–Phn assemblage.  相似文献   

17.
Taro  Ubukawa  Akiko  Hatanaka  Keisaku  Matsumoto  Takao  Hirajima 《Island Arc》2007,16(4):553-574
Abstract Various modes of occurrence of talc were identified in piemontite‐quartz schists collected from schist and eclogite units in the Kotsu area of the Sanbagawa Belt, eastern Shikoku, Japan. They can be classified into the following types: (A) matrix and (B) pull‐apart talc. The matrix talc is associated with aegirineaugite or glaucophane in the eclogite unit and with albite or chlorite in the schist unit. The pull‐apart talc is developed at the pull‐apart of microboudin structures of Na‐amphibole, along with albite or chlorite in samples from both units, suggesting that the pull‐apart talc was formed by Na‐amphibole consuming reactions in both units. The talc–aegirineaugite–phengite association is found in a thin layer (a few millimetres thick), with higher Na2O/(Na2O + Al2O3 + MgO) ratio in the ANM (Al2O3–Na2O–MgO) diagram projected from phengite, epidote and other minerals, in the eclogite unit. Crystals of aegirineaugite have decreased jadeite content [= 100 × Al/(Na + Ca)] and increased aegirine content [= 100 × (Na – Al)/(Na + Ca)] from the core (ca Jd40Aeg40Di20) to the rim (ca Jd23Aeg53Di24), and are replaced by winchite and albite in varying degrees at the crystal margins. Na‐amphibole is glaucophane/crossite, commonly rimmed by Al‐poor crossite or winchite at the margin in the eclogite unit, although it is relatively homogeneous crossite in the schist unit. These textures suggest that the talc‐phengite‐(aegirineaugite or glaucophane) assemblage equilibrated during an early stage of metamorphism and the pull‐apart talc was formed at a later stage in the eclogite unit. A plausible petrogenetic grid in the NCKFe3+MASH system with excess piemontite (regarded as epidote), hematite, quartz and water, pseudosection analysis for the aegirineaugite‐bearing layer and the observed mineral assemblages suggest that the talc‐aegirineaugite‐phengite assemblage is stable under high pressure conditions (ca 560–580°C and 18–20 kbar). The pull‐apart talc was formed at ca 565–580°C and 9.5–10.5 kbar by the reaction of glaucophane/crossite + paragonite = talc + albite during the decompression stage, suggesting that the piemontite‐quartz schist in the eclogite unit experienced high‐pressure metamorphism at ca 50–60 km depth and was then exhumed to ca 30 km depth under nearly adiabatic conditions.  相似文献   

18.
C. W. Oh  & J. G. Liou 《Island Arc》1998,7(1-2):36-51
The petrogenetic grid between the eclogite and other high-pressure/temperature (P/T) metamorphic facies in a basaltic system is constructed by considering barroisite as one of the important phases in high-P/T metamorphism and by using previous petrological data combined with Schreinemakers' analysis and slope calculation. In the constructed petrogenetic grid, the eclogite facies is bounded by the blueschist and epidote–amphibolite facies with negative-slope reactions at lower temperatures (450–550 °C) and by the epidote–amphibolite, amphibolite and granulite facies with positive-slope reactions at higher temperatures (> 550–600 °C). The eclogite facies does not contact the greenschist facies, and the lowest P condition for the eclogite facies exists at the boundary between the eclogite and epidote–amphibolite facies. The temperature range of the epidote–amphibolite facies increases with increasing pressure until 8–11 kbar and then decreases up to 13–15 kbar. Compared to boundaries of other facies, boundaries of the eclogite facies may have wider P–T ranges. The boundary between the blueschist and eclogite facies occurs over a large temperature range from 450 to 620 ± 30 °C, and the transitions between the eclogite and amphibolite or high-pressure granulite facies occur over a pressure range in excess of 6–10 kbar.  相似文献   

19.
High-pressure metamorphic rocks are exposed in Karangsambung area of central Java, Indonesia. They form part of a Cretaceous subduction complex (Luk–Ulo Complex) with fault-bounded slices of shale, sandstone, chert, basalt, limestone, conglomerate and ultrabasic rocks. The most abundant metamorphic rock type are pelitic schists, which have yielded late Early Cretaceous K–Ar ages. Small amounts of eclogite, glaucophane rock, garnet–amphibolite and jadeite–quartz–glaucophane rock occur as tectonic blocks in sheared serpentinite. Using the jadeite–garnet–glaucophane–phengite–quartz equilibrium, peak pressure and temperature of the jadeite–quartz–glaucophane rock are P  = 22 ± 2 kbar and T  = 530 ± 40 °C. The estimated P–T conditions indicate that the rock was subducted to ca 80 km depth, and that the overall geothermal gradient was ∼ 7.0 °C/km. This rock type is interpreted to have been generated by the metamorphism of cold oceanic lithosphere subducted to upper mantle depths. The exhumation from the upper mantle to lower or middle crustal depths can be explained by buoyancy forces. The tectonic block is interpreted to be combined with the quartz–mica schists at lower or middle crustal depths.  相似文献   

20.
Abstract The Kokchetav Complex is a tectonic mega-melange consisting of seven pre-Ordovician units (units I-VII) of contrasting lithologies and P–T conditions of metamorphism, overlain and/or intruded by four post-recrystallization entities. Most of the constituent rock types display affinities with continental crust; paraschists and paragneisses, which carry biogenically produced carbon, clearly were laid down near the surface of the Earth. Microdiamond (and rare coesite) inclusions are contained in strong, refractory garnet, zircon, clinopyroxene, and kyanite, some of the constituent neoblastic phases of this metasedimentary unit. Systematic mineral parageneses and textural relationships support the hypothesis that the metamorphic assemblages represent a close approach to chemical equilibrium at the time of formation. Metamorphism of diamond-bearing paragneisses and schists transpired at 535 ± 5 Ma; physical conditions included minimum pressures of 40 kbar and temperatures exceeding 900 °C. Other associated units contain mineralogic evidence of somewhat lower to considerably lower pressures and temperatures: observed magnesite + diopside pairs, coesite, grossular-pyropic garnet, potassic clinopyroxene, Si-rich phengite, barroisite-crossite(?), aluminous titanite and/or Al-rutile, and the assemblage talc + kyanite + garnet all testify to relatively elevated pressures of formation. The metamorphosed lithotectonic units represent individual, discrete stages in what initially may have been a continuous P-T series, but intense post-metamorphic dislocation has resulted in the preservation of a chaotically mixed sequence rather than an unbroken gradation in preserved conditions of metamorphism. Only units I-III, and probably VIb may represent portions of a dismembered subduction zone lithologie assemblage. The uplift to mid-crustal levels and cooling of the mega-melange took place by about 515–517 Ma, at which time the complex was stabilized as a part of the Kazakhstan microcontinental collage. An hypothesized Late Vendian-Early Cambrian subduction of the Kazakhstan-North Tianshan(?) microcontinental salient to depths exceeding 125 km, followed by decoupling from the descending oceanic crust-capped lithospheric plate is held responsible for the ultrahigh-pressure metamorphism of the Kokchetav Complex. Inasmuch as vestiges of a calc-alkaline volcanic/plutonic arc of approximately Early Cambrian age are preserved as only scattered relics in the general region, the plate-tectonic setting may have involved an intra-oceanic, Marianas-type, incipient arc which was subsequently removed through transform faulting or erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号