首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2012年8月至2013年7月,作者逐月对天鹅湖大叶藻(Zostera marina L.)的形态特征、植株密度、生物量和生产力进行了监测。结果表明,大叶藻周年株高最高值和最低值分别出现在7月和1月;叶鞘高度、叶鞘宽度和叶宽的最高值均出现在7月,叶鞘高度最低值出现在1月,叶鞘宽度和叶宽最低值均出现在2月;大叶藻顶枝、侧枝和花枝的周年密度最大值分别出现在6月、4月和5月,最小值分别出现在1月、8月和7月;单株生物量和地上部分生物量最大值均出现在7月,地下部分出现在10月,而单株生物量和地上部分生物量最小值均出现在1月,地下部分生物量最小值出现在3月;单株地上和地下生产力最大值均出现在6月,最小值则分别出现在1月和2月。分析显示,大叶藻在冬季由于水温较低导致生长缓慢,且植株较小,在春季随水温上升,生长开始加快。水温在夏初达到大叶藻的最适生长水温,大叶藻的生物量和初级生产力达到最高值,而夏末和初秋由于水温过高导致大叶藻个体生物量、密度和初级生产力开始降低。这种季节性变化与水温的季节性变化密切相关。  相似文献   

2.
《Oceanologica Acta》1999,22(1):109-117
The effects of fish farming on a seagrass (Posidonia oceanica) meadow at Fornells Bay, Minorca (Balearic Islands) were studied. Changes in plant and meadow features (e.g. shoot morphology, shoot density, biomass, rhizome growth, nutrient and soluble sugars concentrations…) in three stations along a transect from a disturbed (organic pollution due to fish cultures) to an undisturbed site were assessed. The fish culture had ceased in 1991; however, seagrass decline, already reported in a previous study for the period 1988–1990, was still taking place at the time of sampling (July 1994). Differences between stations were very clear; the station closest to the fish cages showed reduced shoot density, shoot size, underground biomass, sucrose concentration and photosynthetic capacities. In contrast, shoots from the most polluted station showed higher P-concentration in tissues and higher epiphyte biomass than the other two. Since water conditions had recovered completely by the time of the sampling mission, it is proposed that the persistence of the seagrass decline was due to the excess organic matter remaining in the sediment.  相似文献   

3.
The temporal dynamics of two seagrass species, Zostera marina and Z. japonica, were monitored monthly in Dadae Bay, Geoje Island, on the southern coast of Korea. Plant morphological characteristics, shoot density, biomass, leaf production, reproductive effort, and environmental characteristics were monitored from July 2001 to July 2002. Zostera japonica occurred in the intertidal zone and Z. marina occurred in the subtidal zone from 0.5 to 2.5 m below the mean low water level. Shoots and rhizomes were significantly larger in Z. marina than in Z. japonica, whereas the shoot density was greater in Z. japonica than in Z. marina. Despite differences in morphology and shoot density, biomass did not differ significantly between the species. Reproduction occurred from April to June in Z. marina and from May to July in Z. japonica. The proportion of reproductive shoots was approximately three times higher in Z. marina than in Z. japonica. Seasonal variation in the biomass of Z. japonica was caused by changes in both shoot size and density, whereas that of Z. marina was mainly caused by changes in shoot length. Leaf production in Z. marina and Z. japonica showed clear seasonal variation, and leaf production in Z. marina (2.6 ± 0.2 g DW·m−2·day−1) was higher than that in Z. japonica (1.7 ± 0.2 g DW·m−2·day−1). The mean plastochrone interval was not significantly different between the two species, whereas the leaf lifetime of Z. marina was longer (69 ± 7.8 days) than that of Z. japonica (59 ± 8.3 days). Our results indicated that seasonal leaf growth patterns in Z. japonica are correlated with irradiance and temperature, whereas those in Z. marina respond most to irradiance. Seasonal changes in irradiance appeared to control the temporal variation in above‐ground biomass in both species.  相似文献   

4.
Among the seagrasses that occur along the coast of Korea, Zostera asiatica inhabits the deepest depth; however, to date, there is limited information on its ecology. This study presents the first quantitative data on the seasonal growth dynamics of Z. asiatica in Korea. We measured seasonal growth and morphological characteristics, as well as environmental factors, including underwater irradiance, water temperature, salinity and nutrient concentrations of the water column and sediment pore water, bimonthly from July 2012 to May 2015. Underwater irradiance showed clear seasonal trends, increasing in the spring and summer and decreasing in the fall and winter, ranging from 2.4 ± 0.2 mol photons m-2 d-1 in November 2012 to 12.8 ± 1.3 mol photons m-2 d-1 in July 2014. Water temperature also followed a strong seasonal trend similar to underwater irradiance, ranging from 9.8 ± 0.1°C in January 2013 to 20.5 ± 0.2°C in September 2013. Nutrient availability fluctuated substantially, but there was no evidence of distinct seasonal variations. Shoot density, biomass, leaf productivity, and morphological characteristics of Z. asiatica exhibited significant seasonal variations: maximum values of these variables occurred in summer, and the minima were recorded in winter. Total shoot density was highest (218.8 ± 18.8 shoots m-2) in July 2012 and lowest (106.3 ± 6.3 shoots m-2) in January 2013. Total biomass ranged from 182.6 ± 16.9 g dry weight (DW) m-2 in January 2015 to 310.9 ± 6.4 g DW m-2 in July 2014.Areal leaf production was highest (4.9 ± 0.0 g DW m-2 d-1) in July 2012 and lowest (1.4 ± 0.2 g DW m-2 d-1) in January 2013. The optimum water temperature for the growth of Z. asiatica was between 16-19°C. Growth of Z. asiatica was more strongly correlated with underwater irradiance than water temperature, suggesting that light is the most important factor determining seasonality of Z. asiatica at the study site.  相似文献   

5.
Abstract. The occurrence of pianktonic stages of the scyphomedusa Aurelia aurita LAM. in monthly samples, from May 1983 to July 1985, was studied in Elefsis Bay (Saronikos Gulf, Greece). Results showed that the medusae biomass had its maximum value during summer, followed by a sharp drop during fall and winter. The major peak for the ephyrae liberation was during January-February, when zooplankton biomass reached its maximum. The vertical distribution of A. aurita in relation to light intensity is discussed.  相似文献   

6.
海草的种内差异是它在特定环境中形成生长策略的关键因素。本研究通过将现场实测数据和文献记录进行类比以探讨新村湾海黾草(Thalassia hemprichii)的生长策略。研究结果表明海黾草地下茎伸长速率的差异可以解释该海草生物量和生长的大部分种内差异;新村湾海黾草垂直地下茎和水平地下茎的伸长速率在夏季分别为2.38cm/yr和24.4cm/yr,在冬季分别为1.87cm/yr和29.2cm/yr。海黾草茎枝密度的变化范围是822shootsm^-2至941shoots m^-2,最大值出现在夏季而最小值出现在冬季,生物量的季节变化与此类似。新村湾海黾草通过交替调节垂直地下茎和水平地下茎的伸长速率以适应光照强度和温度的季节变化,从而导致茎枝密度和地上生物量的相应变化。通过这样的生长策略,海黾草可以把夏季干旱和冬季光照强度下降对其生长造成的消极影响降低到最小程度。  相似文献   

7.
Abundance, population structure and production of the macro-invertebrates belonging to the functional feeding group of the shredders were studied in the Ichkeul wetland, northern Tunisia, from July 1993 to April 1994. Mean above-ground macrophyte biomass was at a maximum in September followed by a complete breakdown of the Potamogeton pectinatus L. meadow from October onward due to high salinity following an exceptionally dry winter. Only the meadow of Ruppia cirrhosa (Petagna) Grande at Tinja remained in place. Abundance of Gammarus aequicauda (Martynov 1931), Idotea chelipes (Pallas 1766) and Sphaeroma hookeri Leach 1814 was significantly related to the R. cirrhosa biomass. Gammarus aequicauda presented two recruitment periods in spring and autumn, and S. hookeri a third one in winter. The population of I. chelipes was renewed during winter by continued reproduction without any spring generation. Recruitment of all three species was not very successful during the study period. Life span of all three species was between 12 and 15 months. Despite their relatively low biomass and production rate, the shredders have a key function in processing macrophyte matter to different trophic levels through fragmentation and accelerating the decomposition of macrophyte biomass accumulated at the end of the growth season in the Ichkeul lagoon.  相似文献   

8.
Leaf growth, biomass and production of Cymodocea nodosa were measured from October 2006 to September 2007 in Monastir Bay (Tunisia). Shoot density showed a clear seasonal pattern, increasing during spring and summer and decreasing during fall and winter. Monthly mean shoot density ranged between 633 ± 48 and 704 ± 48 shoots?m?2. The monthly average total biomass ranged between 560 ± 37 and 646 ± 32 g dry weight (DW)?m?2. Total biomass varied significantly among stations and sampling times but did not show seasonal variation. Leaf plastochrone intervals varied seasonally, with an annual average of 28–30 days. Leaf productivity was highest in August (2.61 g DW?m?2?day?1) and lowest in February (0.35 g DW?m?2?day?1). Annual belowground primary production varied from 263 to 311 g DW?m?2?year?1. Annual leaf production was approximately equal for all the stations (from 264 to 289 g DW?m?2?year?1). Variability in water temperature, air temperature and salinity explained the annual variability in biological characteristics. Changes in belowground and total biomass were not correlated with seasonal variability in the environmental parameters monitored. Additionally, a literature review was conducted of C. nodosa features at other Mediterranean sites, encompassing 30 studies from 1985 to 2014.  相似文献   

9.
Phytoplankton group-specific growth and microzooplankton grazing were determined seasonally using the dilution technique with high-performance liquid chromatography (HPLC) in the Xiamen Bay, a subtropical bay in southeast China, between May 2003 and February 2004. The results showed that growth rates of phytoplankton ranged from 0.71 to 2.2 d^-1 with the highest value occurred in the inner bay in May. Mierozooplankton grazing rates ranged from 0.5 to 3.1 d^-1 with the highest value occurred in the inner bay in August. Microzooplankton grazing impact ranged from 39% to 95% on total phytoplankton Chl a biomass, and 65% to 181% on primary production. The growth and grazing rates of each phytoplankton group varied, the highest growth rate (up to 3.3 d^-1 ) was recorded for diatoms in August, while the maximum grazing rate ( up to 2.1 d ^-1 ) was recorded for chlorophytes in February in the inner bay. Among main phytoplankton groups, grazing pressure of microzooplankton ranged from 10% to 83% on Chl a biomass, and from 14% to 151% on primary production. The highest grazing pressure on biomass was observed for cryptophytes (83%) in August, while the maximum grazing pressure on primary production was observed for eyanobacteria (up to 151% ) in December in the inner bay. Net growth rates of larger phytoplanktons (diatoms and dinoflagellates) were higher than those of smaller groups ( prasinophytes, chlorophytes and cyanobacteria). Relative preference index showed that microzooplankton grazed preferentially on prasinophytes and avoided to harvest diatoms in cold seasons (December and February).  相似文献   

10.
To examine the growth dynamics of eelgrass, Zostera marina, in the intertidal zone of Seomjin Estuary, Korea, we surveyed environmental factors such as water temperature, underwater irradiance, tidal exposure, and nutrient concentrations in the water column and sediment pore water in relation to the shoot density, biomass, morphological characteristics, and growth of Z. marina inhabiting the upper and lower intertidal zones. The survey was conducted monthly from January 2003 to December 2004. The water temperature of the two areas displayed seasonal fluctuations. Underwater irradiance was significantly higher in the upper intertidal zone than in the lower intertidal zone. Tidal exposure was also markedly longer in the upper intertidal zone than in the lower intertidal zone, whereas tidal exposure was highest in the spring and lowest in the summer in both areas. Water column NH4 + and sediment pore water NO3 ?+NO2 ? concentrations were significantly higher in the upper intertidal zone than the lower intertidal zone. The eelgrass shoot density, biomass, morphology, and leaf productivity were significantly higher in the lower intertidal zone than in the upper intertidal zone. Both areas displayed a clear seasonal variation depending on changes in water temperature. However, leaf turnover time was significantly shorter in the upper intertidal zone than in the lower intertidal zone, with a higher turnover rate in the upper intertidal zone. Compared to the seagrasses in the lower intertidal zone, those in the upper intertidal zone showed more effective adaptations to the stress of long tidal exposure through downsizing and increased turnover time. These results suggest that tidal exposure, coupled with desiccation stress, can be a limiting factor for seagrass growth in the intertidal zone, along with underwater irradiance, water temperature, and nutrient availability.  相似文献   

11.
The crown foliage dynamics of Kandelia obovata (S., L.) Yong were investigated, including leaf recruitment, survival and leaf growth. Newly flushed leaves occurred successively throughout the year, with a maximum in July and a minimum in January. The highest leaf death was in August, whereas it was the lowest in January. The relative mortality rate of leaves seemed to depend on the season when new leaves flushed. The growth pattern of leaves varied among seasons. The maximum leaf area was significantly larger in winter than in autumn, but showed no significant difference between the winter and the other seasons. The half-expansion period and the intrinsic rate of increase were respectively longer and lower in winter than in the other seasons. Therefore, leaves flushed in summer grew faster in their initial stage and attained their maximum leaf area sooner than those flushed in winter. This most likely results from the difference in temperature between summer and winter. The crown leaf area was almost stable throughout the year, as if homeostatic control is likely to function. Stipule litterfall decreased significantly with increasing flower and propagule litterfalls, indicating that a high production of flowers and propagules results in low leaf recruitment. This may be because flower production and propagule growth impose a severe burden on K. obovata.  相似文献   

12.
Salt marsh formation can be initiated by the colonization of bare tidal flats by pioneer halophytes such asSpartina anglica. In the present study, growth ofS. anglicain the edge and centre zones of pioneer patches colonizing a tidal flat in a marine bay in the south-west Netherlands was investigated. Average biomass and shoot length was significantly lower in centre zones than in edge zones of the patches. Multiple linear regression showed that 84% of the variance in aboveground biomass in the centre zones could be explained by sediment phosphorus and nitrogen concentrations. No such relationship existed in the edge zone. This suggests that biomass production in the centre zones of the patches is nutrient limited, but that factors other than sediment nitrogen and phosphorus content determine growth ofSpartinain the edge zones.The sediment nitrogen and phosphorus concentrations in the centre zones of the patches were significantly related with sediment carbon concentrations, indicating that the pool of particle-bound nutrients in the sediment to an important extent is associated with organic particles. Determination of stable carbon isotope signatures of the sedimentary organic matter showed that an increasing carbon content of the sediment in the centre zone of the patches (and a rise in plant biomass) coincides with a higher contribution of non-Spartinaderived carbon to the sedimentary organic matter pool. Sustained biomass production in the centre zones of the patches, thus, probably depends on deposition of allochthonous organic particles and the nutrient inputs inherent in this process. Due to the construction of large-scale hydro-engineering works, however, conditions for deposition of waterborne particles are currently unfavourable. The consequences of reduced carbon and nutrient inputs into the patches will be particularly in the (older) centre zones, where the nutrient pools in non-refractory organic matter have been drained in the years of previous growth. Accordingly, it is hypothesized that the canopy-enhanced sedimentation for whichSpartinais well- known, via positive feed-back effects on plant growth can be crucial for plant vitality, and, hence, for successful colonization of unvegetated areas.  相似文献   

13.
主要调查环渤海湿地的盐地碱蓬对碳、氮、磷的吸收通量。调查表明,环渤海湿地的盐地碱蓬面积为7 397 hm2。2009年7月、10月和11月盐地碱蓬总生物量(干重)分别为2.104×104t、2.615×104t和1.523×104t。7月、10月和11月,盐地碱蓬对碳的吸收通量分别为6 577 t、8 538 t和5 713 t;对氮的吸收通量分别为201.2 t、278.6 t、177.7 t;对磷的吸收通量分别为17.00 t、32.40 t、16.60 t;盐地碱蓬对碳、氮、磷的最大吸收通量均为10月。  相似文献   

14.
Birthdate distributions of anchovy recruits caught during research surveys in June 1985 and June 1989 were compiled from weighted length frequency distributions, aged samples and length frequencies from commercial catches. Birthdates ranged from July to March with a peak in October for both year-classes. However, birthdate distribution for the 1989 year-class showed comparatively few fish spawning after October 1988. Also, the growth rate of recruits was slower in 1989 than in 1985. It is proposed that the very weak 1989 year-class of anchovy and the low spawning biomass subsequently observed were a result of poorer-than-average egg production and survival of prerecruits spawned after October 1988, and the slow rate of growth of juvenile anchovy recruited till June 1989.  相似文献   

15.
The seasonal plasticity of individual Zostera noltii architectural, reproductive and elemental content features, of plant epiphyte load and of meadow biomass–density relationships was investigated along a vertical intertidal gradient at Ria Formosa lagoon, southern Portugal. The vertical variability of the seagrass environment was evident in the sediment characteristics, which showed coarser grain size, less organic matter, lower N content and higher ammonium concentration in the low intertidal than in medium and high intertidal. A clear vertical differentiation in Z. noltii morphology was observed from longer and wider leaves, longer and wider internodes and shorter roots at low intertidal, to shorter and narrow leaves, shorter and narrower internodes and longer roots at high intertidal. The leaf size was negatively related to light availability and positively related to nutrient availability whereas the root size was negatively related to nutrient availability. The lower leaf N and P content found in low intertidal plants may reflect a dilution effect of the nutrients due to higher growth rates. Lower N content of low intertidal leaves supports previous findings that the nitrate reductase activity is lower in plants from this level. The higher epiphyte load observed in Z. noltii leaves of the low intertidal may be a consequence of the lower exposure period, but also of higher hydrodynamics that increase the availability of nutrients. No evidence of the influence of the intertidal level on the flowering shoot density was found. The cyclic temporal pattern of the biomass–density relationship was much wider at low and medium intertidal than at high intertidal. At low intertidal, the decline in shoot density during fall and winter was coincident with a biomass decrease and its increase in spring and summer coincided with the biomass increase. In medium and high intertidal, the biomass and density seasonal variations were decoupled. As a result, only at low intertidal there was a significant positive relationship between biomass and density. This suggests that Z. noltii population structure along the intertidal is regulated by different factors. Light is probably the most important factor regulating the population structure in the low intertidal, whereas desiccation is probably the main factor regulating the populations in upper intertidal. Zostera noltii showed a considerable plasticity at a physiological-, plant- and population-level along the intertidal zone, indicative of the species acclimation to the steep environmental gradient of this particular ecosystem.  相似文献   

16.
本文讨论了2013年5月南海东沙天然气水合物区浮游植物生物量和生产力粒级结构特征及其环境影响因素。结果表明,研究海域表现出典型的低营养盐、低叶绿素a、低生产力特征,浮游植物叶绿素a和初级生产力具有明显的次表层最大值现象。东沙海域生物量和初级生产力粒级结构差异性显著,从生物量和生产力贡献度来看,表现为微微型浮游植物> 微型浮游植物> 小型浮游植物。生物量的垂直分布结果表明,春季不同粒级类群浮游植物在真光层内的分布存在明显不同,比如小型浮游植物在真光层内分布较均匀;微型浮游植物则主要分布于近表层或真光层中部,而微微型浮游植物则主要分布于真光层中部和底部。微微型浮游植物在纬度较低的热带贫营养海区之所以能够占主导优势,最主要的原因是其极小的细胞体积和较大的表面积使其有利于营养竞争。相关性分析表明,南海东沙浮游植物各粒级生物量与温度、pH显著正相关,与硅酸盐、磷酸盐显著负相关;浮游植物各粒级生产力与温度显著正相关,与盐度、磷酸盐显著负相关。磷酸盐含量是影响东沙海域浮游植物粒级结构差异的重要因素之一,同时,光辐照度和水体的真光层深度对东沙天然气水合物区不同粒径浮游植物的垂直分布起着更为重要的调控作用。  相似文献   

17.
Abstract. The temporal dynamics of three seagrasses, Posidonia oceanica, Cymodocea nodosa and Zostera marina, was studied in different areas of the Adriatic Sea by analysing phenological parameters and biomass trends in different compartments of seagrass systems. For this purpose, samplings were conducted in 1997 once per season at each station, Otranto (southern Adriatic Sea) and Grado (northern Adriatic Sea). Structural parameters and biomass of plant compartments differed among seagrasses both in absolute values and in seasonal variability. P. oceanica was the largest plant, showing the highest number of leaves per shoot, highest leaf surface, Leaf Area Index and shoot weight. Z. marina was intermediate in size and had the longest leaves, whereas C. nodosa was the smallest seagrass. P. oceanica accounted for the highest total biomass (mean ± SE: 1895.9 ± 180.2 g DW · m–2; CV = coefficient of variation: 19.0 %), considerably more than C. nodosa (mean ± SE: 410.4 ± 88.4 g DW·m–2; CV: 43.1 %) and Z. marina (mean ± SE: 312.1 ± 75.1 g DW · m–2; CV: 48.1 %), although the two latter species displayed a higher seasonal variability. Similarly, other features, such as shoot density, leaf surface, LAI, shoot weight and relative contributions of above‐ and below‐ground compartments, were less variable across seasons in P. oceanica than in the two other seagrasses, while leaf length showed the highest seasonal fluctuation in P. oceanica. As for biomass partitioning, C. nodosa showed a higher proportion of the below‐ground relative to above‐ground biomass (up to 90 %), with a distinct seasonality, whereas in P. oceanica the proportion of below‐ground biomass (around 80 %) was fairly constant during the year. We infer that in P. oceanica the seasonal forcing is probably buffered by the availability of internal resources stored permanently during the year in the below‐ground. In C. nodosa and Z. marina, instead, growth processes seem to be amplified by a greater influence of environmental factors.  相似文献   

18.
黄道建  黄小平 《台湾海峡》2009,28(2):199-204
以海南新村澙湖海草床优势种之一的海菖蒲(Enhalus acoroides)为研究对象,于2005年4月至2006年1月间,分4个季节对海菖蒲的茎枝生物量、叶长、叶宽、叶单位面积附着藻类生物量、茎枝密度及生物量等进行了研究,初步探讨了网箱养殖对海菖蒲生物学和生态学特征的影响.其结果表明:(1)在春、夏、秋3个季节里,海菖蒲叶长、叶宽和茎枝生物量等均显示了与其所在样区海水和沉积物间隙水D IN含量呈负相关关系.(2)随着水体N负荷的增加,海菖蒲叶单位面积附着藻类生物量剧增.(3)网箱养殖区海菖蒲较小的地上生物量、茎枝密度及地上生物量与地下生物量比,均表明网箱养殖区海菖蒲受人为干扰的影响明显大于其他2个样区.  相似文献   

19.
利用青岛市即墨金口养虾场虾池的浮游动物样品 ,计算了虾病暴发前期 ( 1994年 5月~ 7月 )浮游动物的生物量和生产量。结果表明 ,浮游动物的生物量的变化范围为 9.53~ 4 80 .0 0 mg Cm-3,生产量的变化范围为 1.16~ 2 3.73mg C/ m2 d。浮游动物生物量的变化趋势与叶绿素 - a的变化趋势一致。两个虾池的生物量虽然相差较大 ,但有着相近的生产量。生产量是评价浮游动物贡献大小的重要指标。因此 ,在养殖生产中具有一定的参考价值  相似文献   

20.
Abstract. Studies on leaf growth and production were performed in two stands, at depths of 5 m and 22m, in the Posidonia oceanica (L.) D elile bed off Lacco Ameno, Ischia (Gulf of Naples). Experiments were carried out in situ from May 1988 to August 1989 at monthly intervals.
Leaf growth and production profiles differed in the two stands investigated. Growth rates were higher at 5 m, with a peak in autumn (5.8 mg · shoot-1· d-1) and another in March (3.8 mg · shoot-1· d-1). At 22 m the maximum rate occurred in May (3.9 mg · shoot-1· d-1). These differential growth rates resulted in a delayed maximum leaf surface and biomass at the deep stand, where lower irradiance values and different temperature patterns were also found. The biomass of epiphytic algae showed trends similar to those of leaves; however, there were remarkable differences in the values between the two stations and for the two investigated years.
The production data of the present study are compared with those of other reports, and it is shown that growth processes are greatly influenced by physical factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号