首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王恒  杨振宇 《地球物理学报》2019,62(5):1789-1808
印度—欧亚板块碰撞以来青藏高原内部及其周缘地区经历了复杂的构造演化,复杂构造变形区的复合构造使得古地磁的数据解释究竟代表区域的构造旋转还是只能反映局部的构造变形一直是备受关注的问题.本文通过采集川滇地块西缘渔泡江断裂东侧三岔河地区白垩纪红层古地磁样品,揭示采样区差异性旋转并探讨川滇地块西部自中新世以来的构造演化规律.前人的地质调查表明川滇地块渔泡江断裂东侧上白垩统赵家店组地层发育倾伏褶皱.三岔河剖面以三岔河镇为界分为南北两段,三岔河南段剖面高温剩磁分量平均方向在倾斜校正后Ds=29.3°,Is=45.7°,ks=54.3,α95=6.6°,倾伏地层产状校正后Ds=30.6°,Is=46.6°,ks=69.3,α95=5.8°;而三岔河北侧剖面高温剩磁分量平均方向在倾斜校正后Ds=350.4°,Is=42.1°,ks=69.4,α95=9.2°,倾伏地层产状校正后Ds=347.4°,Is=41.9°,ks=96.6,α95=7.8°;两组高温剩磁分量均通过了褶皱检验,表明其获得于褶皱形成之前.相对于东亚稳定区80Ma古地磁极,三岔河南侧剖面发生了20.5°±4.8°的顺时针构造旋转量,与楚雄盆地核部之间不存在差异性旋转;但三岔河镇以北剖面却发生了22.7°±6.6°的逆时针旋转.综合分析川滇地块内部的古地磁数据表明自中新世以来川滇地块南部楚雄盆地经历了约20°的顺时针构造旋转,而三岔河镇北侧经历了约20°逆时针旋转.进一步分析表明三岔河北侧剖面相对于南侧剖面经历了约40°的逆时针旋转,可能由于研究区的滑脱构造导致岩石薄弱层拆离滑脱所引起.  相似文献   

2.
为了更好地认识上扬子褶皱带和中扬子褶皱带走向差异的机制,我们对中、上扬子褶皱带过渡的关键地区重庆市万州和云阳两个地区的中、晚侏罗世砂岩进行了古地磁研究.逐步热退磁分离出两个组分,低温组分(LTC)在所有样品中均分离出来,为现代地磁场的重磁化;中侏罗世样品和万州地区的晚侏罗世样品分离出来的高温组分(HTC)也为现代地磁场的重磁化.云阳地区晚侏罗世样品分离出来的高温组分通过逐步展平褶皱检验显示:在褶皱展平至33.8%时,精度参数达到最大,相应的古地磁方向为D=19.1°,I=48.9°(α95= 6.3°),古地磁极为73.5°N,198.2°E(dp=5.5°, dm=8.3°),与白垩纪参考古地磁极对比,此高温组分揭示云阳地区在褶皱变形的后期经历了7.7°±6.1°的顺时针旋转.结合前人的数据,我们认为中扬子褶皱带普遍存在弯山构造(orocline),这可能与华北板块向华南板块的挤入作用有关;但是中、上扬子褶皱带过渡地区的弧形弯曲总体上不是由弯山构造形成的,很可能是在太平洋板块向北西方向俯冲的宏观板块构造背景下的应变分异作用形成的.  相似文献   

3.
The center-to-center method of strain analysis can be used to estimate flow lineation in high-silica ash-flow tuffs. It can be used as an alternative or supplement to other techniques for flow lineation identification, such as the examination of flow textures in thin sections and the measurement of anisotropy of magnetic susceptibility. The center-to-center method is a modification of a technique described by Fry (1979) and by Ramsay and Huber (1983) for determination of finite strain based on the spacing of particles within a deformed rock. In the present study, application of the method to an anticlustered array of phenocrysts in the flattening plane of an ash-flow tuff produces an ellipse with center to edge distances representative of the minimum distance between centers of phenocrysts in all directions within the flattening plane. The long axis of the ellipse corresponds to the maximum axis of finite strain; this direction is suggested to correspond to the flow lineation. The orientation of the stretching lineation was chosen both by eye and by least-squares analysis from center-to-center plots. The calculated orientation of the long ellipse axis can be varied by choice of a maximum distance between digitized objects which are included in the calculation. Comparison is made between late-stage flow lineations identified using the center-to-center method, and the AMS (anisotropy of magnetic susceptibility) method on samples of the high-silica Oligocene Bloodgood Canyon Tuff from the Mogollon-Datil volcanic field of southwestern New Mexico. Flow lineations based on center-to-center analyses of flattening plane-parallel rock slabs and thin sections agree well with AMS-derived flow lineations on most samples from which high-quality AMS lineations were obtained. Center-to-center analuses from flattening plane-perpendicular, lineation-parallel planes of ash-flow tuff produce ellipses inclined from 15° to 85° to the flattening plane, despite compaction of the ash, which should cause angles of inclination to be very low. The inclined ellipses may result from heterogeneities in grain size and distribution of phenocrysts in vertical sections of tuff, or from fragmentation of phenocrysts which occurred during the final stages of emplacement and compression. Center-to-center analyses on rock slabs rather than thin sections helps to avoid the effects of either textural heterogeneity and fragmentation of phenocrysts. With flow lineation identified by center-to-center analysis, petrographic examination of thin sections cut perpendicular to the flattening plane and parallel to the flow lineation allow for the identification of flow direction.  相似文献   

4.
During folding of the Scaglia Rossa limestone in Umbria, Italy, deformation was mainly accommodated by pressure solution cleavage. Fossils between the cleavage planes appear visibly undeformed, yet the limestone possesses a weak magnetic fabric. The maximum and intermediate principal axes of the magnetic anisotropy ellipsoid define a distinct magnetic foliation plane within which a weak concentration of the maximum axes forms a magnetic lineation. Neither of these features is of sedimentary origin. Results from a slumped outcrop, where bedding and a cleavage induced by overburden compaction have different attitudes, show that the magnetic foliation is caused by the compaction. Comparisons with field-derived structural data suggest that the magnetic lineation was produced tectonically during deformation of the Apennine fold belt.  相似文献   

5.
Schmincke andSwanson (1967) explained laminar flowage structures as indicators for flow direction of pyroclastic flows that show a radial flow pattern away from the source. Several other authors have reported similar examples, but the influence of pre-flow topographic relief has not been analyzed. Flow lineations were measured for the Ata pyroclastic flow deposit, southwestern Japan. This deposit has covered an undulating basement topography. Preferred orientation of crystals and lithic fragments were measured on thin sections cut parallel to sedimentary layering. The following three factors which control the flow lineation have been recognized. 1) Flow lineations oriented radially away from the source, as described by previous authors, were obtained only for samples collected from the surface of the pyroclastic flow plateau where the basement valleys were nearly filled by earlier flow units. 2) Lineations near the floor of narrow valleys were parallel to the strike of the valley. 3) Flow lineations near the wall of valleys tend to be parallel to the dip of the valley walls. These data suggest that the initial radial movement of pyroclastic flows from the source gradually changes direction to parallel the strike of deep valleys due to confining effect of valley wall. Flows which are trapped within a valley, tends to move towards the bottom of the valley just prior to the final settlement. After the basement topographic relief has been filled up with earlier flow units, the later flows maintain their original radial movement until final settlement.  相似文献   

6.
Magnetic anisotropy and fabric of some foliated rocks from S.E. Australia   总被引:1,自引:0,他引:1  
Summary The magnetic anisotropy of foliated rocks of several types has been measured by the torque-meter method, and shows that the alignment of long axes of magnetic grains in rocks normally follows the pattern of foliation evident in field observations. In a sharp fold in a lit-par-lit formation the magnetic anisotropy indicated an otherwise undetected lineation independent of the bedding and superimposed upon the foliation determined by the layering. In two adamellites, each with two alignment patterns separated by an angle of 30° the magnetic data are shown to be consistent with two foliations but not with one foliation plus a lineation. Magnetic anisotropy data can be ambiguous for rocks in which two or more grain alignment processes have operated, but combined with other observations magnetic measurements can provide a valuable new tool in the study of rock fabrics.  相似文献   

7.
Kazuaki Okamoto 《Island Arc》1998,7(1-2):283-294
The orientation of straight inclusion trails within albite porphyroblasts from basic schists has been measured around a north-closure fold, in the Besshi district of the Sambagawa Belt, central Shikoku, Japan. The porphyroblasts are aligned with their longest dimension parallel to both the subhorizontal, east–west-directed mineral lineation and to the fold axis. There is a systematic variation in inclusion-trail geometry between the upper (northern) and lower (southern) fold limbs. The shear sense deduced from quartz c-axis fabrics is top-to-the-west in the upper limb and top-to-the-east in the lower limb. Based on observed variations in porphyroblast inclusion trails, the structural history can be modelled as follows: (i) shear flow caused east–west stretching and folding of the metamorphic zonation; (ii) east–west ductile shear resulted in opposing senses of shear in the upper and lower limbs as the eclogite body situated in the core of the fold was extruded to the east.  相似文献   

8.
四川盆地西南部西侧为龙门山冲断带,南面紧挨川西南褶皱带,其新生代构造变形特征对于认识青藏高原东南缘的变形机制具有一定的指示意义.磁组构是一种灵敏的应变指示计,在变形微弱的沉积岩地区尤为适用.本文在雅安-乐山剖面选取12个采样点进行磁组构分析,结合已有的天全-雅安飞仙关剖面的27个采样点数据,综合讨论川西南地区的构造变形特征.所有采样点的磁组构测试结果显示出3种弱变形的磁组构类型:沉积磁组构、初始变形磁组构和铅笔状磁组构.雅安-乐山剖面采样点的磁线理绝大部分为北东-南西走向,和龙门山南段的整体延伸方向一致,表明四川盆地西南缘新生代构造变形主要受控于龙门山的构造作用.飞仙关剖面的磁组构测试结果显示44%的采样点表现出磁线理和地层走向斜交的特征,由初始变形磁组构演变而来,并且所有异常磁组构仅局限在断层上盘,本文认为这是雅安地区新生代期间局部逆时针旋转引起变形叠加的结果.  相似文献   

9.
阜平猴石顶太古界褶皱的岩石磁性组构   总被引:1,自引:0,他引:1       下载免费PDF全文
猴石顶太古界重褶皱位于阜平太古宙穹状复合褶皱群中一个钩状褶皱的“钩子”部位。其中一层斜长角闪岩标志层的岩石磁性组构的分布情况为:1.在翼部的磁化率量值椭球是压扁形的,磁性叶理面的方向与变质层面及片麻理的方向基本一致,表现为向北西倾斜的倒转褶皱;2.在太古宙再次变形阶段所形成的转折端部位,磁性叶理面的走向变化较大,并出现拉长形的磁化率量值椭球,反映了经受过拉张作用的变形和多于一次的不同方向应力的作用;3.西翼的磁性线理值与磁性叶理值以及磁化率各向异性度都大,反映它经受过较强的剪切应力与压应力的作用;4.磁性线理主要倾向北半球,而且部分磁性线理近南北方向分布。 推测猴石顶重褶皱可能处于向北倾伏的主体构造的东侧。 上述岩石磁性是由自行设计的静态测量方法,用国产的数字式无定向磁力仪测定的。  相似文献   

10.
The results of long-term (2001–2009) measurements of fractures in sedimentary rocks of the Badenian and Pannonian age within the Rust-Fertorakos Highland and adjacent areas are presented and interpreted in terms of paleostresses in the study. The Rust-Fertorakos Highland has a nearly north-south trending strike and separates the Vienna and Pannonian Basins. It is expressed not only in the topography but also in the thickness of the sedimentary cover. Faults in the basement of the Rust-Fertorakos Highland have a nearly north-south strike diagonal to the general NE-SW strike of the faults of the basement of the Vienna Basin. The data of measurements of joints made in quarries and on road slopes that were subsequently computer processed using two independent techniques indicate that, along with joint systems, which are orthogonal to the rock bedding and are of a primary lithogenetic origin, joints joining to form systems obliquely oriented to the bedding are quite common in the region. These secondary joint systems have been formed at later stages of development of already lithified rocks under the influence of tectonic paleostresses. Interpreting pairs of secondary systems as conjugated shear joints, the authors have reconstructed the orientations of the axes of the relevant tectonic paleostresses. At some observation points, the identification of conjugated shear systems has been ambiguous. In these cases, two possible solutions for the paleostress axes have been drawn. Despite some ambiguities, all of the solutions obtained have a steady tendency in terms of the orientation of the minimum compression axis T 3. This axis is subhorizontal and is oriented nearly east-west with some variation. The maximum compression axis T 1 and the intermediate principal stress axis T 2 are normally inclined to the horizontal, and the orientation of these axes depends on the observation point.  相似文献   

11.
通过野外构造观测、岩石磁学与磁组构综合分析,本文研究了南大巴山前陆褶皱带荆竹坝—石窝剖面的叠加构造特征及其形成演化.从北东向南西,剖面构造变形总体呈减弱趋势,褶皱轴面总体倾向北东,大尺度褶皱枢纽均以小角度向北西倾伏.古应力分析显示最大主压应力为北东—南西向,反映以南大巴山的推覆为主.剖面J3之前的采样层位主要表现为变形组构,而J3-K1的采样层位则表现为初始弱变形组构.磁线理呈NW-SE向的优势方位,与剖面主构造线基本平行,主要反映来自南大巴山的推覆挤压.剖面发育特殊磁组构:①磁面理与地层面斜交,主要与褶皱作用中的平行层简单剪切相关;②磁线理均不同程度斜交于地层走向,指示构造叠加背景.沿剖面北东向南西区段Kmin的倾伏角随构造变形强度减弱而增大,据此相关性可将Kmin的倾伏角作为判别弱变形沉积岩变形强度的标志.本文认为,在晚侏罗世以南大巴山的推覆为主而米仓山短轴背斜与川东褶皱带挤压次之的联合作用使南大巴山前陆褶皱带具有构造叠加特征,之后的早白垩世仍主要表现为南大巴山的推覆,而其他两个方向的挤压较之前相对较弱.该结果也反映了秦岭J3-K1陆内造山作用及燕山期雪峰陆内构造变形的影响,为探索陆内构造与陆内造山的大陆动力学提供了佐证.  相似文献   

12.
Detailed records of palaeomagnetic directions from two Upper Cretaceous Umbrian sections are compared with the composite section compiled by Van den Berg et al. [1]. In addition to these sections, fifty-one geographically distributed sites have been studied magnetically and palaeontologically. The Late Miocene-Pliocene fold belt of the Umbrian Apennines is arcuate in outcrop, being convex toward the east. The fold axes are generally tangential to the Umbrian arc, which can be divided into a northern northwestern-trending part and a southern northeastern-trending part. Sites from the north have more westerly declinations than those from the south. The differences are significant at the 95% probability level and most probably reflect the bending of originally straight fold axes or the development of fold axes with initial curvature. The palaeomagnetic directions from Umbria provide important information concerning the Umbrian tectonic deformation, but are not applicable to the Italian autochthon.  相似文献   

13.
NRM directions measured from 32 sites in Middle Cambrian, Upper Silurian/Lower Devonian and Lower Carboniferous redbeds follow the trend of the Variscan arc in North Spain. Thermal demagnetisation does not significantly alter this pattern. Fold tests show that the NRM is earlier than the ?1 folds which form the arc; consistency of angle between bedding and the tilt-corrected NRM inclination (22–28°), similarity of the corresponding palaeolatitudes to Carboniferous values and microscopic evidence of Variscan redistribution of hematite indicates that the magnetisation is post-Lower Carboniferous. A statistical plot of the orientation of ?1 fold traces against angle between ?1 fold traces and declination of NRM shows that where these folds curve through 165° the NRM has been rotated through 110°: the arc is an orocline. Restoration of this rotation, and that needed to close the Bay of Biscay, brings the calculated mean palaeomagnetic pole reasonably close to the Upper Carboniferous part of the apparent polar wander path for Europe.  相似文献   

14.
Studies of marine magnetic anomaly data from the Shikoku basin reveal magnetic lineations which strike northwest almost parallel to the trend of the Palau-Kyushu ridge. The lineation pattern is best developed in the western part of the basin and we can confidently identify a sequence of anomalies 7 through 5E between the base of the Palau-Kyushu ridge and the center of the basin. In the eastern part of the basin the basement morphology is rough and complex and magnetic anomalies can not be identified unequivocally. We infer that the Palau-Kyushu ridge and the Izu-Bonin island arc began separating about 27 m.y. B.P. An interval of rapid separation (4.2 cm/yr) occurred between 26 and 22.5 m.y. B.P. which approximately coincides with a period of intense volcanic activity in Japan. The observed magnetic lineation pattern and basement morphology can be best explained if the Shikoku basin formed at a two-limb spreading system during the Late Oligocene to Middle Miocene. Subsequently the eastern half of the basin was disrupted by fractures as the Iwo-Jima ridge collided with the Japanese islands. The accretionary process which formed the crust of the Shikoku marginal basin appears similar to that operating at mid-ocean ridges of the world.  相似文献   

15.
Mesoscopic structures in four large cavities on the Big Obsidian Flow, OR, USA, provide evidence of links between large-scale surface folding, cavity formation, and hazardous explosive activity originating from within the flow. Stereographic analysis of flow banding, stretched bubble lineation, striations, and mesoscopic fold axes indicates that three of the cavities are near-cylindrical folds. Cavity fold axes are oriented parallel to large-scale compressional flow ridge axes, suggesting that cavities form in response to shortening during flow advance. Large surface folds develop as the upper 10 m of the cooler flow surface buckles when the flow front cools, slows, and stalls against topographic barriers. Void space is created in fold hinges as obsidian layers shear past each other and pull apart. The resultant cavities may serve as reservoirs for exsolved volatiles or surface water which may later vent explosively to form explosion craters on the flow surface.  相似文献   

16.
与生长地层类似,在活动褶皱生长发育过程中形成的河流阶地堆积、阶地面与褶皱陡坎记录了褶皱发育的详细过程,其基本几何结构主要受控于下伏褶皱生长的机制与类型。文中讨论了简单膝折带迁移(恒定翼间角)生长断弯褶皱与断展褶皱、翼旋转(恒定翼长)滑脱褶皱、膝折带迁移滑脱褶皱、膝折带迁移-翼旋转联合作用以及弧形弯曲枢纽膝折带迁移褶皱作用下河流阶地的几何结构以及阶地面与下伏基座岩层间的角度关系,提出了这几类褶皱生长与河流阶地相互关系的运动学模型,同时考虑了河流加积和下切侵蚀作用对河流阶地最终几何结构的影响。在这些模型中,变形河流阶地和褶皱陡坎的基本几何结构既具有相似之处,也有截然不同之处。因此,通过对河流阶地和褶皱陡坎的细致填图、测量和测年,不仅可推断其下伏活动褶皱的生长变形机制,而且可以估算褶皱的隆升速率和控制褶皱生长的断层的滑动速率  相似文献   

17.
Anisotropy of magnetic susceptibility (AMS) of the middle Tertiary Bloodgood Canyon and Shelley Peak Tuffs of the Mogollon-Datil volcanic field has been used to (1) evaluate the ability of AMS to constrain flow lineations in low-susceptibility ash-flow tuffs; (2) establish a correlation between magnetic fabric, magnetic mineralogy, tuff facies, and characteristics of the depositional setting; and (3) constrain source locations of the tuffs. The tuffs are associated with the overlapping Bursum caldera and Gila Cliff Dwellings basin. The high-silica Bloodgood Canyon Tuff fills the Gila Cliff Dwellings basin and occurs as thin outcrops outside of the basin. The older Shelley Peak Tuff occurs as thin outcrops both along the boundary between the two structures, and outside of the complex. AMS data were collected from 16 sites of Bloodgood Canyon Tuff basin fill, 19 sites of Bloodgood Canyon Tuff outflow, and 11 sites of Shelley Peak Tuff. Sites were classified on the basis of within-site clustering of orientations of principal susceptibility axes, based on the categories of Knight et al. (1986). Most microscopically visible oxide minerals in the Bloodgood Canyon Tuff outflow and basin fill, and in the Shelley Peak Tuff are members of the hematite-ilmenite solid solution series. However, IRM acquisition data indicate that Bloodgood Canyon Tuff basin fill and Shelley Peak Tuff have magnetic mineralogy dominated by single- or pseudo-single-domain magnetite, and that the magnetic mineralogy of the Bloodgood Canyon Tuff outflow is dominated by hematite. Hematite in Bloodgood Canyon Tuff outflow is likely to be the result of deuteric and/or low-temperature alteration of magnetite and iron silicate minerals. Bulk magnetic susceptibility is higher in magnetite-dominated ash-flow tuff (Bloodgood Canyon Tuff basin fill and Shelley Peak Tuff) than it is in hematite-dominated ash-flow tuff (Bloodgood Canyon Tuff outflow). Bloodgood Canyon Tuff outflow has the highest total anisotropy (H) of the three units, followed by Shelley Peak Tuff and Bloodgood Canyon Tuff basin fill. All three ash-flow tuffs are genearlly characterized by oblate susceptibility ellipsoids, with those of the Bloodgood Canyon Tuff basin fill nearest to spherical. At high values of total anisotropy, Shelley Peak Tuff susceptibility ellipsoids attain a prolate shape; those of Bloodgood Canyon Tuff outflow attain an increasingly oblate shape. Three factors may influence differences in total anisotropy and susceptibility ellipsoid shape: (1) ash which travelled the greatest distance before deposition may show the best development of magnetic fabric, particularly of magnetic lineation; (2) deposition of ash in a closed basin may inhibit laminar flow throughout the sheet and the resulting development of flow textures; and (3) replacement of magnetite and iron silicates preferentially oriented within the foliation plane by hematite with strong crystalline anisotropy may enhance the magnetic susceptibility within that plane. Scatter in AMS axis orientation within sites may result from: (1) greater orientation inaccuracy in block-sampled than in fielddrilled samples; (2) rheomorphism; and (3) low accuracy of AMS measurement in low-susceptibility ashflow tuffs. Evaluation of flow lineation based on AMS of sites with well-clustered K 1 axes indicates that (1) Bloodgood Canyon Tuff basin fill flowed along a generally northwest-southeast azimuth; (2) Shelley Peak Tuff located on the boundary of the Bursum caldera and the Gila Cliff Dwellings basin flowed along a nearly east-west azimuth; and (3) Bloodgood Canyon Tuff outflow sites have K 1 susceptibility axes generally radial to the Bursum-Gila Cliff Dwellings complex, but within-site scatter of K 1 orientations is generally too large to draw conclusions about flow lineation orientation. Limited petrographic work on pilot thin sections adds flow direction information to AMS-derived flow lineation information.  相似文献   

18.
Magnetic fabric allows to unravel the petrofabrics of sedimentary rocks and to assess their deformational history. The use of this technique, in addition to classical structural field observations in the limbs of seven asymmetric folds in the Pyrenees, helps to determine the differences of internal deformation as well as the folding kinematics. Three folds developed during the Variscan Orogeny in Ordovician and Devonian rocks, and four folds developed during the Pyrenean Orogeny in Eocene rocks, are studied. Folds show a variety of structural locations, in different thrust sheets of the Southern Central Pyrenees, different cleavage development, age, geometry and lithology. Sampling follows an equivalent lithological layer in the two limbs, except for one case, of the selected folds. Results show a modified tectonic magnetic fabric in most sites with the magnetic lineation on the tectonic foliation plane. A larger scattering of the magnetic lineation (maximum magnetic anisotropy axis) and a higher intensity of the preferred orientation of minerals (eccentricity of the anisotropy of magnetic susceptibility - AMS ellipsoid) is better observed in the overturned (short) limb of the asymmetric Variscan folds than in the normal (long) limb. On the other hand, the shape parameter in Alpine folds is generally larger in the overturned (short) limb then in the normal (long) one. A good clustering of the minimum magnetic anisotropy axes is observed in all limbs. The combination of the AMS data with the structural data helps to understand and better constrain the deformation degree in these asymmetric folds and to unravel the deformational history.  相似文献   

19.
Summary The magnetic fabric of the Yampi Sound hematite ore bodies of Cockatoo and Koolan Island in Western Australia has been determined with a low field torque meter in an attempt to investigate the origin of the ores. The ore bodies are conformable with a ferruginous sedimentary sequence, which has been folded into overturned synclines and anticlines. Each ore body shows a consistent distribution of the principal susceptibility axes due to a preferred alignment of the trigonal axes of hematite, but the magnetic fabric is not related to the sedimentary structure of the ores. For the Cockatoo Island ore body the magnetic fabric indicates the presence of an axial plane foliation within the ore, suggesting that the preferred crystalline alignment is caused by arecrystallization of hematite during the folding of the sediments. The magnetic fabric of the ore bodies on Koolan Island is not related to either bedding or axial planes. This can be explained by assuming that the hematite recrystallized during an earlier stage of the folding process and that then the limbs of the fold were rotated into their present position. High field torque measurements on several ore specimens indicate a preferred crystalline alignment of hematite of about 25%. The ferruginous sediments of Cockatoo Island show a composite fabric caused by the superposition of two foliations, one being the bedding plane and the other the axial plane foliation impressed during the folding of the sediments.  相似文献   

20.
The Luonan-Luanchuan tectonic belt lies between the North China Block and Qinling Mountains, including the Luonan-Luanchuan fault zone and the strong deformation zone to the north of the fault. The ductile shear zone, imbricate brittle fault and duplex structure in the fault zone now are the expression of the same tectonic event in different depth. Such lineation structure exists in the tectonic belts as mineral lineation, elongation lineation, crenulation lineation, sheath folds and so on, indicating NE-directed plate motion. Fold axes and thrusts in the strong deformation zone are inclined to the Luonan-Luanchuan fault zone at small angles. The structures with different natures show a regular pattern, produced during oblique convergence of plates. The convergence factors are as follows: The direction of plate convergence is 22°, 31° and the angle between the plate convergence direction and plate boundary is 73°, 82° respectively in the west and east segment. The Luonan-Luanchuan tectonic belt was deformed strongly in 372 Ma, resulted from Erlangping back-arc ocean basin subduction sinistrally and obliquely to North China Block during the collision of North China Block and South China Block. Supported by National Natural Science Foundation of China (Grant Nos. 40372097 and 40772131)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号