首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents equations for the estimation of horizontal strong ground motions caused by shallow crustal earthquakes with magnitudes Mw 5 and distance to the surface projection of the fault less than 100km. These equations were derived by weighted regression analysis, used to remove observed magnitude-dependent variance, on a set of 595 strong-motion records recorded in Europe and the Middle East. Coefficients are included to model the effect of local site effects and faulting mechanism on the observed ground motions. The equations include coefficients to model the observed magnitude-dependent decay rate. The main findings of this study are that: short-period ground motions from small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r, the average effect of differing faulting mechanisms is not large and corresponds to factors between 0.8 (normal and odd) and 1.3 (thrust) with respect to strike-slip motions and that the average long-period amplification caused by soft soil deposits is about 2.6 over those on rock sites. Disappointingly the standard deviations associated with the derived equations are not significantly lower than those found in previous studies.  相似文献   

2.
Strong ground motions caused by earthquakes with magnitudes ranging from 3.5 to 6.9 and hypocentral distances of up to 300 km were recorded by local broadband stations and three-component accelerograms within Georgia’s enhanced digital seismic network. Such data mixing is particularly effective in areas where strong ground motion data are lacking. The data were used to produce models based on ground-motion prediction equations (GMPEs), one benefit of which is that they take into consideration information from waveforms across a wide range of frequencies. In this study, models were developed to predict ground motions for peak ground acceleration and 5%-damped pseudo-absolute-acceleration spectra for periods between 0.01 and 10 s. Short-period ground motions decayed faster than long-period motions, though decay was still in the order of approximately 1/r. Faulting mechanisms and local soil conditions greatly influence GMPEs. The spectral acceleration (SA) of thrust faults was higher than that for either strike-slip or normal faults but the influence of strike-slip faulting on SA was slightly greater than that for normal faults. Soft soils also caused significantly more amplification than rocky sites.  相似文献   

3.
—A new, yet simple, method using the asperity model to estimate ground motion in the near-source regime for probabilistic seismic hazard analyses is proposed in this study. This near-source model differs from conventional empirical attenuation equations. It correlates peak ground motions with the local contributing source in terms of the static stress drop released non-uniformly on the causative fault plane rather than with the whole seismic source in terms of magnitude. Here the model is simplified such that ground motions at a rock or firm soil site near extended vertical strike-slip faults are dominated by direct shear waves. The proposed model is tested by comparing its predictions with strong ground motion observations from the 1979 Imperial Valley and the 1984 Morgan Hill earthquakes. The results have revealed that ground motions in the near-source region can be adequately predicted using the asperity model with appropriate calibration factors. The directivity effect of ground motion in the near-source region is negligible for high-frequency accelerations. The cut-off frequency (?max?) at a site is an important parameter in the near-source region. Higher values of ?max yield higher estimates of peak ground accelerations. For high-frequency structures, ?max should be carefully estimated. In the near- source region both non-uniform and uniform source models can produce non-stationary high-frequency ground motions. Peak motions may not be caused by the nearest sections of the fault (even if the uniform source model is considered).  相似文献   

4.
Strong ground motions are estimated for the Pacific Northwest assuming that large shallow earthquakes, similar to those experienced in southern Chile, southwestern Japan, and Colombia, may also occur on the Cascadia subduction zone. Fifty-six strong motion recordings for twenty-five subduction earthquakes ofM s7.0 are used to estimate the response spectra that may result from earthquakesM w<81/4. Large variations in observed ground motion levels are noted for a given site distance and earthquake magnitude. When compared with motions that have been observed in the western United States, large subduction zone earthquakes produce relatively large ground motions at surprisingly large distances. An earthquake similar to the 22 May 1960 Chilean earthquake (M w 9.5) is the largest event that is considered to be plausible for the Cascadia subduction zone. This event has a moment which is two orders of magnitude larger than the largest earthquake for which we have strong motion records. The empirical Green's function technique is used to synthesize strong ground motions for such giant earthquakes. Observed teleseismicP-waveforms from giant earthquakes are also modeled using the empirical Green's function technique in order to constrain model parameters. The teleseismic modeling in the period range of 1.0 to 50 sec strongly suggests that fewer Green's functions should be randomly summed than is required to match the long-period moments of giant earthquakes. It appears that a large portion of the moment associated with giant earthquakes occurs at very long periods that are outside the frequency band of interest for strong ground motions. Nevertheless, the occurrence of a giant earthquake in the Pacific Northwest may produce quite strong shaking over a very large region.  相似文献   

5.
There is a high possibility of reoccurrence of the Tonankai and Nankai earthquakes along the Nankai Trough in Japan. It is very important to predict the long-period ground motions from the next Tonankai and Nankai earthquakes with moment magnitudes of 8.1 and 8.4, respectively, to mitigate their disastrous effects. In this study, long-period (>2.5 s) ground motions were predicted using an earthquake scenario proposed by the Headquarters for Earthquake Research Promotion in Japan. The calculations were performed using a fourth-order finite difference method with a variable spacing staggered-grid in the frequency range 0.05–0.4 Hz. The attenuation characteristics (Q) in the finite difference simulations were assumed to be proportional to frequency (f) and S-wave velocity (V s) represented by Q = f · V s / 2. Such optimum attenuation characteristic for the sedimentary layers in the Osaka basin was obtained empirically by comparing the observed motions during the actual M5.5 event with the modeling results. We used the velocity structure model of the Osaka basin consisting of three sedimentary layers on bedrock. The characteristics of the predicted long-period ground motions from the next Tonankai and Nankai earthquakes depend significantly on the complex thickness distribution of the sediments inside the basin. The duration of the predicted long-period ground motions in the city of Osaka is more than 4 min, and the largest peak ground velocities (PGVs) exceed 80 cm/s. The predominant period is 5 to 6 s. These preliminary results indicate the possibility of earthquake damage because of future subduction earthquakes in large-scale constructions such as tall buildings, long-span bridges, and oil storage tanks in the Osaka area.  相似文献   

6.
近断层速度脉冲地震动的三维有限差分模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
根据台湾西部地质地貌特征和1999年集集MW7.6地震的研究成果,建立三维速度结构模型和震源模型,并采用三维有限差分法对双冬断层可能产生的近断层脉冲型地震动进行数值模拟。结果表明,方向性效应引起的双向速度脉冲集中在垂直于断层滑动分量的方向上,而滑冲效应引起的单向速度脉冲则集中在平行于断层滑动分量的方向上。受方向性效应和上盘效应的共同调制,近断层脉冲型地震动反映出不对称带状分布的特征,速度脉冲主要分布在距离断层面约10 km的范围内。凹凸体的特性影响着地震动的时空分布,由地震波场显示南投和台中处于强地震动危险区。近场脉冲型地震动的研究对分析速度脉冲形成机理以及地震危险性有一定的参考意义。  相似文献   

7.
This paper examines the observed directionality of ground motions in the Christchurch urban area during the 2010–2011 Canterbury, New Zealand earthquakes. A dataset of ground motions recorded at 20 strong motion stations over 10 different earthquake events is utilized to examine the ratios of various response spectral directionality definitions and the orientation of the maximum direction. Because the majority of previous related studies have utilized overlapping ground motion datasets from the NGA database, the results of this study provide a largely independent assessment of these ground motion aspects. It is found that the directionality ratio between the maximum (100th percentile) and 50th percentile orientation‐independent spectral acceleration is similar to that obtained from recent studies. Ground motions from the 4 September 2010 Darfield earthquake are shown to exhibit strong directionality for source‐to‐site distances up to Rrup = 30 km, notably further than results from a previous study, which suggests that such effects are generally limited to Rrup < 5 km. The adopted dataset also offers the unique potential to consider site‐specific effects on directionality ratios and maximum direction orientations; however, in both cases, site‐specific effects are found not to be significant in the observed empirical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We developed a recipe for predicting strong ground motions based on a characterization of the source model for future crustal earthquakes. From recent developments of waveform inversion of strong motion data used to estimate the rupture process, we have inferred that strong ground motion is primarily related to the slip heterogeneity inside the source rather than average slip in the entire rupture area. Asperities are characterized as regions that have large slip relative to the average slip on the rupture area. The asperity areas, as well as the total rupture area, scale with seismic moment. We determined that the areas of strong motion generation approximately coincide with the asperity areas. Based on the scaling relationships, the deductive source model for the prediction of strong ground motions is characterized by three kinds of parameters: outer, inner, and extra fault parameters. The outer fault parameters are defined as entire rupture area and total seismic moment. The inner fault parameters are defined as slip heterogeneity inside the source, area of asperities, and stress drop on each asperity based on the multiple-asperity model. The pattern of rupture nucleation and termination are the extra fault parameters that are related to geomorphology of active faults. We have examined the validity of the earthquake sources constructed by our recipe by comparing simulated and observed ground motions from recent inland crustal earthquakes, such as the 1995 Kobe and 2005 Fukuoka earthquakes.  相似文献   

9.
In order to empirically obtain the scaling relationships for the high-frequency ground motion in the Western Alps (NW Italy), regressions are carried out on more than 7500 seismograms from 957 regional earthquakes. The waveforms were selected from the database of 6 three-component stations of the RSNI (Regional Seismic network of Northwestern Italy). The events, M W ranging between 1.2 and 4.8, were recorded within a hypocentral distance of 200 km during the time period: 1996–2001. The peak ground velocities are measured in selected narrow-frequency bands, between 0.5 and 14 Hz. Results are presented in terms of a regional attenuation function for the vertical ground motion, a set of vertical excitation terms at the reference station STV2 (hard-rock), and a set of site terms (vertical and horizontal), all relative to the vertical component of station STV2.The regional propagation of the ground motion is modeled after quantifying the expected duration of the seismic motion as a function of frequency and hypocentral distance. A simple functional form is used to take into account both the geometrical and the anelastic attenuation: a multi-variable grid search yielded a quality factor Q(f) = 310f 0.20, together with a quadri-linear geometrical spreading at low frequency. A simpler, bi-linear geometrical spreading seems to be more appropriate at higher frequencies (f > 1.0 Hz). Excitation terms are matched by using a Brune spectral model with variable, magnitude-dependent stress drop: at M w 4.8, we used Δσ = 50 MPa. A regional distance-independent attenuation parameter is obtained (κ0 = 0.012 s) by modelling the average spectral decay at high frequency of small earthquakes.In order to predict the absolute levels of ground shaking in the region, the excitation/attenuation model is used through the Random Vibration Theory (RVT) with a stochastic point-source model. The expected peak-ground accelerations (PGA) are compared with the ones derived by Ambraseys et al. (1996) for the Mediterranean region and by Sabetta and Pugliese (1996) for the Italian territory.  相似文献   

10.
Near-field strong ground motions are useful for engineering seismology studies and seismic design, but dense observation networks of damaging earthquakes are still rare. In this study, based on the strong-motion data from the M w 6.6 Lushan earthquake, the ground motion parameters in different spatial regions are systematically analyzed, and the contributions from different effects, like the hanging-wall effect, directivity effect, and attenuation effect are separated to the extent possible. Different engineering parameters from the observed ground motions are compared with the local design response spectra and a new attenuation relation of Western China. General results indicate that the high frequency ground motion, like the peak ground acceleration, on two sides of the fault plane is sensitive to the hanging-wall effect, whereas the low frequency ground motion, like the long period spectral acceleration, in the rupture propagation direction is affected by the directivity effect. Moreover, although the M w 6.6 Lushan earthquake is not a large magnitude event, the spatial difference of ground motion is still obvious; thus, for a thrust faulting earthquake, in addition to the hanging effect, the directivity effect should also be considered.  相似文献   

11.
A statistical method to quantitatively assess the relative importance of unmodelled site and source effects on the observed variability (σ) in ground motions is presented. The method consists of analysis of variance (ANOVA) using the computed residuals with respect to an empirical ground-motion model for strong-motion records of various earthquakes recorded at a common set of stations. ANOVA divides the overall variance (σ 2) into the components due to site and source effects (respectively σ S 2 and σ E 2) not modelled by the ground-motion model plus the residual variance not explained by these effects (σ R 2). To test this procedure, four sets of observed strong-motion records: two from Italy (Umbria-Marche and Molise), one from the French Antilles and one from Turkey, are used. It is found that for the data from Italy, the vast majority of the observed variance is attributable to unmodelled site effects. In contrast, the variation in ground motions in the French Antilles and Turkey data is largely attributable, especially at short periods, to source effects not modelled by the ground-motion estimation equations used.  相似文献   

12.
This study evaluates the effect of considering ground motion duration when selecting hazard‐consistent ground motions for structural collapse risk assessment. A procedure to compute source‐specific probability distributions of the durations of ground motions anticipated at a site, based on the generalized conditional intensity measure framework, is developed. Targets are computed for three sites in Western USA, located in distinct tectonic settings: Seattle, Eugene, and San Francisco. The effect of considering duration when estimating the collapse risk of a ductile reinforced concrete moment frame building, designed for a site in Seattle, is quantified by conducting multiple stripe analyses using groups of ground motions selected using different procedures. The mean annual frequency of collapse (λcollapse) in Seattle is found to be underestimated by 29% when using typical‐duration ground motions from the PEER NGA‐West2 database. The effect of duration is even more important in sites like Eugene (λcollapse underestimated by 59%), where the seismic hazard is dominated by large magnitude interface earthquakes, and less important in sites like San Francisco (λcollapse underestimated by 7%), where the seismic hazard is dominated by crustal earthquakes. Ground motion selection procedures that employ causal parameters like magnitude, distance, and Vs30 as surrogates for ground motion duration are also evaluated. These procedures are found to produce poor fits to the duration and response spectrum targets because of the limited number of records that satisfy typical constraints imposed on the ranges of the causal parameters. As a consequence, ground motions selected based on causal parameters are found to overestimate λcollapse by 53%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This article has two purposes. Firstly, a validation exercise of the modal summation technique for the computation of synthetic strong-motion records is performed for two regions of Europe (Umbria-Marche and south Iceland), using a variety of region specific crustal structure models, by comparing the predicted ground motion amplitudes with observed motions. It is found that the rate of decay of ground motions is well predicted by the theoretical decay curves but that the absolute size of the ground motions is underpredicted by the synthetic time-histories. This is thought to be due to the presence of low-velocity surface layers that amplify the ground motions but are not included in the crustal structure models used to compute the synthetic time-histories. Secondly, a new distance metric based on the computed theoretical decay curves is introduced which should have the ability to model the complex decay of strong ground motions. The ability of this new distance metric to reduce the associated scatter in empirically derived equations for the estimation of strong ground motions is tested. It is found that it does not lead to a reduction in the scatter but this is thought to be due to the use of crustal structure models that are not accurate or detailed enough for the regions studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Predictive equations based on the stochastic approach are developed for earthquake ground motions from Garhwal Himalayan earthquakes of 3.5≤Mw≤6.8 at a distance of 10≤R≤250 km. The predicted ground motion parameters are response spectral values at frequencies from 0.25 to 20 Hz, and peak ground acceleration (PGA). The ground motion prediction equations (GMPEs) are derived from an empirically based stochastic ground motion model. The GMPEs show a fair agreement with the empirically developed ground motion equations from Himalaya as well as the NGA equation. The proposed relations also reasonably predict the observed ground motion of two major Himalayan earthquakes from Garhwal Himalayan region. For high magnitudes, there is insufficient data to satisfactorily judge the relationship; however it reasonably predicts the 1991 Uttarkashi earthquake (Mw=6.8) and 1999 Chamoli earthquake (Mw=6.4) from Garhwal Himalaya region.  相似文献   

15.
Characterization of Earthquake Strong Ground Motion   总被引:1,自引:0,他引:1  
— Some underwater landslides are triggered by strong ground motions caused by earthquakes. This paper reviews current concepts and trends in the characterization of strong ground motion. Improved empirical ground motion models have been derived from a strong motion data set that has grown markedly over the past decade. However, these empirical models have a large degree of uncertainty because the magnitude-distance-soil category parameterization of these models often oversimplifies reality. This reflects the fact that other conditions that are known to have an important influence on strong ground motions, such as near-fault rupture directivity effects, crustal waveguide effects, and basin response effects, are not treated as parameters of these simple models. Numerical ground motion models based on seismological theory that include these additional effects have been developed and extensively validated against recorded ground motions, and used to estimate the ground motions of past earthquakes and predict the ground motions of future scenario earthquakes.  相似文献   

16.
The dependence of peak ground acceleration and velocity on seismic moment is studied for a set of small earthquakes (0.7<M L<3.2) recorded digitally at distances of a few km in the Campi Flegrei volcanic area near Naples, Italy, during the ground uplift episode of 1982–1984. Numerical simulations, using the -square spectral model with constant stress drop and ane –kf high frequency decay, fit well both the velocity and acceleration data for an averagek=0.015. The observed ground motions in the 1–24 Hz frequency band appear to consist of radiation from simple sources modified only slightly by attenuation effects. Moreover, the scaling of peak values agrees closely with those determined in nonvolcanic areas, once the difference in stress drop is taken into account.  相似文献   

17.
This paper focuses on the frequency property analysis of near-fault ground motions with and without distinct pulses, separately from the Chi-Chi and Northridge earthquakes. Ten scalar period parameters of ground motions, especially several nonlocal period parameters, are considered. Two new nonlocal parameters, namely the mean period of Hilbert marginal spectrum (Tmh) and the improved characteristic period (Tgi), are suggested. Moreover, comprehensive comparison and analysis indicate that Tmh, Tgi and Tavg (average spectral period) can distinguish the low-frequency components of near-fault ground motions; Tm (mean period of Fourier amplitude spectrum) and To (smoothed spectral predominant period) represent the moderate- and high-frequency components, respectively. The variance coefficient of predominant instantaneous frequency of Hilbert spectrum (Hcov) can be regarded as an alternative index to measure the non-stationary degree of near-fault ground motions. Finally, the velocity pulses and earthquake magnitude remarkably affect the frequency parameters of near-fault ground motions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

19.
Risk assessment of spatially distributed building portfolios or infrastructure systems requires quantification of the joint occurrence of ground‐motion intensities at several sites, during the same earthquake. The ground‐motion models that are used for site‐specific hazard analysis do not provide information on the spatial correlation between ground‐motion intensities, which is required for the joint prediction of intensities at multiple sites. Moreover, researchers who have previously computed these correlations using observed ground‐motion recordings differ in their estimates of spatial correlation. In this paper, ground motions observed during seven past earthquakes are used to estimate correlations between spatially distributed spectral accelerations at various spectral periods. Geostatistical tools are used to quantify and express the observed correlations in a standard format. The estimated correlation model is also compared with previously published results, and apparent discrepancies among the previous results are explained. The analysis shows that the spatial correlation reduces with increasing separation between the sites of interest. The rate of decay of correlation typically decreases with increasing spectral acceleration period. At periods longer than 2 s, the correlations were similar for all the earthquake ground motions considered. At shorter periods, however, the correlations were found to be related to the local‐site conditions (as indicated by site Vs30 values) at the ground‐motion recording stations. The research work also investigates the assumption of isotropy used in developing the spatial correlation models. It is seen using the Northridge and Chi‐Chi earthquake time histories that the isotropy assumption is reasonable at both long and short periods. Based on the factors identified as influencing the spatial correlation, a model is developed that can be used to select appropriate correlation estimates for use in practical risk assessment problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Serious damage due to soil liquefaction occurred in a wide area of the Tohoku and the Kanto regions in Japan during 2011 off the Pacific coast of Tohoku Earthquake (MW 9.0). The farthest liquefied site from the epicenter of the 2011 main shock is Ikenouchi, Minamiboso City, whose epicentral distance is approximately 440 km. Evaluation of strong ground motions at Ikenouchi is very important to understand why liquefaction was observed in such a far site. For this purpose, in-situ geotechnical investigations including aftershock observation were carried out at Ikenouchi. Then, the ground motions at Ikenouchi during the 2011 main shock was estimated based on the site-effect substitution method considering the microtremor H/V spectral ratios and the aftershock observation results. Finally, 3-D effective stress analyses were carried out using a FEM code ‘FLIP’ to understand how site-specific characteristics of strong ground motions affected the behavior of the ground including liquefaction. A striking feature of the estimated waveforms at the target site is that the waveforms include a much larger number of cycles compared to the records at permanent observation stations around the target site. Such a site-specific feature of strong ground motions was one of the main causes of the occurrence of liquefaction 440 km away from the epicenter. The result suggests the importance of taking into account not only soil properties but also site-specific characteristics of strong ground motions for a rational assessment of liquefaction for future large earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号