首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The electrical properties of several tens of metres of lateritic weathering mantle were investigated by using electrical resistivity tomography (ERT) in two basement areas of eastern Senegal. The field survey was conducted along two profiles providing continuous coverage. Colour-modulated pseudosections of apparent resistivity vs. pseudo-depth were plotted for all survey lines, giving an approximate image of the subsurface structure. In the area underlain by granitic basement, the pseudosection suggests a very inhomogeneous weathered layer in which the apparent resistivity changes more rapidly than thickness. In the second area, underlain by schists, the lateral changes in electrical properties are less pronounced than those of the granitic area. Interpretation of 2D Wenner resistivity data yielded considerable detail about the regolith, even without pit information. In both areas, the near-surface topsoil comprising undersaturated lateritic material is highly resistive. The intermediate layer with low resistivities (e.g., 20–100 Ωm) contains clays including small quantities of water. The third, highly resistive layer reflects the granitic basement. Comparison of ERT survey results with pit information shows general agreement and suggests that ERT can be used as a fast and efficient exploration tool to map the thick lateritic weathering mantle in tropical basement areas with hard rock geology.  相似文献   

3.
Since the 1990s a large number of sinkholes have appeared in the Dead Sea (DS) coastal area. Sinkhole development was triggered by the lowering of the DS level. In the literature the relationship between the sinkholes and the DS level is explained by intrusion of relatively fresh water into the aquifer thereby dramatically accelerating the salt dissolution with creation of subsurface caverns, which in turn cause sinkholes. The main goal of our project was detection and localization of relatively fresh groundwater. During our study we used the transient electromagnetic method (TEM) to measure the electrical resistivity of the subsurface. As a test site we selected Nahal Hever South which is typical for the DS coast. Our results show that resistivity of the shallow subsurface reflects its vertical and lateral structure, e.g., its main hydrogeological elements explain the inter-relations between geology, hydrogeology, and sinkholes. The TEM method has allowed detailed differentiation of layers (clay, salt, etc.) in the subsurface based on their bulk resistivity. The 10 m-thick salt layer composed of idiomorphic crystals of halite deposited during the earlier Holocene period was extrapolated from borehole HS-2 through the study area. It was found that in Nahal Hever the typical value of the bulk resistivity of clay saturated with the DS brine varies between 0.2 and 0.3 Ωm, whereas saturated gravel and sandy sediments are characterized by resistivity between 0.4 and 0.6 Ωm. The high water salinity of the aquifer (enveloping the salt layer) expressed in terms of resistivity is also an important characterization of the sinkhole development mechanism. The electrical resistivity of the aquifer in the vicinity of the salt unit and its western border did not exceed 1 Ωm (in most cases aquifer resistivity was 0.2-0.6 Ωm) proving that, in accordance with existing criteria, the pores of the alluvial sediments are filled with highly mineralized DS brine. However, we suggest that the criterion of the aquifer resistivity responsible for the salt dissolution should be decreased from 1 Ωm to 0.6 Ωm corresponding to the chloride concentration of approximately 100 g/l (the chloride saturation condition reaches 224 g/l in the northern DS basin and 280 g/l in the southern one).Based on TEM results we can reliably conclude that in 2005, when most of sinkholes had appeared at the surface, salt was located within a very low resistivity environment inside sediments saturated with DS brine. Intrusion of relatively fresh groundwater into the aquifer through the 600 × 600 m2area affected by sinkholes has not been observed.  相似文献   

4.
Nonpoint sources of nitrogen (N) and other nutrients are a major source of water pollution within the Chesapeake Bay watershed and other basins around the world. Human activities associated with agricultural practices can account for a large percentage of N loadings delivered to streams and rivers. This work aims to improve understanding of N transport from groundwater to surface waters, quantifying the principal hydrological processes driving water and N fluxes into and out of a headwater agricultural stream reach. The study site is a 175-m stream reach in a heavily cultivated 40-ha watershed in east-central Pennsylvania. This subwatershed is underlain by fractured shale bedrock, and receives most of its baseflow from groundwater, either by diffuse matrix discharge through the streambed or by localized discharge through riparian seeps. Samples of stream, seep, and shallow groundwater were collected approximately monthly under steady hydrologic conditions in 2017. Calculated matrix flow from hydraulic head and conductivity measurements paired with differential stream gauging was used to solve for the riparian seep flux using a mass balance approach. Riparian seep fluxes ranged from 45 to 217 m3/d, transporting 0.6–4.2 kg N d−1 of nitrate-N from the fractured bedrock aquifer to the stream. Hydrochemical data suggest that the stream is mainly disconnected from the underlying aquifer and that seeps supply essentially all water and N to the system. Seeps are likely sourced with N in nearby agricultural fields and accelerated through the system with shorter residence times than shallow groundwater. Water isotope data reinforced this notion. This study underscores the importance of agriculture as a source of N to ground and surface waters. Identifying source areas that are causing groundwater enrichment of N and seep areas where N discharges to streams is beneficial for developing N pollution mitigation strategies and implementing management practices that aim to reduce nutrient loads to the Chesapeake Bay.  相似文献   

5.
The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability, rainwater infiltration, and subsurface hydrogeology. However, the understanding of this complicated correlation is still poor and inadequate. Thus, in this study, we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography (TLERT) in November 2013 and August 2014. We studied landslide mechanisms based on the spatiotemporal characteristics of surface water infiltration and flow within the landslide body. Combined with borehole data, inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock. Preferential flow pathways attributed to fracture zones and fissures were also delineated. In addition, we found that surface water permeates through these pathways into the slipping mass and drains away as fissure water in the fractured bedrock, probably causing the weakly weathered layer to gradually soften and erode, eventually leading to a landslide. Clearly, TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction.  相似文献   

6.
The purpose of geophysical electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. From these measurements, the true resistivity of the subsurface can be estimated. The ground resistivity is related to various geological parameters, such as the mineral and fluid content, porosity and degree of water saturation in the rock. Electrical resistivity surveys have been used for many decades in hydrogeological, mining and geotechnical investigations. More recently, they have been used for environmental surveys. To obtain a more accurate subsurface model than is possible with a simple 1-D model, a more complex model must be used. In a 2-D model, the resistivity values are allowed to vary in one horizontal direction (usually referred to as the x direction) but are assumed to be constant in the other horizontal (the y) direction. A more realistic model would be a fully 3-D model where the resistivity values are allowed to change in all three directions. In this research, a simulation of the cone penetration test and 2D imaging resistivity are used as tools to simulate the distribution of hydrocarbons in soil.  相似文献   

7.
Significant natural attenuation may occur on the passage of groundwater plumes through streambed sediments because of the transition from anaerobic to aerobic conditions and an increased microbial activity. Varying directions and magnitudes of water flow in the streambed may enhance or inhibit the supply of oxygen to the streambed and thus influence the redox zoning. In a field study at a small stream in the industrial area of Bitterfeld‐Wolfen, we observed the variability of hydraulic gradients, streambed temperatures, redox conditions and monochlorobenzene (MCB) concentrations in the streambed over the course of 5 months. During the observation period, the hydrologic conditions changed from losing to gaining. Accordingly, the temperature‐derived water fluxes changed from recharge to discharge. Redox conditions were highly variable between ? 170 and 368 mV in the shallow streambed at a depth of 0·1 m below the streambed surface. Deeper in the streambed, at depths of 0·3 m and 0·5 m, the redox conditions were more stable between ? 198 and ? 81 mV and comparable to those typically found in the aquifer. MCB concentrations in the streambed at 0·3 and 0·5 m depth increased with increasing upward water flux. The MCB concentrations in the shallow streambed at 0·1 m depth appeared to be independent of the hydrologic conditions suggesting that degradation of MCB may have occured. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The Neogene marine sedimentary rock area in the eastern marginal region of the Japan Sea is an area with some of the highest landslide densities in Japan. Some of the landslides in this area have been known to involve saline groundwater, which can be the cause of these landslides. In order to demonstrate the relationships between landslides and saline water, topographic, geological, groundwater, and electromagnetic surveys were performed in the eastern marginal region of the Japan Sea. Many landslides and gravitational slope deformations with linear depressions and small scarps were recognized in the study area. The resistivity profile obtained by an electromagnetic survey suggests that there is a wide zonal distribution of saline water with salt concentrations equivalent to seawater at depths of 50–100 m or more and that the groundwater shallower than 50 m has an electrical conductivity of less than 100 mS/m. The shallow resistive groundwater is inferred to be meteoric water that replaced the saline groundwater, which likely weakened the bedrock, resulting in landslides. A ridge of competent tuff overlying mudstone has many linear depressions from gravitational slope deformation and low‐resistivity water to a depth of 600 m, which suggests that the mudstone was weakened by water replacement and deformed under the tuff caprock. The saline groundwater is inferred to be fossil seawater trapped in pores during sediment deposition, which is brought near the ground surface along with rocks by tectonic movement in the hills. Thus, the saline water and its fresh water replacement are among the important basic causes of the landslides. The oil well data obtained in the eastern marginal region of the Japan Sea suggest that such saline water replacement has occurred widely and that replacement is likely one of the predispositions for the frequent landslides there.  相似文献   

9.
Time‐lapse geophysical surveys can map lingering hyporheic storage by detecting changes in response to saline tracer. Tracer tests were conducted in Crabby Creek, an urban stream outside Philadelphia, to examine the influence of stream restoration structures and variable sediment thickness. We compared electrical resistivity surveys with extensive well sampling (57 wells) in two 13.5‐m‐long reaches, each with a step drop created by a J‐hook. The two step drops varied in tracer behaviour, based on both the well data and the geophysical data. The well data showed more variation in arrival time where the streambed sediment was thick and was more uniform where sediment was thin. The resistivity in the reach with thin sediment showed lingering tracer in the hyporheic zone both upstream and downstream from the J‐hook. In the second reach where the sediment was thicker, the lingering tracer in the hyporheic zone was more extensive downstream from the J‐hook. The contrasting results between the two reaches from both methods suggested that sediments influenced hyporheic exchange more than the step at this location. Resistivity inversion differed from well data in both reaches in that it showed evidence for tracer after well samples had returned to background, mapping lingering tracer either upstream or downstream of a step. We conclude that resistivity surveys may become an important tool for hyporheic zone characterization because they provide information on the extent of slow moving fluids in the hyporheic zone, which have the potential to enhance chemical reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Stream–subsurface water interaction induced by natural riffles and constructed riffles/steps was examined in lowland streams in southern Ontario, Canada. The penetration of stream water into the subsurface was analysed using hydrometric data, and the zone of > 10% stream water was calculated from a chemical mixing equation using tracer injection of bromide and background chloride concentrations. The constructed riffles studied induced more extensive hyporheic exchange than the natural riffles because of their steeper longitudinal hydraulic head gradients and coarser streambed sediments. The depth of > 10% stream water zone in a small and a large constructed riffle extended to > 0·2 m and > 1·4 m depths respectively. Flux and residence time distribution of hyporheic exchange were simulated in constructed riffles using MODFLOW, a finite‐difference groundwater flow model. Hyporheic flux and residence time distribution varied along the riffles, and the exchange occurring upstream from the riffle crest was small in flux and had a long residence time. In contrast, hyporheic exchange occurring downstream from the riffle crest had a relatively short residence time and accounted for 83% and 70% of total hyporheic exchange flow in a small and large riffle respectively. Although stream restoration projects have not considered the hyporheic zone, our data indicate that constructed riffles and steps can promote vertical hydrologic exchange and increase the groundwater–surface water linkage in degraded lowland streams. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Traditionally a streambed is treated as a layer of uniform thickness and low saturated hydraulic conductivity (K) in surface‐ and ground‐water studies. Recent findings have shown a high level of spatial heterogeneity within a streambed and such heterogeneity directly affects surface‐ and ground‐water exchange and can have ecological implications for biogeochemical transformations, nutrient cycling, organic matter decomposition, and reproduction of gravel spawning fish. In this study a detailed field investigation of K was conducted in two selected sites in Touchet River, a typical salmon spawning stream in arid south eastern Washington, USA. In‐stream slug tests were conducted to determine K following the Bouwer and Rice method. For the upper and lower sites, each 50 m long and 9 m wide and roughly 20 m apart, a sampling grid of 5 m longitudinally and 3 m transversely was used. The slug tests were performed for each horizontal coordinate at 0·3–0·45, 0·6–0·75, 0·9–1·05 and 1·2–1·35 m depth intervals unless a shallower impenetrable obstruction was encountered. Additionally, water levels were measured to obtain vertical hydraulic gradient (VHG) between each two adjacent depth intervals. Results indicated that K ranged over three orders of magnitude at both the upper and lower sites and differed between the two sites. At the upper site, K did not differ significantly among different depth intervals based on nonparametric statistical tests for mean, median, and empirical cumulative distribution, but the spatial pattern of K varied among different depth intervals. At the lower site, K for the 0·3–0·45 m depth interval differed statistically from those at other depth intervals, and no similar spatial pattern was found among different depth intervals. Zones of upward and downward water flow based on VHG also varied among different depth intervals, reflecting the complexities of the water flow regime. Detailed characterization of the streambed as attempted in this study should be helpful in providing information on spatial variations of streambed hydraulic properties as well as surface‐ and ground‐water interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The architecture of the critical zone includes the distribution, thickness, and contacts of various types of slope deposits and weathering products such as saprolite and weathered bedrock resting on solid bedrock. A quantitative analysis of architecture is necessary for many model‐driven approaches used by pedologic, geomorphic, hydrologic or biologic studies. We have used electrical resistivity tomography, a well‐established geophysical technique causing minimum surficial disturbance, to portray the subsurface electrical resistivity differences at three study sites (Green Lakes Valley; Gordon Gulch; Betasso) at the Boulder Creek Critical Zone Observatory (BcCZO). Possible limitations of the technique are discussed. Interpretation of the specific resistivity values using natural outcrops, pits, roadcuts and drilling data as ground truth information allows us to image the critical zone architecture of each site. Green Lakes Valley (3700 MASL), a glacially eroded alpine basin, shows a rather simple, split configuration with coarse blockfields and sediments, partly containing permafrost above bedrock. The critical zone in Gordon Gulch (2650 MASL), a montane basin with rolling hills, and Betasso (1925 MASL), a lower montane basin with v‐shaped valleys, is more variable due to a complex Quaternary geomorphic history. Boundaries between overlying stratified slope deposits and saprolite were identified at mean depths of 3.0 ± 2.2 m and 4.1 ± 3.6 m in the respective sites. The boundary between saprolite and weathered bedrock is deeper in Betasso at 5.8 ± 3.7 m, compared with 4.3 ± 3.0 m in Gordon Gulch. In general, the data are consistent with results from seismic studies, but electrical resistivity tomography documents a 0.5–1.5 m shallower critical zone above the weathered bedrock on average. Additionally, we document high lateral variability, which results from the weathering and sedimentation history and seems to be a consistent aspect of critical zone architecture within the BcCZO. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The use of electrical resistivity tomography (ERT; non‐intrusive geophysical technique) was assessed to identify the hydrogeological conditions at a surface water/groundwater test site in the southern Black Forest, Germany. A total of 111 ERT transects were measured, which adopted electrode spacings from 0·5 to 5 m as well as using either Wenner or dipole‐dipole electrode arrays. The resulting two‐dimensional (2D) electrical resistivity distributions are related to the structure and water content of the subsurface. The images were interpreted with respect to previous classical hillslope hydrological investigations within the same research basin using both tracer methods and groundwater level observations. A raster‐grid survey provided a quasi 3D resistivity pattern of the floodplain. Strong structural heterogeneity of the subsurface could be demonstrated, and (non)connectivities between surface and subsurface bodies were mapped. Through the spatial identification of likely flow pathways and source areas of runoff, the deep groundwater within the steeper valley slope seems to be much more connected to runoff generation processes within the valley floodplain than commonly credited in such environmental circumstances. Further, there appears to be no direct link between subsurface water‐bodies adjacent to the stream channel. Deep groundwater sources are also able to contribute towards streamflow from exfiltration at the edge of the floodplain as well as through the saturated areas overlying the floodplain itself. Such exfiltrated water then moves towards the stream as channelized surface flow. These findings support previous tracer investigations which showed that groundwater largely dominates the storm hydrograph of the stream, but the source areas of this component were unclear without geophysical measurements. The work highlighted the importance of using information from previous, complementary hydrochemical and hydrometric research campaigns to better interpret the ERT measurements. On the other hand, the ERT can provide a better spatial understanding of existing hydrochemical and hydrometric data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract Distinctive fault ruptures, the Nojima Fault and Ogura Fault, appeared along the northwestern coast of Awaji Island at the time of the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). In order to delineate the shallow resistivity structures around the faults just after they formed, Very Low Frequency Magnetotelluric (VLF-MT) surveys were made at five sites along the Nojima Fault and at one site along the Ogura Fault. Fourteen transects were made at the one site on the Ogura Fault, and another transect covers the area between the two faults. Changes in apparent resistivity or phase, or both, commonly occur when crossing the surface location of one of the faults, except for the northern transects at OGR-0 on the Ogura Fault. Apparent resistivity values of less than 100 Ωm were observed for Tertiary and Quaternary sediments and values larger than 200 Ωm for granitic rocks. The resistivity structures are related to the morphological characteristics of the fault ruptures. Remarkably conductive zones (less than 10 Ωm in apparent resistivity and 30–40 m in width) were found where the surface displacement is distinct and prominent along a single fault plane. If remarkably conductive zones were formed at the time of the 1995 Hyogo-ken Nanbu earthquake, the results provide a good constraint on the dimensions of a conductive zone near the surface that was made by one earthquake. Alternatively, if characteristic resistivity structures existed prior to the earthquake, the conductive zone was probably formed by some tens of earthquakes in relatively modern times. In this case, this phenomenon is inferred to be a concentration of fracturing in a narrow zone and is associated with the formation of clay minerals, which enhance rock conductivity.  相似文献   

15.
Xunhong Chen 《水文研究》2011,25(2):278-287
Characterization of streambed hydraulic conductivity from the channel surface to a great depth below the channel surface can provide needed information for the determination of stream‐aquifer hydrologic connectedness, and it is also important to river restoration. However, knowledge on the streambed hydraulic conductivity for sediments 1 m below the channel surface is scarce. This study describes a method that was used to determine the distribution patterns of streambed hydraulic conductivity for sediments from channel surface to a depth of 15 m below. The method includes Geoprobe's direct‐push techniques and Permeameter tests. Direct‐push techniques were used to generate the electrical conductivity (EC) logs and to collect sequences of continuous sediment cores from river channels, as well as from the alluvial aquifer connected to the river. Permeameter tests on these sediment cores give the profiles of vertical hydraulic conductivity (Kv) of the channel sediments and the aquifer materials. This method was applied to produce Kv profiles for a streambed and an alluvial aquifer in the Platte River Valley of Nebraska, USA. Comparison and statistical analysis of the Kv profiles from the river channel and from the proximate alluvial aquifer indicates a special pattern of Kv in the channel sediments. This depth‐dependent pattern of Kv distribution for the channel sediments is considered to be produced by hyporheic processes. This Kv‐distribution pattern implied that the effect of hyporheic processes on streambed hydraulic conductivity can reach the sediments about 9 m below the channel surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Fanelli RM  Lautz LK 《Ground water》2008,46(5):671-687
Hyporheic exchange, enhanced by complex stream channel morphology, can influence biogeochemical processing in the streambed. These processes chemically alter water passing temporarily through the streambed, which eventually returns to the stream channel and can potentially affect surface water quality. To assess the degree of biogeochemical cycling induced by complex streambed morphology, we instrumented two 20-m reaches of Red Canyon Creek, Wyoming, each containing a small log dam, with in-stream minipiezometers and temperature data loggers. We simultaneously observed pore water geochemistry and streambed temperature dynamics in several bedforms located upstream or downstream of the dams. We modeled seepage flux into the streambed using heat transport modeling.
Upstream of the dams, low-permeability sediments have settled out in low-velocity pools, and enhanced anaerobic biogeochemical cycling occurred in the streambed. Rapid flux into the streambed occurred in glides immediately above the dams, where streambed temperature dynamics and geochemistry were nearly identical to the stream. In riffle sequences downstream of the dams, the streambed was oxygen rich, showed evidence of nitrification, and temperature dynamics indicated high connectivity between the streambed and the stream. Further downstream, streambed pore water geochemistry indicated ground water discharge occurring at the pool-riffle transition. Assessing streambed biogeochemical cycling may be facilitated by coupling streambed temperature measurements with pore water geochemistry and can aid in understanding how hyporheic exchange contributes to overall stream biogeochemistry.  相似文献   

17.
Comparison of heat and bromide as ground water tracers near streams   总被引:3,自引:0,他引:3  
Constantz J  Cox MH  Su GW 《Ground water》2003,41(5):647-656
Heat and bromide were compared as tracers for examining stream/ground water exchanges along the middle reaches of the Santa Clara River, California, during a 10-hour surface water sodium bromide injection test. Three cross sections that comprise six shallow (<1 m) piezometers were installed at the upper, middle, and lower sections of a 17 km long study reach, to monitor temperatures and bromide concentrations in the shallow ground water beneath the stream. A heat and ground water transport simulation model and a closely related solute and ground water transport simulation model were matched up for comparison of simulated and observed temperatures and bromide concentrations in the streambed. Vertical, one-dimensional simulations of sediment temperature were fitted to observed temperature results, to yield apparent streambed hydraulic conductivities in each cross section. The temperature-based hydraulic conductivities were assigned to a solute and ground water transport model to predict sediment bromide concentrations, during the sodium bromide injection test. Vertical, one-dimensional simulations of bromide concentrations in the sediments yielded a good match to the observed bromide concentrations, without adjustment of any model parameters except solute dispersivities. This indicates that, for the spatial and temporal scales examined on the Santa Clara River, the use of heat and bromide as tracers provide comparable information with respect to apparent hydraulic conductivities and fluxes for sediments near streams. In other settings, caution should be used due to differences in the nature of conservative (bromide) versus nonconservative (heat) tracers, particularly when preferential flowpaths are present.  相似文献   

18.
The study describes a methodology used to integrate legacy resistivity data with limited geological data in order to build three-dimensional models of the near subsurface. Variogram analysis and inversion techniques more typically found in the petroleum industry are applied to a set of 1D resistivity data taken from electrical surveys conducted in the 1980s. Through careful integration with limited geological data collected from boreholes and outcrops, the resultant model can be visualized in three dimensions to depict alluvium layers as lithological and structural units within the bedrock. By tuning the variogram parameters to account for directionality, it is possible to visualize the individual lithofacies and geomorphological features in the subsurface. In this study, an electrical resistivity data set collected as part of a groundwater study in an area of the Peshawar basin in Pakistan has been re-examined. Additional lithological logs from boreholes throughout the area have been combined with local outcrop information to calibrate the data. Tectonic activity during the Himalayan orogeny has caused uplift in the area and generated significant faulting in the bedrock resulting in the formation of depressions which are identified by low resistivity values representing clays. Paleo-streams have reworked these clays which have been eroded and replaced by gravel–sand facies along paleo-channels. It is concluded that the sediments have been deposited as prograding fan-shaped bodies and lacustrine deposits with interlayered gravel–sand and clay–silt facies. The Naranji area aquifer system has thus been formed as a result of local tectonic activity with fluvial erosion and deposition and is characterized by coarse sediments with high electrical resistivities.  相似文献   

19.
The laterites in Burundi, which are formed by weathering of ultrabasic rocks, show a complete profile with the following horizons: canga, the ferruginous crust capping, ferralite, consisting essentially of iron hydroxides, and saprolite, which contains a large quantity of hydrosilicate minerals. Nickel bearing minerals occur in the saprolite and the lower portion of ferralite. Resistivity well-logging and resistivity sounding indicated that the electrical properties of rocks depend upon their composition: Canga and ferralite showed high resistivities of 6,500 Ωm and 800 Ωm, respectively. The resistivity of saprolite was found to be much lower, between 10 Ωm and 20 Ωm. The laterite is underlain by resistive peridotite. The chargeability of saprolite was found to be lower than that of the upper horizons and the bedrock. Electrolytic conductivity of laterite, which depends on the geometry of the deposit, was found to be low, because the laterite contains moisture and ground water, which are highly resistive. The relatively high conductivity of saprolite is caused by nickeliferous hydrosilicates, which exhibit the electrical properties of clay minerals, with an apparent maximum conductivity of 0.25 S/m. The conductivity of saprolite corresponds to a concentration between 30% and 50% of conductive silicate minerals distributed in the pore space of deposit. A nickel enrichment of up to 6% was estimated from the resistivity of the saprolite. Prospecting for laterites by electrical sounding showed that the development of laterite horizons in a nickel deposit correlates with the surface morphology of weathered ultrabasic massif. Thus the method can be used in preliminary exploration of such deposits.  相似文献   

20.
Resistivity investigations were carried out on an elementary watershed in SW Cameroon, firstly to assess the applicability of direct-current (DC) resistivity methods to solve various pedological problems in intertropical regions, and subsequently to determine the relationships between electrical resistivities and pedological properties of lateritic soil systems. The survey included measurements in pits with a small Wenner fixed-spacing array (SWA), vertical electrical soundings (VES) and vertical electrical “quick soundings” (VEQS) both using the Schlumberger configuration. The VES data were interpreted using a conventional multilayer inversion program to obtain best-fit models. Constraints to the interpretation of these data were provided by SWA and pedological information from existing observation pits. The results of the interpretation reveal five distinct geoelectrical layers overlying a resistive bedrock. The first is a thin organo-mineral upper layer with low resistivities in the range 250–450 Ωm. The second layer corresponds to micro-aggregated clayey materials and is more resistive (1300–1800 Ωm). The third represents the main part of ferruginous materials and is even more resistive (2000–4500 Ωm). The fourth corresponds to unsaturated saprolite and the last to saturated saprolite (ground water) with resistivities ranging from 800 to 1500 Ωm and from 150 to 250 Ωm, respectively. Estimates of soil volumes for the entire study area were obtained from VEQS interpretations. Most of the soil cover corresponds to saprolite (74%, being saturated by ground water), while topsoil and ferruginous materials represent 14 and 12%, respectively. Finally, geophysical results based upon 1-D inversion provide a satisfactory approximation of the various lateritic components' 3-D geometry over the watershed. The study provides original quantitative results concerning the behaviour of intertropical soil systems as well as some geomorphological keys for soil mapping at a regional scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号