首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vadose zone is the main region controlling water movement from the land surface to the aquifer and has a very complex structure. The use of non-invasive or minimally invasive geophysical methods especially electrical resistivity imaging is a cost-effective approach adapted for long-term monitoring of the vadose zone. The main aim of this work is to know the fractures in the vadose zone, of granitic terrene, through which the recharge or preferred path recharge to the aquifer takes place and thus to relate moisture and electrical resistivity. Time lapse electrical resistivity tomography (TLERT) experiment was carried out in the vadose zone of granitic terrene at the Indian Geophysical Research Institute, Hyderabad along two profiles to a depth of 18 m and 13 m each. The profiles are 300 m apart. Piezometric, rainfall and soil moisture data were recorded to correlate with changes in the rainfall recharge. These TLERT difference images showed that the conductivity distribution was consistent with the recharge occurring along the minor fractures. We mapped the fractures in hard rock or granites to see the effect of the recharge on resistivity variation and estimation of moisture content. These fractures act as the preferred pathways for the recharge to take place. A good correlation between the soil moisture and resistivity is established in the vadose zone of granitic aquifer. Since the vadose zone exhibits extremely high variability, both in space and time, the surface geophysical investigations such as TLERT have been a simple and useful method to characterize the vadose zone, which would not have been possible with the point measurements alone. The analyses of the pseudosection with time indicate clearly that the assumption of the piston flow of the moisture front is not valid in hard rocks. The outcome of this study may provide some indirect parameters to the well known Richard's equation in studying the unsaturated zone.  相似文献   

2.
Flood irrigation is globally one of the most used irrigation methods. Typically, not all water that is applied during flood irrigation is consumed by plants or lost to evaporation. Return flow, the portion of applied water from flood irrigation that returns back to streams either via surface or subsurface flow, can constitute a large part of the water balance. Few studies have addressed the connection between vertical and lateral subsurface flows and its potential role in determining return flow pathways due to the difficulty in observing and quantifying these processes at plot or field scale. We employed a novel approach, combining induced polarization, time‐lapse electrical resistivity tomography, and time‐lapse borehole nuclear magnetic resonance, to identify flow paths and quantify changes in soil hydrological conditions under nonuniform application of flood irrigation water. We developed and tested a new method to track the wetting front in the subsurface using the full range of inverted resistivity values. Antecedent soil moisture conditions did not play an important role in preferential flow path activation. More importantly, boundaries between lithological zones in the soil profile were observed to control preferential flow pathways with subsurface run‐off occurring at these boundaries when saturation occurred. Using the new method to analyse time‐lapse resistivity measurements, we were able to track the wetting front and identify subsurface flow paths. Both uniform infiltration and preferential lateral flows were observed. Combining three geophysical methods, we documented the influence of lithology on subsurface flow processes. This study highlights the importance of characterizing the subsurface when the objective is to identify and quantify subsurface return flow pathways under flood irrigation.  相似文献   

3.
4.
Stream bottom resistivity tomography to map ground water discharge   总被引:2,自引:0,他引:2  
This study investigates the effectiveness of direct current electrical resistivity as a tool for assessing ground water/surface water interactions within streams. This research has shown that patterns of ground water discharge can be mapped at the meter scale, which is important for understanding stream water quality and ecosystem function. Underwater electrical resistivity surveys along a 107-m stream section within the Burd Run Watershed in South Central Pennsylvania identified three resistivity layers: a resistive (100 to 400 Ωm) surface layer corresponding to the streambed sediments, a conductive (20 to 100 Ωm) middle layer corresponding to residual clay sediments, and a resistive (100 to 450 Ωm) bottom layer corresponding to the carbonate bedrock. Tile probing to determine the depth to the bedrock and resistivity test box analysis of augered sediment samples confirmed these interpretations of the resistivity data. Ground water seeps occurred where the resistivity data showed that the residual clays were thinnest and bedrock was closest to the streambed. Plotting the difference in resistivity between two surveys, one conducted during low-stage and the other during high-stage stream conditions, showed changes in the conductivity of the pore fluids saturating the sediments. Under high-stream stage conditions, the top layer showed increased resistivity values for sections with surface water infiltration but showed nearly constant resistivity in sections with ground water seeps. This was expressed as difference values less than 50 Ωm in the area of the seeps and greater than 50 Ωm change for the streambed sediments saturated by surface water. Thus, electrical resistivity aided in characterizing ground water discharge zones by detecting variations in subsurface resistivity under high- and low-stream stage conditions as well as mapping subsurface heterogeneities that promote these exchanges.  相似文献   

5.
A comprehensive understanding of seasonal hydrological dynamics is required to describe the influence of pore‐water pressure on the stability of landslides in snowy regions. This study reports on the results of continuous meteorological and hydrological observations over 2 years on a landslide body comprising Neogene sedimentary rocks in northern Japan, where a thick (3–5 m) seasonal snowpack covers the land surface. Monitoring of the volumetric water content in shallow unsaturated zones (<0.8 m depth) and pore‐water pressure in saturated bedrock at depths of 2.0 and 5.2 m revealed clear seasonality in hydrological responses to rainfall and meltwater supply. During snow‐free periods, both the shallow soil moisture and deep pore‐water pressure responded rapidly to intense rainwater infiltration. In contrast, during snowmelt, the deep pore pressure fluctuated in accordance with the daily cycle of meltwater input, without notable changes in shallow moisture conditions. During occasional foehn events that cause intense snow melting in midwinter, meltwater flows preferentially through the layered snowpack, converging to produce a localized water supply at the ground surface. This episodically triggers a significant rise in pore‐water pressure. The seasonal differences in hydrological responses were characterized by a set of newly proposed indices for the magnitude and quickness of increases in the pressure head near the sliding surface. Under snow‐covered conditions, the magnitude of the pressure increase tends to be suppressed, probably owing to a reduction in infiltration caused by a seasonal decrease in the permeability of surface soils, and effective pore‐water drainage through the highly conductive colluvial layer. Deep groundwater flow within bedrock remained in a steady upwelling state, enhanced by increasing moisture in shallow soils under snow cover, reflecting the convergence of subsurface water from surrounding hillslopes.  相似文献   

6.
The migration of groundwater in rock and soil can appear as abnormalities in geoelectric fields. It is therefore important to study the characteristics of seepage in porous media by measuring the geoelectric field signatures. In this study, a physical model with layers of sand and clay was constructed and an electrical resistivity meter was used to examine the changes in the geoelectric field parameters during the infiltration process. The results show that the infiltration could be detected based on the geoelectric signatures including temporal changes through the spontaneous potential, excitation currents, and apparent resistivity. Specifically, the spontaneous potential was reduced by 100 to 200 mV when the water reaches an electrode. During the second water injection in the experiment, the measured spontaneous potential of all the electrodes recovered to the previous extreme values that range from −200 to −550 mV, thus indicating a “memory” effect. With stepwise changes in the excitation current, it was possible to determine the seepage velocity in sand and clay layer. The apparent resistivity is reduced to less than 400 Ωm when the infiltration reaches the electrodes. These results indicate the potential for real-time monitoring of water flow.  相似文献   

7.
本文运用高密度电法对宁夏西吉县西南山区典型的黄土地震滑坡进行了探测,并结合钻探资料进行验证分析,目的是查明滑坡区域的地层结构、黄土厚度、基岩埋深、富水地段以及空间展布等特征.结果表明:电阻率参数能够很好的反应研究区的地层分布特征,表层疏松干燥的黄土为高阻反映,随着埋深增加,含水量较大的黄土呈现出低阻反映,在黄土与泥岩接触带饱水区呈现低阻反映;滥泥河流域典型的黄土梁斜坡具有阳坡黄土沉积薄、富水层薄、基岩埋深浅的特征,而在阴坡则表现出黄土沉积厚、富水层厚、基岩埋深大的特征.探测结果可有效的应用于黄土地震滑坡的勘察,为进一步开展黄土地震滑坡的成因机理和防治研究提供参考数据.  相似文献   

8.
A groundwater recharge process of heterogeneous hard rock aquifer in the Moole Hole experimental watershed, south India, is being studied to understand the groundwater flow behaviour. Significant seasonal variations in groundwater level are observed in boreholes located at the outlet area indicating that the recharge process is probably taking place below intermittent streams. In order to localize groundwater recharge zones and to optimize implementation of boreholes, a geophysical survey was carried out during and after the 2004 monsoon across the outlet zone. Magnetic resonance soundings (MRS) have been performed to characterize the aquifer and measure groundwater level depletion. The results of MRS are consistent with the observation in boreholes, but it suffers from degraded lateral resolution. A better resolution of the regolith/bedrock interface is achieved using electrical resistivity tomography (ERT). ERT results are confirmed by resistivity logging in the boreholes. ERT surveys have been carried out twice—before and during the monsoon—across the stream area. The major feature of recharge is revealed below the stream with a decrease by 80% of the calculated resistivity. The time‐lapse ERT also shows unexpected variations at a depth of 20 m below the slopes that could have been interpreted as a consequence of a deep seasonal water flow. However, in this area time‐lapse ERT does not match with borehole data. Numerical modelling shows that in the presence of a shallow water infiltration, an inversion artefact may take place thus limiting the reliability of time‐lapse ERT. A combination of ERT with MRS provides valuable information on structure and aquifer properties respectively, giving a clue for a conceptual model of the recharge process: infiltration takes place in the conductive fractured‐fissured part of the bedrock underlying the stream and clayey material present on both sides slows down its lateral dissipation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO‐DTS) observations and the phase shift of the diurnal temperature signal between two vertically co‐located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO‐DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO‐DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high‐spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R2 = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates.  相似文献   

10.
11.
Remote sensing and geoelectrical methods were used to find water-bearing fractures in the Scituate granite under the Central Landfill of Rhode Island. These studies were necessary to evaluate the integrity of the sanitary landfill and for planning safe landfill extensions. The most useful results were obtained with fracture trace analysis using Landsat and SLAR imagery in combination with ground-based resistivity measurements using Schlumberger vertical electrical soundings based on the assumption of horizontally layered strata. Test borings and packer tests confirmed, in the presence of a lineament and low bedrock resistivity, the probable existence of high bedrock fracture density and high average hydraulic conductivity. However, not every lineament was found to be associated with high fracture density and high hydraulic conductivity. Lineaments alone are not a reliable basis for characterising a landfill site as being affected by fractured bedrock. Horizontal fractures were found in borings located away from lineaments. High values of hydraulic conductivity were correlated with low bedrock resistivities. Bedrock resistivities between 60 and 700 Ω m were associated with average hydraulic conductivities between 4 and 60 cm/day. In some cases very low resistivities were confined to the upper part of the bedrock where the hydraulic conductivity was very large. These types of fractures apparently become narrower in aperture with depth. Bedrock zones having resistivities greater than 1000 Ω m showed, without exception, no flow to the test wells. Plots of bedrock resistivity versus the average hydraulic conductivity indicate that the resistivity decreases with increasing hydraulic conductivity. This relationship is inverse to that found in most unconsolidated sediments and is useful for estimating the hydraulic conductivity in groundwater surveys in fractured bedrock. In appropriate settings such as the Central Landfill site in New England, this electric-hydraulic correlation relationship, supplemented by lineament trace analysis, can be used effectively to estimate the hydraulic conductivity in bedrock from only a limited number of resistivity depth soundings and test wells.  相似文献   

12.
基于颗粒流理论研究土质边坡动力稳定性及其滑动过程是近年来滑坡研究的一个新热点。在野外调查和室内试验的基础上,通过标定土体细观参数、模型建立、动力输入、动态监测等过程,利用PFC2D程序模拟了西吉县兴平乡堡湾村下马达子滑坡的失稳破坏运动过程,得到了该滑坡的破坏运动机理。得到如下结论:① 下马达子滑坡的失稳机制是在地震作用下斜坡前缘牵引、后缘推挤,使得坡肩受拉发生破坏,失稳后坡肩位置较大的速度和位移是地震滑坡破坏力强、致灾范围大的主要原因;② 黄土地震滑坡的滑坡后壁相对平缓,这是区别于重力滑坡的重要特征之一;③ 颗粒流模拟得到的滑坡前后相对高差和长度与实际情况较为吻合,因此,颗粒流方法可以用于地震滑坡滑距的预测。   相似文献   

13.
This study focuses on a 10-m2 plot within a granitic hillslope in Cevennes mountainous area in France, in order to study infiltration and subsurface hydrological processes during heavy rainfalls and flash floods. The monitoring device included water content at several depths (0–70 cm for the shallow soil water; 0–10 m for the deep water) during both intense artificial and natural rainfall events, chemical and physical tracers, time-lapse electrical resistivity tomography. During the most intense events, the infiltrated water was estimated to be some hundreds of millimetres, which largely exceeds the topsoil capacity (≤40 cm deep in most of the cases). The weathered/fractured rock area below the soil clearly has an active role in the water storage and sub-surface flow dynamics. Vertical flow was dominant in the first 0–10 m, and lateral flow was effective at 8–10 m depth, at the top of the saturated area. The speed of the vertical flow was estimated between 1 and 10 m/hr, whereas it was estimated between 0.1 and 1 m/hr for the lateral flow. The interpretation of the experiments might lead to a local pattern of the 2D-hydrological processes and profile properties, which could be generic for most of the mountainous catchments under Mediterranean climate. It suggests that fast triggering of floods at the catchment scale cannot be explained by a mass transfer within the hillslope, but should be due to a pressure wave propagation through the bedrock fractures, which allows exfiltration of the water downstream the hillslope.  相似文献   

14.
为实现垃圾填埋场渗滤液在地下含水层中动态扩散及污染层修复过程的实时监测,利用自行设计的三维电学观测系统开展了室内相关监测实验.实验表明渗滤液在含水层中的扩散过程会引起不同时期实测电剖面上低阻异常区的动态变化.对比分析这种变化特征可确定渗滤液扩散区的污染程度、扩散速度及扩散方向.在注水修复过程中,扩散区污染物含量的降低会引起对应区域实测视电阻率值的升高和异常区范围的变化.实验结果对于实现垃圾渗滤液污染地下含水层现状调查及动态监测具有重要意义.  相似文献   

15.
Preferential flow is known to influence hillslope hydrology in many areas around the world. Most research on preferential flow has been performed in temperate regions. Preferential infiltration has also been found in semi‐arid regions, but its impact on the hydrology of these regions is poorly known. The aim of this study is to describe and quantify the influence of preferential flow on the hillslope hydrology from small scale (infiltration) to large scale (subsurface stormflow) in a semi‐arid Dehesa landscape. Precipitation, soil moisture content, piezometric water level and discharge data were used to analyse the hydrological functioning of a catchment in Spain. Variability of soil moisture content during the transition from dry to wet season (September to November) within horizontal soil layers leads to the conclusion that there is preferential infiltration into the soils. When the rainfall intensity is high, a water level rapidly builds up in the piezometer pipes in the area, sometimes even reaching soil surface. This water level also drops back to bedrock within a few hours (under dry catchment conditions) to days (under wet catchment conditions). As the soil matrix is not necessarily wet while this water layer is built up, it is thought to be a transient water table in large connected pores which drain partly to the matrix, partly fill up bedrock irregularities and partly drain through subsurface flow to the channels. When the soil matrix becomes wetter the loss of water from macropores to the matrix and bedrock decreases and subsurface stormflow increases. It may be concluded that the hillslope hydrological system consists of a fine matrix domain and a macropore domain, which have their own flow characteristics but which also interact, depending on the soil matrix and macropore moisture contents. The macropore flow can result in subsurface flow, ranging from 13% contribution to total discharge for a large event of high intensity rainfall or high discharge to 80% of total discharge for a small event with low intensity rainfall or low discharge. During large events the fraction of subsurface stormflow in the discharge is suppressed by the large amount of surface runoff. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Hillslopes have complex three‐dimensional shapes that are characterized by their plan shape, profile curvature of surface and bedrock, and soil depth. To investigate the stability of complex hillslopes (with different slope curvatures and plan shapes), we combine the hillslope‐storage Boussinesq (HSB) model with the infinite slope stability method. The HSB model is based on the continuity and Darcy equations expressed in terms of storage along the hillslope. Solutions of the HSB equation account explicitly for plan shape by introducing the hillslope width function and for profile curvature through the bedrock slope angle and the hillslope soil depth function. The presented model is composed of three parts: a topography model conceptualizing three‐dimensional soil mantled landscapes, a dynamic hydrology model for shallow subsurface flow and water table depth (HSB model) and an infinite slope stability method based on the Mohr–Coulomb failure law. The resulting hillslope‐storage Boussinesq stability model (HSB‐SM) is able to simulate rain‐induced shallow landsliding on hillslopes with non‐constant bedrock slope and non‐parallel plan shape. We apply the model to nine characteristic hillslope types with three different profile curvatures (concave, straight, convex) and three different plan shapes (convergent, parallel, divergent). In the presented model, the unsaturated storage has been calculated based on the unit head gradient assumption. To relax this assumption and to investigate the effect of neglecting the variations of unsaturated storage on the assessment of slope stability in the transient case, we also combine a coupled model of saturated and unsaturated storage and the infinite slope stability method. The results show that the variations of the unsaturated zone storage do not play a critical role in hillslope stability. Therefore, it can be concluded that the presented dynamic slope stability model (HSB‐SM) can be used safely for slope stability analysis on complex hillslopes. Our results show that after a certain period of rainfall the convergent hillslopes with concave and straight profiles become unstable more quickly than others, whilst divergent convex hillslopes remain stable (even after intense rainfall). In addition, the relation between subsurface flow and hillslope stability has been investigated. Our analyses show that the minimum safety factor (FS) occurs when the rate of subsurface flow is a maximum. In fact, by increasing the subsurface flow, stability decreases for all hillslope shapes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
在千将坪滑坡前地震动事件分析基础上,总结滑坡前滑坡体内部岩体形变和破裂所产生地震信号的典型特征,并建立宽频带地震台,对金坪子滑坡体和早谷田危岩体进行监测实验,提取基岩类、土质类和危岩体类3种基本物质组成滑坡的微振动前兆信息特征,为地震台网在滑坡监测预报中的应用推广和监测预报系统软件的研制奠定基础.根据测震学原理,研发滑坡监测分析系统软件(Smas),可为滑坡大规模活动前快速预警.  相似文献   

18.
Understanding water infiltration and transfer in soft‐clay shales slopes is an important scientific issue, especially for landsliding. Geochemical investigations are carried out at the Super‐Sauze and Draix‐Laval landslides, both developed in the Callovo‐Oxfordian black marls, with the objective to define the origin of the groundwater. In situ investigations, soil leaching experiments and geochemical modeling are combined to identify the boundaries of the hydrological systems. At Super‐Sauze, the observations indicate that an external water flow occurs in the upper part of the landslide at the contact between the weathered black marls and the overlying formations, or at the landslide basement through a fault network. Such external origin of water is not observed at the local scale of the Draix‐Laval landslide but is detected at the catchment scale with the influence of deep waters in the streamwater quality of low river flows. Hydrogeological conceptual models are proposed emphasizing the role of the interactions between local (slope) and regional (catchment) flow systems. The observations suggest that this situation is a common case in the Alpine area. Expected consequences of the regional flows on slope stability are discussed in term of rise of pore water pressures and physicochemical weathering of the clay shales.  相似文献   

19.
Flowslides that override a liquefied substrate can vastly enhance a disaster after failure initiation. These effects may result from the rapid velocity and long runout distance from slides mobilized into flows. It is thus crucial to provide an improved understanding of the transformation mechanisms of catastrophic flowslides for hazard evaluation. This study examines the Saleshan landslide in Gansu, China, which occurred in 1983 and killed more than 200 people. The Saleshan landslide travelled for approximately 1 km due to pore water pressure generation resulting from overrunning and liquefication of the alluvial sands in the river valley below. We used geomorphologic and topographic maps to determine its dynamic features and mobilization behaviors on the landslide body, and placemarks and seismic signals to identify its approximate velocity at different sites. Electrical resistivity tomography (ERT) surveys also revealed the hydrogeological conditions post-landslide, showing a clear groundwater table along with the liquefied alluvial sand and gravel layers. Particle size distributions and triaxial shear behaviors confirmed more ready liquefaction of superficial loess and underlying alluvial sand in comparison with the red soil above and below them. Novel loading impact triaxial testing was also performed on the alluvial sand to elucidate its liquefaction potential in undrained and drained conditions. The alluvial sand was found to be markedly prone to liquefaction in undrained conditions due to impact-induced increased pore water pressure. The results further demonstrated that the Saleshan landslide underwent a transformation from a slowing slide on a steep slope, where it originated, to flow on a nearly flat terrace with abundant groundwater that it overrode. The transformation mechanism involved the liquefied alluvium sand substrate, which greatly enhanced the landslide mobility. Along with recent, similar findings from landslides globally, substrate liquefaction may result in a widespread, significant increase in landslide mobility and thus hazard, and the present study identifies the requisite conditions for this phenomenon to occur.  相似文献   

20.
Herbaceous vegetation in the Sahel grows almost exclusively on sandy soils which preferentially retain water through infiltration and storage. The hydrological functioning of these sandy soils during rain cycles is unknown. One way to tackle this issue is to spatialize variations in water content but these are difficult to measure in the vadose zone. We investigated the use of Electrical Resistivity Tomography (ERT) as a technique for spatializing resistivity in a non-destructive manner in order to improve our knowledge of relevant hydrological processes. To achieve this, two approaches were examined. First, we focused on a possible link between water tension (which is much easier to measure in the field by point measurements than water content), and resistivity (spatialized with ERT). Second, because ERT is affected by solution non-uniqueness and reconstruction smoothing, we improved the accuracy of ERT inversion by comparing calculated solutions with in-situ resistivity measurements. We studied a natural microdune during a controlled field experiment with artificial sprinkling which reproduced typical rainfall cycles. We recorded temperature, water tension and resistivity within the microdune and applied surface ERT before and after the 3 rainfall cycles. Soil samples were collected after the experiment to determine soil physical characteristics. An experimental relationship between water tension and water content was also investigated. Our results showed that the raw relationship between calculated ERT resistivity and water tension measurements in sand is highly scattered because of significant spatial variations in porosity. An improved correlation was achieved by using resistivity ratio and water tension differences. The slope of the relationship depends on the soil solution conductivity, as predicted by Archie's law when salted water was used for the rain simulation. We found that determining the variations in electrical resistivity is a sensitive method for spatializing the differences in water tension which are directly linked with infiltration and evaporation/drainage processes in the vadose zone. However, three factors complicate the use of this approach. Firstly, the relation between water tension and water content is generally non-linear and dependent on the water content range. This could limit the use of our site-specific relations for spatializing water content with ERT through tension. Secondly, to achieve the necessary optimization of ERT inversion, we used destructive resistivity measurements in the soil, which renders ERT less attractive. Thirdly, we found that the calculated resistivity is not always accurate because of the smoothing involved in surface ERT data inversion. We conclude that further developments are needed into ERT image reconstruction before water tension (and water content) can be spatialized in heterogeneous sandy soils with the accuracy needed to routinely study their hydrological functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号