首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Orissa State, a meteorological subdivision of India, lies on the east coast of India close to north Bay of Bengal and to the south of the normal position of the monsoon trough. The monsoon disturbances such as depressions and cyclonic storms mostly develop to the north of 15° N over the Bay of Bengal and move along the monsoon trough. As Orissa lies in the southwest sector of such disturbances, it experiences very heavy rainfall due to the interaction of these systems with mesoscale convection sometimes leading to flood. The orography due to the Eastern Ghat and other hill peaks in Orissa and environs play a significant role in this interaction. The objective of this study is to develop an objective statistical model to predict the occurrence and quantity of precipitation during the next 24 hours over specific locations of Orissa, due to monsoon disturbances over north Bay and adjoining west central Bay of Bengal based on observations to up 0300 UTC of the day. A probability of precipitation (PoP) model has been developed by applying forward stepwise regression with available surface and upper air meteorological parameters observed in and around Orissa in association with monsoon disturbances during the summer monsoon season (June-September). The PoP forecast has been converted into the deterministic occurrence/non-occurrence of precipitation forecast using the critical value of PoP. The parameters selected through stepwise regression have been considered to develop quantitative precipitation forecast (QPF) model using multiple discriminant analysis (MDA) for categorical prediction of precipitation in different ranges such as 0.1–10, 11–25, 26–50, 51–100 and >100 mm if the occurrence of precipitation is predicted by PoP model. All the above models have been developed based on data of summer monsoon seasons of 1980–1994, and data during 1995–1998 have been used for testing the skill of the models. Considering six representative stations for six homogeneous regions in Orissa, the PoP model performs very well with percentages of correct forecast for occurrence/non-occurrence of precipitation being about 96% and 88%, respectively for developmental and independent data. The skill of the QPF model, though relatively less, is reasonable for lower ranges of precipitation. The skill of the model is limited for higher ranges of precipitation. accepted September 2006  相似文献   

2.
Physical oceanography measurements reveal a strong salinity (0.18 psu km?1) and temperature (0.07 °C km?1) front off the east coast of India in December 1997. T–S diagrams suggest lateral mixing between the fresh water at the coast and the ambient warmer, saltier water. This front seems to be the result of southward advection of fresh and cool water, formed in the northern Bay of Bengal during the monsoon, by the East Indian Coastal Current, as suggested by the large-scale salinity structure in the SODA re-analysis and the anti-cyclonic gyre in the northwestern Bay of Bengal during winter. The data further reveals an offshore front in January, which appears to be the result of a meso-scale re-circulation around an eddy, bringing cold and freshwater from the northern Bay of Bengal further away from the shore. Our cruise data hence illustrates that very strong salinity fronts can appear in the Bay of Bengal after the monsoon, as a result of intense coastal circulation and stirring by eddies.  相似文献   

3.

Physical oceanography measurements reveal a strong salinity (0.18 psu km−1) and temperature (0.07 °C km−1) front off the east coast of India in December 1997. T–S diagrams suggest lateral mixing between the fresh water at the coast and the ambient warmer, saltier water. This front seems to be the result of southward advection of fresh and cool water, formed in the northern Bay of Bengal during the monsoon, by the East Indian Coastal Current, as suggested by the large-scale salinity structure in the SODA re-analysis and the anti-cyclonic gyre in the northwestern Bay of Bengal during winter. The data further reveals an offshore front in January, which appears to be the result of a meso-scale re-circulation around an eddy, bringing cold and freshwater from the northern Bay of Bengal further away from the shore. Our cruise data hence illustrates that very strong salinity fronts can appear in the Bay of Bengal after the monsoon, as a result of intense coastal circulation and stirring by eddies.

  相似文献   

4.
River sediment produced through weathering is one of the principal landscape modification processes on earth.Rivers are an integral part of the hydrologic cycle and are the major geologic agents that erode the continents and transport water and sediments to the oceans.Estimation of suspended sediment yield is always a key parameter for planning and management of any river system.It is always challenging to model sediment yield using traditional mathematical models because they are incapable of handling the complex non-linearity and non-stationarity.The suspended sediment modeling of the river depends on the number of factors such as rock type,relief,rainfall,temperature,water discharge and catchment area.In this study,we proposed a hybrid genetic algorithm-based multi-objective optimization with artificial neural network(GA-MOO-ANN)with automated parameter tuning model using these factors to estimate the suspended sediment yield in the entire Mahanadi River basin.The model was validated by comparing statistically with other models,and it appeared that the GA-MOO-ANN model has the lowest root mean squared error(0.009)and highest coefficient of correlation(0.885)values among all comparative models(traditional neural network,multiple linear regression,and sediment rating curve)for all stations.It was also observed that the proposed model is the least biased(0.001)model.Thus,the proposed GA-MOOANN is the most capable model,compared to other studied models,for estimating the suspended sediment yield in the entire Mahanadi river basin,India.The results also suggested that the proposed GA-MOO-ANN model is unable to estimate suspended sediment yield satisfactorily at gauge stations having very small catchment areas whereas performing satisfactorily on locations having moderate to the large catchment area.The models provide the best result at Tikarapara,the gauge station location in the extreme downstream,having the largest catchment area.  相似文献   

5.
Submarine groundwater discharge (SGD) introduces solute and nutrients to the global oceans, resulting in considerable nutrient cycling and dynamics in the coastal areas. We have conducted high‐resolution, spatio‐temporal, lunar tidal cycle patterns and variability of discharged solute/nutrient assessment to get an overview of seasonal nutrient flux to the Bay of Bengal in eastern parts of the Indian subcontinent. Whereas the premonsoon season SGD was found to be dominant in the marine influence (M‐SGD), the postmonsoon season was found to be predominated by the terrestrial component of SGD (T‐SGD), extending from coast to near offshore. The solute fluxes and redox transformation were found to be extensively influenced by tidal and diurnal cycles, overlapping on seasonal patterns. We have assessed the possible role of SGD‐associated solute/nutrient fluxes and their discharge mechanisms, and their associated temporal distributions have severe implications on the biological productivity of the Bay of Bengal. The estimated annual solute fluxes, using the average end‐member concentration of the SGD‐associated nutrients, were found to be 240 and 224 mM·m?2·day?1 for NO3? and Fetot, respectively. Together with huge freshwater flux from the Himalayan and Peninsular Indian rivers, the SGD has considerable influence on the bay water circulation, stratification, and solute cycling. Thus, the observation from this study implies that SGD‐associated nutrient flux to the Bay of Bengal may function as a nutrient sink, which might influence the long‐term solute/nutrient flux along the eastern coast of India.  相似文献   

6.
In the years 1999 and 2001, three intense tropical cyclones formed over the northern Indian Ocean—two over the Bay of Bengal during 15–19 and 25–29 October, 1999 and one over the Arabian Sea during 21–28 May, 2001. We examined the thermal, salinity and circulation responses at the sea surface due to these severe cyclones in order to understand the air-sea coupling using data from satellite measurements and model simulations. It is found that the Sea Surface Temperature (SST) cooled by about 0.5 °–0.8 °C in the Bay of Bengal and 2 °C in the Arabian Sea. In the Bay of Bengal, this cooling took place beneath the cyclone center whereas in the Arabian Sea, the cooling occurred behind the cyclone only a few days later. This contrasting oceanic response resulted mainly from the salinity stratification in the Bay of Bengal and thermal stratification in the Arabian Sea and the associated mixing processes. In particular, the cyclones moved over the region of low salinity and smaller mixed layer depth with a distinct mixed layer deepening to the left side of the cyclone track. It is envisaged that daily satellite estimates of SST and Sea Surface Salinity (SSS) using Outgoing Longwave Radiation (OLR) and model simulated mixed layer depth would be useful for the study of tropical cyclones and prediction of their path over the northern Indian Ocean.  相似文献   

7.
The present study is an attempt to examine the variability of convective activity over the north Indian Ocean (Bay of Bengal and Arabian Sea) on interannual and longer time scale and its association with the rainfall activity over the four different homogeneous regions of India (viz., northeast India, northwest India, central India and south peninsular India) during the monsoon season from June to September (JJAS) for the 26 year period (1979 to 2004). The monthly mean Outgoing Long-wave Radiation (OLR) data obtained from National Oceanic and Atmospheric Administration (NOAA) polar orbiting spacecraft are used in this study and the 26-year period has been divided into two periods of 13 years each with period-i from 1979 to 1991 and period -ii from 1992 to 2004. It is ascertained that the convective activity increases over the Arabian Sea and the Bay of Bengal in the recent period (period -ii; 1992 to 2004) compared to that of the former period (period -i; 1979 to 1991) during JJAS and is associated with a significantly increasing trend (at 95% level) of convective activity over the north Bay of Bengal (NBAY). On a monthly scale, July and August also show increase in convective activity over the Arabian Sea and the Bay of Bengal during the recent period and this is associated with slight changes in the monsoon activity cycle over India. The increase in convective activity particularly over the Arabian Sea during the recent period of June is basically associated with about three days early onset of the monsoon over Delhi and relatively faster progress of the monsoon northward from the southern tip of India. Over the homogeneous regions of India the correlation coefficient (CC) of OLR anomalies over the south Arabian Sea (SARA) is highly significant with the rainfall over central India, south peninsular India and northwest India, and for the north Arabian Sea (NARA), it is significant with northwest India rainfall and south peninsular rainfall. Similarly, the OLR anomalies over the south Bay of Bengal (SBAY) have significant CC with northwest India and south peninsular rainfall, whereas the most active convective region of the NBAY is not significantly correlated with rainfall over India. It is also found that the region over northeastern parts of India and its surroundings has a negative correlation with the OLR anomalies over the NARA and is associated with an anomalous sinking (rising) motion over the northeastern parts of India during the years of increase (decrease) of convective activity over the NARA.  相似文献   

8.
Hydro-climatic changes driven by human land and water use, including water use for irrigation, may be difficult to distinguish from the effects of global, natural and anthropogenic climate change. This paper quantifies and compares the hydro-climatic change effects of irrigation using a data-driven, basin-wise quantification approach in two different irrigated world regions: the Aral Sea drainage basin in Central Asia and the Indian Mahanadi River Basin draining into the Bay of Bengal. Results show that irrigation-driven changes in evapotranspiration and latent heat fluxes and associated temperature changes at the land surface may be greater in regions with small relative irrigation impacts on water availability in the landscape (here represented by the Mahanadi River Basin) than in regions with severe such impacts (here represented by the Aral region). Different perspectives on the continental part of Earth’s hydrological cycle may thus imply different importance assessments of various drivers and impacts of hydro-climatic change. Regardless of perspective, however, actual basin-wise water balance constraints should be accounted to realistically understand and accurately quantify continental water change.  相似文献   

9.
Coastal embayments located downwind of large rivers under an upwelling-favorable wind are prone to develop low-oxygen or hypoxic conditions in their bottom water. One such embayment is Mirs Bay, off the Guangdong coast, which is affected by upwelling and the Pearl River Estuary (PRE) plume during summer. The relative importance of physical and biochemical processes on the interannual variability of hypoxia in Mirs Bay and its adjacent waters was investigated using statistical analyses of monthly hydrographic and water quality monitoring data from 2001 to 2015. The results reveal that the southwesterly wind duration and the PRE river discharge together explain 49% of the interannual variability in the size of the hypoxic area, whereas inclusion of the nutrient concentrations inside Mirs Bay and phytoplankton on the shelf explains 75% of the interannual variability in the size of the hypoxic area. This finding suggests that the interannual variability of hypoxia in Mirs Bay is regulated by coupled physical and biochemical processes. Increase of the hypoxic area under a longer-lasting southwesterly wind is caused by increased stratification, extended bottom water residence time, and onshore transport of a low-oxygen water mass induced by stable upwelling. In contrast, a reduction in the size of the hypoxic area may be attributed to a decrease in the surface water residence time of the particulate organic matter outside Mirs Bay due to increased discharge from the PRE. The results also show that the effects of allochthonous particulate organic matter outside Mirs Bay on bottom hypoxia cannot be neglected.  相似文献   

10.
Based on the Indian and Chinese precipitation data and the NCEP-NCAR reanalysis circulation data, the relationship between the Indian summer monsoon (ISM) onset and the Meiyu over the Yangtze River Valley has been discussed by the methods of correlation analysis and composite analysis. The results show that the date of ISM onset over Kerala in the southwestern coast of the Indian Peninsula is about two weeks earlier than the beginning of the Meiyu over the Yangtze River Valley. After the outbreak of ISM, the teleconnection mode sets up from the western coast of India via the Bay of Bengal (BOB) to the Yangtze River Valley and southern Japan. It is different both in time and space from the telecon- nection mode which is from the northwest of India via the Tibetan Plateau to northern China. The for- mer mode is defined as the "south" teleconnection of the Asian summer monsoon, forming in the pe- riod of ISM onset; while the latter mode is called the "north" teleconnection, mainly occurring in the Asian monsoon culminant period. During the process of the "south" teleconnection’s formation, the Asian monsoon circulation has experienced a series of important changes: ISM onset, the northward movement of the south Asia high (SAH), the onset vortex occurrence, the eastward extension of the stronger tropical westerly belt, and the northeastward jump of the western Pacific subtropical high (WPSH), etc. Consequently, since ISM sets up over Kerala, the whole Asian continent is covered by the upper SAH after about two weeks, while in the mid- and lower troposphere, a strong wind belt forms from the Arabian Sea via the southern India, BOB and the South China Sea (SCS), then along the western flank of WPSH, to the Yangtze River Valley and southern Japan. With the northward moving of the subtropical jet streams, the upper westerly jet stream and the low level jet have been coupled ver- tically over east Asia, while the Yangtze River Valley happens to locate in the ascending motion area between the upper jet stream and the low level jet, i.e. right of the entrance of the upper jet stream and left of the low level jet. Such a structure of the vertical circulation can trigger the Meiyu onset over the Yangtze River Valley.  相似文献   

11.
The estimation of sediment yield is important in design, planning and management of river systems. Unfortunately, its accurate estimation using traditional methods is difficult as it involves various complex processes and variables. This investigation deals with a hybrid approach which comprises genetic algorithm-based artificial intelligence (GA-AI) models for the prediction of sediment yield in the Mahanadi River basin, India. Artificial neural network (ANN) and support vector machine (SVM) models are developed for sediment yield prediction, where all parameters associated with the models are optimized using genetic algorithms simultaneously. Water discharge, rainfall and temperature are used as input to develop the GA-AI models. The performance of the GA-AI models is compared to that of traditional AI models (ANN and SVM), multiple linear regression (MLR) and sediment rating curve (SRC) method for evaluating the predictive capability of the models. The results suggest that GA-AI models exhibit better performance than other models.  相似文献   

12.
1INTRODUCTIONTheHaiheRiverBasinislocatedinNorthChinawithareaof262.6km2.Itisaquicklydevelopedareawithmanyimportantcitiesandindustrialhubs,includingBeding,Tianjin,Tangshan,Cangzhou,DezhouandHuanghua.Theareawatchedfastprogressesinurbanizationinthepastdecades,andhumanactivitieshaveresultedingreatinfluencesontheenvironment,riverhydrologyandsedimentbudget.Theareaisprojectedtobemoreprosperouswithmoreoilandgasfields,chemicalindustrybases,anddenserrailwaysandexpresshighwaysinthenextcent'Ury.T…  相似文献   

13.
Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.  相似文献   

14.
During the summer monsoon season over India a range of intraseasonal modulations of the monsoon rains occur due to genesis of weather disturbances over the Bay of Bengal (BOB) and the east Arabian Sea. The amplitudes of the fluctuations in the surface state of the ocean (sea-surface temperature and salinity) and atmosphere are quite large due to these monsoonal modulations on the intraseasonal scale as shown by the data collected during the field programs under Bay of Bengal Monsoon Experiment (BOBMEX) and Arabian Sea Monsoon Experiments (ARMEX). The focus of BOBMEX was to understand the role of ocean-atmospheric processes in organizing convection over the BOB on intra-seasonal scale. ARMEX-I was aimed at understanding the coupled processes in the development of deep convection off the West Coast of India. ARMEX-II was focused on the formation of the mini-warm pool across the southeast Arabian Sea in April-May and its role in the abrupt onset of the monsoon along the Southwest Coast of India and its further progress along the West Coast of India. The paper attempts to integrate the results of the observational studies and brings out an important finding that atmospheric instability is prominently responsible for convective organization whereas the upper ocean parameters regulate the episodes of the intraseasonal oscillations.  相似文献   

15.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

16.
《Marine pollution bulletin》2014,83(1-2):194-200
Concentrations of heavy metals in river water and sediment were investigated in nine estuaries along the coast of Bohai Bay, Northern China. Multivariate statistical techniques such as principal component analysis and cluster analysis, in combination with metal concentration analysis and correlation analysis, were used to identify the possible sources of the metals and the pollution pattern in nine estuaries along the coast of Bohai Bay. The environmental risks of metals, evaluated by sediment quality guidelines and background values, revealed Hg contamination in the estuaries. However, levels of Cd in estuarine sediments were low, and they were less than those levels in river sediments, partly due to the high mobility and dilution of river or seawater. Cd did not contribute to sediment deposits in estuaries. High organic matter from effluents from large municipal sewage treatment plants was predominantly responsible for restricting Hg mobility from the river to Bohai Bay.  相似文献   

17.
An unstructured grid storm surge model of the west coast of Britain, incorporating a high-resolution representation of the Mersey estuary is used to examine storm surge dynamics in the region. The focus of the study is the major surge that occurred during the period 11–14 November 1977, which has been investigated previously using uniform grid finite difference models and a finite element model of the west coast of Britain. However, none of these models included the Mersey estuary. Comparison of solutions in the eastern Irish Sea with those computed with these earlier models showed that, away from the Liverpool Bay region, the inclusion of the Mersey estuary had little effect. However, at the entrance to the Mersey, its inclusion did influence the solution. By including a detailed representation of the Mersey estuary within the model, it was possible to conduct a detailed study of storm surge propagation in the Mersey, which had never previously been performed. This detailed study showed for the first time that the surge’s temporal variability within the estuary is influenced by surge elevation at its entrance. This varies with time as a function of spatial and temporal variations of wind stress over the west coast of Britain. Within the Mersey, calculations show that the spatial variability is mainly determined by changes in bottom topography, which had not been included in earlier finite difference models. However, since water depth is influenced by variations in tidal elevation, this, together with tide surge interaction through bottom friction and momentum advection, influences the surge. The ability of the finite element model to vary the mesh in near-shore regions to such an extent that it can resolve the Mersey and hence the impact of the Mersey estuary upon the Liverpool Bay circulation shows that it has distinct advantages over earlier finite difference models. In the absence of detailed measurements within the Mersey at the time of the surge, it was not possible to validate predicted surge elevations within the Mersey. However, significant insight into physical processes influencing the surge propagation down the estuary, its reflection and spatial/temporal variability could be gained.  相似文献   

18.
Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi‐distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high‐mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two‐step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing ‘normal’ (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance. © 2013 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

19.
Synopsis

Between 1963 and 1965, sinking of anger boreholes and testing of quality of groundwater at different depths along Digha coast provided the principal basis for defining the distribution and movement of the saline and fresh groundwater within a phreatic aquifer (7–9 metres in thickness) consisting of fine to coarse grained sand with occasional soft clay lenses of Recent age. The auger holes were sunk along 10 selected lines in an area of about 25 sq.km. extending from 3 km east of Digha on the east to the confluence of the Subarnarekha river with the Bay of Bengal on the west.

The results of the study revealed the existence of a fresh water wedge (chloride content varying from 20 to 300 ppm) separated by two saline water zones, one near the top and the other at the bottom of the aquifer. Isochlor of 500 ppm and 2.3 chloride-bicarbonate ratio delineated the saline groundwater body. The 300 and 500 ppm isochlors defined the zone of diffusion which had a variable shape and thickness depending on several factors.

Minor movements of the interface occur due to tidal and groundwater recharge variations. The interface was found to occur at much shallower depth than that calculated on the basis of the Ghyben-Herzberg principle. The reasons for such deviation have been discussed.  相似文献   

20.
Langevin CD 《Ground water》2003,41(6):758-771
Variable density ground water flow models are rarely used to estimate submarine ground water discharge because of limitations in computer speed, data availability, and availability of a simulation tool that can minimize numerical dispersion. This paper presents an application of the SEAWAT code, which is a combined version of MODFLOW and MT3D, to estimate rates of submarine ground water discharge to a coastal marine estuary. Discharge rates were estimated for Biscayne Bay, Florida, for the period from January 1989 to September 1998 using a three-dimensional, variable density ground water flow and transport model. Hydrologic stresses in the 10-layer model include recharge, evapotranspiration, ground water withdrawals from municipal wellfields, interactions with surface water (canals in urban areas and wetlands in the Everglades), boundary fluxes, and submarine ground water discharge to Biscayne Bay. The model was calibrated by matching ground water levels in monitoring wells, baseflow to canals, and the position of the 1995 salt water intrusion line. Results suggest that fresh submarine ground water discharge to Biscayne Bay may have exceeded surface water discharge during the 1989, 1990, and 1991 dry seasons, but the average discharge for the entire simulation period was only approximately 10% of the surface water discharge to the bay. Results from the model also suggest that tidal canals intercept fresh ground water that might otherwise have discharged directly to Biscayne Bay. This application demonstrates that regional scale variable density models are potentially useful tools for estimating rates of submarine ground water discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号