首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小型单拖网渔船V 型网板水动力性能研究   总被引:1,自引:0,他引:1  
网板是拖网的重要属具之一, 广泛应用于近岸小型单拖渔船的生产作业中, 其水动力性能的优劣直接关系到拖网的生产效果和经济效益。作者以网板面积1 m2、展弦比0.55的 V 型网板为例进行小型单拖渔船的水动力性能研究。 基于田内相似准则, 相似比为2制作网板模型, 进行循环水槽模型试验, 实验冲角在10~60°范围内, 来流速度在0.2~0.7 m/s, 得出网板升阻力系数等流体动力特性曲线、临界冲角、最大升阻比。结果表明, 该型网板的最大升阻比约为1.86, 达到最大升阻比的临界冲角在15~25°附近, 该结果可为渔业生产操作中网板冲角的设置提供依据。实验结果同时显示, 该型网板的水动力效率略低于其他类型网板, 说明其板型仍有较大的改进空间。  相似文献   

2.
Wave radiation by a floating rectangular structure in oblique seas   总被引:1,自引:0,他引:1  
The linear wave radiation by a long floating rectangular structure in oblique seas of finite depth is investigated by use of the method of separation of variables and the eigenfunction expansion matching method. Analytical expressions for the radiated potentials, wave forces and hydrodynamic coefficients are given. The correctness of these expressions is verified through two specific examples investigated previously by other numerical methods. Using the present analytical solution, the hydrodynamic effects of the angle of incidence, the draft and the width of the structure on the wave forces and hydrodynamic coefficients are discussed in detail which may provide some useful information for the design of rectangular structures in oblique seas.  相似文献   

3.
In this paper,the effects of a quay or a solid jetty on hydrodynamic coefficients and vertical wave excitation forces on a ship woth or without forward speed are discussed.A modified simple Green function technique is used to calculate the 2D coefficients while the strip theory is used to calculate the 3D coefficients. Wave excitation forces are also calculated with the strip theory. Numerical results are provided for hydrodynamic coefficients and vertical wave excitation forces on a 200000 DWT tanker ship. It is found that the quay has a considerable effect on the hydrodynamic coefficients and wave excitation forces for a ship.  相似文献   

4.
Kihun  Hang S.   《Ocean Engineering》2007,34(8-9):1138-1150
This paper describes the estimation of hydrodynamic coefficients and the control algorithm based on a nonlinear mathematical modeling for a test bed autonomous underwater vehicle (AUV) named by SNUUV I (Seoul National University Underwater Vehicle I).A six degree of freedom mathematical model for SNUUV I is derived with linear and nonlinear hydrodynamic coefficients, which are estimated with the help of a potential code and also the system identification using multi-variable regression.A navigation algorithm is developed using three ranging sonars, pressure sensor and two inclinometers keeping towing tank applications in mind. Based on the mathematical model, a simulation program using a model-based control algorithm is designed for heading control and wall following control of SNUUV I.It is demonstrated numerically that the navigation system together with controller guides the vehicle to follow the desired heading and path with a sufficient accuracy. Therefore the model-based control algorithm can be designed efficiently using the system identification method based on vehicle motion experiments with the appropriate navigation system.  相似文献   

5.
The hydrodynamic interaction between an Autonomous Underwater Vehicle (AUV) manoeuvring in close proximity to a larger underwater vehicle can cause rapid changes in the motion of the AUV. This interaction can lead to mission failure and possible vehicle collision. Being self-piloted and comparatively small, an AUV is more susceptible to these interaction effects than the larger body. In an aim to predict the manoeuvring performance of an AUV under the effects of the interaction, the Australian Maritime College (AMC) has conducted a series of computer simulations and captive model experiments. A numerical model was developed to simulate pure sway motion of an AUV at different lateral and longitudinal positions relative to a larger underwater vehicle using Computational Fluid Dynamics (CFDs). The variables investigated include the surge force, sway force and the yaw moment coefficients acting on the AUV due to interaction effects, which were in turn validated against experimental results. A simplified method is presented to obtain the hydrodynamic coefficients of an AUV when operating close to a larger underwater body by transforming the single body hydrodynamic coefficients of the AUV using the steady-state interaction forces. This method is considerably less time consuming than traditional methods. Furthermore, the inverse of this method (i.e. to obtain the steady state interaction force) is also presented to obtain the steady-state interaction force at multiple lateral separations efficiently. Both the CFD model and the simplified methods have been validated against the experimental data and are capable of providing adequate interaction predictions. Such methods are critical for accurate prediction of vehicle performance under varying conditions present in real life.  相似文献   

6.
Quantitative measurement of the response of benthic habitats to impact from towed fishing gears is of great importance to the ecosystem and the long-term management of sustainable fisheries. To date, most studies on the effects of trawling on the benthos have focussed on before/after, control/impact comparative studies. This research has proved important in terms of describing general trends and has identified taxa that suffer high levels of mortality, and habitat types where impact is the greatest. A limitation, however, to this comparative work is the lack of prediction-based methodology and it would be very beneficial to develop a more mechanistic approach that would allow trawling impact on the benthos to be estimated for a wider range of species and habitats. This paper is a first step in this approach and focuses on modelling the physical interaction between gear components and the seabed. In particular the penetration and disturbance to the seabed caused by (i) the roller clump of a twin trawl and (ii) a trawl door, are examined.A finite element (FE) model of the interaction of these components and the seabed is developed using the different soil models and features available within the Abaqus finite element software package. The resulting models are able to predict the penetration depth and sediment displacement associated with each gear component and the predictions are compared with the results obtained during sea trials. The sea trials were undertaken on two sediment types at depths accessible to scientific divers using SCUBA diving techniques who measured and profiled the physical alteration to the seabed following the passage of a roller clump and a trawl door. In addition, drag forces obtained from the sea trials are compared with numerical predictions of the drag related to the soil and the estimated fluid drag. Good agreement between the experimental trials and numerical simulations is found and hence this study provides the basis for investigation of the interaction of other components and sediment types.  相似文献   

7.
Fuel consumption in fisheries is a primary concern because of its effects on the environment and the costs incurred by fishermen. Many studies have been conducted to reduce the fuel consumption in fishing operations. Fuel consumption due to fishing gear during a fishing operation is generally related to the hydrodynamic resistance on the gear. This means that fuel consumption is proportional to the drag created by the towing speed. Based on numerical methods, this study suggests a new approach to reduce fuel consumption in fisheries. The results of the simulation are in good agreement with those of model experiments. The total as well as partial resistance forces on the gear are calculated by simulation. The simulation results suggest improved materials and gear structure for reducing the hydrodynamic forces on the gear while maintaining gear performance. The method for assessing the gear performance involves measuring the height and width of the net mouth. Furthermore, this study investigates the efficiency of a low-energy trawl from an economic point of view. The findings of this study will be useful in reducing greenhouse gas (GHG) emissions in fishing operations, and thereby contribute toward lowering fishing costs by saving fuel.  相似文献   

8.
The hydrodynamic forces on the stationary partially submerged cylinder are investigated through towing test with Reynolds number ranging from 5 × 104 to 9 × 105. Three test groups of partially submerged cylinders with submerged depths of 0.25 D, 0.50 D, and 0.75 D and one validation group of fully submerged cylinders are conducted. During the experiments, the hydrodynamic forces on the cylinders are measured using force sensors. The test results show a considerable difference in the hydrodynamic coefficients for the partially submerged cylinders versus the fully submerged cylinders. A significant mean downward lift force is first observed for the partially submerged cylinders in a steady flow. The maximum of the mean lift coefficients can reach 1.5. Two distinct features are observed due to the effects of overtopping: random distributions in the mean drag coefficients and a clear quadratic relationship between the mean lift coefficients and the Froude number appear in the non-overtopping region. However, the novel phenomenon of a good linear relationship with the Froude number for the mean hydrodynamic coefficients is clearly shown in the overtopping region. In addition, fluctuating hydrodynamic coefficients are further proposed and investigated. These results are helpful to have a better understanding of the problem and to improve related structural designs.  相似文献   

9.
The radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas of finite depth is investigated. The analytical expressions for the radiated and diffracted potentials are derived as infinite series by use of the method of separation of variables. The unknown coefficients in the series are determined by the eigenfunction expansion matching method. The expressions for wave forces, hydrodynamic coefficients and reflection and transmission coefficients are given and verified by the boundary element method. Using the present analytical solution, the hydrodynamic influences of the angle of incidence, the submergence, the width and the thickness of the structure on the wave forces, hydrodynamic coefficients, and reflection and transmission coefficients are discussed in detail.  相似文献   

10.
Perforated plates, relevant for several marine applications, are experimentally and numerically investigated. The numerical investigations are performed using a presently developed Navier–Stokes solver. Several comparison and sensitivity studies are presented, in order to validate and verify the solver. Forced heave experiments are performed on two perforated plates with perforation ratios 19% and 28%. Amplitude-dependent added mass and damping coefficients are presented. Good agreement is obtained between the solver and the present experiments. Consistent with existing data, the results show that the hydrodynamic coefficients of perforated plates are highly amplitude dependent. The damping force is found to dominate over added mass force. The damping force dominance increases with increasing perforation ratio. It is highlighted that plate-end flow separation has an important effect on the damping coefficient. The developed numerical solver is two-dimensional, but is found to yield reasonable estimates of hydrodynamic force coefficients when compared with a previous three-dimensional experimental investigation. This could indicate that three-dimensional effects are not dominant for the hydrodynamic forces of perforated plates, and that a two-dimensional viscous flow solver could have relevance as a tool for estimating hydrodynamic forces on three-dimensional perforated structures.  相似文献   

11.
The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al.(2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.  相似文献   

12.
Wave-force coefficients of horizontal circular cylinders inclined with respect to the incoming waves, are studied numerically under conditions when the effects of flow separation are insignificant. The mathematical model is set in terms of a boundary-value problem for the velocity potential of the wave, which is formulated under the assumption of the linear diffraction theory, and solved numerically by the boundary element method. The numerical calculations are performed in the vertical plane, assuming uniform water depths in the direction along the axis of the cylinder. A first-order correction to the pressures is introduced to take account of the asymmetry of the velocity field around the cylinder when it is close to the plane bed. The correction procedure is found to be highly effective in computing the transverse forces for small gap ratios. The numerical results show that irrespective of the values of the gap ratio, the in-line forces are always sensitive to the wave directionality. The transverse forces, however, show sensitivity only for the smaller gap ratios. It is also shown that by accounting for the wave directionality effects in the wave kinematics only, the forces could be estimated to a certain extent by using the hydrodynamic force coefficients of inertia and lift corresponding to the normal waves.  相似文献   

13.
The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al. (2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.  相似文献   

14.
The hydrodynamic problem arising form the interaction of linear water waves with a wave energy device consisting of two coaxial vertical cylinders of different radii is investigated. One cylinder is riding in waves, while another is submerged in fluid. By use of the method of separation of variables and the method of matched eigenfunction expansion, analytical expressions for the potentials are obtained. Using the expressions for the potentials, analytical expressions for the hydrodynamic coefficients and exciting forces/moments on the device are obtained. Numerical results of the hydrodynamic coefficients and exciting forces/moments are presented for some ratios of the radius of the submerged cylinder to that of the riding one. It is found that the radius of the submerged cylinder has a significant influence on the hydrodynamic coefficients and exciting forces/moments for relatively bigger radius of the submerged cylinder at low frequencies.  相似文献   

15.
The paper presents the results of an experimental investigation of added masses and damping coefficients of a model of a fast monohull. A model of 4.5 m length between perpendiculars was constructed of fiber glass reinforced plastic (FRP) with four segments connected by a backbone. The backbone was instrumented with load cells at the positions of the cuts. This configuration, combined with load cells measuring the force exerted by the forced motion actuators, made it possible to obtain the hydrodynamic coefficients for each of the four hull segments.

The investigation focused on the vertical motions. Thus, the experimental program included forced harmonic heave and pitch motions in calm water (no incident waves). Subtracting inertial and restoring forces from total measured forces, one obtained the hydrodynamic component, which then resulted in the hydrodynamic coefficients. The effects of steady forward speed on the radiation forces were investigated by conducting model tests at four forward speeds. Finally, nonlinear effects were assessed by conducting model tests for three amplitudes of forced heave and forced pitch motions.  相似文献   


16.
A computer program is developed for hull/mooring/riser coupled dynamic analysis of a tanker-based turret-moored FPSO (Floating Production Storage and Offloading) in waves, winds, and currents. In this computer program, the floating body is modeled as a rigid body with six degrees of freedom. The first- and second-order wave forces, added mass, and radiation damping at various yaw angles are calculated from the second-order diffraction/radiation panel program WAMIT. The wind and current forces for various yaw angles of FPSO are modeled following the empirical method suggested by OCIMF (Oil Company International Marine Forum).

The mooring/riser dynamics are modeled using a rod theory and finite element method (FEM), with the governing equations described in a generalized coordinate system. The dynamics of hull, mooring lines, and risers are solved simultaneously at each time step in a combined matrix for the specified connection condition. For illustration, semi-taut chain-steel wire-chain mooring lines and steel catenary risers are employed and their effects on global FPSO hull motions are investigated. To better understand the physics related to the motion characteristics of a turret-moored FPSO, the role of various hydrodynamic contributions is analyzed and assessed including the effects of hull and mooring/riser viscous damping, second-order difference-frequency wave-force quadratic transfer functions, and yaw-angle dependent wave forces and hydrodynamic coefficients. To see the effects of hull and mooring/riser coupling and mooring/riser damping more clearly, the case with no drag forces on those slender members is also investigated. The numerical results are compared with MARIN's wave basin experiments.  相似文献   


17.
《Ocean Engineering》1999,26(5):431-462
The hydrodynamic force model for prediction of forces on submarine pipelines as described includes flow history effect (wake effects) and time dependence in the force coefficients. The wake velocity correction is derived by using a closed-form solution to the linearized Navier–Stokes equations for oscillatory flow. This is achieved by assuming that the eddy viscosity in the wake is only time dependent and of a harmonic sinusoidal form. The forces predicted by the new Wake (Wake II) Model have been compared to Exxon Production Research Company Wake Model in terms of time histories (force shape) and magnitudes of peak forces. Overall, the model predictions by the Wake II Model are satisfactory and represent a substantial improvement over the predictions of the conventional models. The conventional force models representing adaptations of Morison's equation with ambient velocity and constant coefficients give predictions that are in poor agreement with the measurements especially for the lift force component. The Wake II Force Model can be used for submarine pipeline on-bottom stability design calculations for regular waves with various pipe diameters.  相似文献   

18.
The hydrodynamic force model for prediction of forces on submarine pipelines as described includes flow history effect (wake effects) and time dependence in the force coefficients. The wake velocity correction is derived by using a closed-form solution to the linearized Navier–Stokes equations for oscillatory flow. This is achieved by assuming that the eddy viscosity in the wake is only time dependent and of a harmonic sinusoidal form. The forces predicted by the new Wake (Wake II) Model have been compared to Exxon Production Research Company Wake Model in terms of time histories (force shape) and magnitudes of peak forces. Overall, the model predictions by the Wake II Model are satisfactory and represent a substantial improvement over the predictions of the conventional models. The conventional force models representing adaptations of Morison's equation with ambient velocity and constant coefficients give predictions that are in poor agreement with the measurements especially for the lift force component. The Wake II Force Model can be used for submarine pipeline on-bottom stability design calculations for regular waves with various pipe diameters.  相似文献   

19.
The hydrodynamic force model for pipelines presented includes flow history effects (wake effects) and time dependence in the force coefficients. These two features in the model were necessary to obtain satisfactory agreement between model predictions and full scale field measurements of pipeline forces. Conventional force models which represent adaptations of Morison's equation with ambient velocity and constant coefficients give predictions which for the lift component of the force in particular are in very poor agreement with the measurements. The parameters in the new model have been estimated on the basis of the full scale measurements and reflect a wide range of flow conditions. The model can be used in pipeline on-bottom stability design calculations for regular or irregular waves.  相似文献   

20.
Wave forces acting on submerged circular cylinders moving forward with a constant velocity in regular waves are investigated experimentally. Hydrodynamic forces acting on the cylinder forced to surge in a steady are also measured and hydrodynamic coefficients were obtained. Wave force coefficients obtained from wave force measurements are compared with the hydrodynamic coefficients from surging tests, and the similarity and difference between them are discussed. Experiments show that these coefficients are quite different from those of the cylinder without a forward velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号