首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近地空间环境的GNSS无线电掩星探测技术   总被引:1,自引:1,他引:0       下载免费PDF全文
从GPS/MET计划开始,基于GNSS的无线电掩星技术已成为一种强大的近地空间环境探测手段.截至到目前,已经有20多颗发射的低轨道卫星带GPS掩星接收机,其中COSMIC是首个专门用于掩星探测的卫星星座.这些掩星数据被广泛应用于气象预报、气候与全球变化研究、及空间天气监测和电离层研究.由于COSMIC的成功,相关合作单位目前正积极推动COSMIC-2计划,该计划将总共有12颗卫星,于2016年与2019年各发射6颗.COSMIC-2将携带一个高级的GNSS掩星接收机,它将接受GPS与GLONASS信号,并具备接受其他可获得信号源的能力(如中国北斗定位信号),其每日观测的掩星数量将是COSMIC的4~6倍.同时COSMIC-2还将携带两个空间天气载荷,加强空间天气的监测能力.本文以COSMIC与COSMIC-2计划为主线,对掩星的发展历史、技术要点进行了简单介绍,并简要综述了COSMIC取得的部分科学成果,同时对未来包括技术发展和众多的掩星观测进行了展望.  相似文献   

2.
本文利用卫星重力反演与模拟软件ANGELS系统(ANalyst of Gravity Estimation with Low-orbit Satellites)对低低跟踪模式的重力卫星的关键载荷精度指标进行了深入分析.模拟结果表明:(1)对短弧长积分法而言,在低低跟踪模式的关键载荷精度指标中,重力场反演精度对星间距离变率精度最为敏感;(2)通过对目前在轨运行GRACE的载荷指标进行分析,发现轨道数据的误差主要影响重力场的低阶部分(约小于25阶),较高阶次部分(约大于26阶)主要受星间距离变率的误差限制;(3)如果下一代低低跟踪模式的重力卫星的目标之一是把重力异常反演精度较GRACE提高约10倍,则在保持轨道高度和GRACE相同的前提下,轨道、星间距离变率和星载加速度计等关键载荷指标需要达到的最低精度分别约为2cm、10nm·s-1和3.0×10-10 m·s-2;(4)轨道精度和混频误差将是影响下一代低低跟踪模式重力卫星重力场恢复能力进一步提高的主要制约因素,距离变率精度和加速度计精度存在盈余.  相似文献   

3.
This Special Issue on “Mass Distribution and Mass Transport in the Earth System: Recent Scientific Progress due to Interdisciplinary Research” reports a number of findings resulting from a collaborative effort run from 2006 until 2013, in the framework of the DFG Priority Program 1257 “Mass Distribution and Mass Transport in the Earth System”. Contributions have been arranged along five lines, i.e. (1) improvements in geodesy: satellite mass monitoring through gravimetry and altimetry, (2) applications in large-scale hydrology, (3) applications in solid Earth research, (4) applications in cryospheric research, (5) applications in ocean sciences.  相似文献   

4.
The ESA Gravity and steady state Ocean and Circulation Explorer, GOCE, mission will utilise the principle of satellite gravity gradiometry to measure the long to medium wavelengths in the static gravity field. Previous studies have demonstrated the low sensitivity of GOCE to ocean tides and to temporal gravity field variations at the seasonal scale. In this study we investigate the sensitivity of satellite gradiometry missions such as GOCE to secular signals due to ice-mass change observed in Greenland and Antarctica. We show that unaccounted ice-mass change signal is likely to increase GOCE-related noise but that the expected present-day polar ice-mass change is below the GOCE sensitivity for an 18-month mission. Furthermore, 2–3 orders of magnitude improvement in the gradiometry in future gradiometer missions is necessary to detect ice-mass change with sufficient accuracy at the spatial resolution of interest.  相似文献   

5.
Several satellite-only gravity models based on the analysis of satellite-to-satellite tracking (SST) data have become available in the course of the last decade. The realization of the satellite missions CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery And Climate Experiment (GRACE) enabled the practical implementation of two modes of the SST principle, namely the high–low and the low–low SST. Though similar in their fundamental idea, which is the indirect observation of the gravity field based on the position of two satellites orbiting the Earth, the different architecture and geometrical layout of these techniques capture different fingerprints of the observed field. In the last few years, satellite-only gravity models based on the analysis of satellite gravity gradiometry (SGG) data became available and led to a new insight into the gravity field. The implementation of the SGG principle became possible after the launch of Gravity field and steady-state Ocean Circulation Explorer (GOCE), the first gravitational gradiometry mission. Based on the principle of differential accelerometry, GOCE provides the gravitational gradients which can be used in gravity field retrieval as primary observations of the field at satellite altitude. In the present study, we consider some of the current satellite-only and combined gravity models based on the analysis of CHAMP, GRACE, GOCE, gravimetry and altimetry data. In order to perform a thorough analysis of the models, we present an overview of tools for their quality assessment both in an absolute and relative sense in terms of computing spectral quantities, such as correlation or smoothing coefficients per degree and per order, attempting to demonstrate possible non-isotropic features in the models. Furthermore, typical geodetic measures in computing second-order derivatives, such as degree and order variances and difference variances, have been also evaluated for the same models, using the combined model EGM2008 as reference. Apart from these standard spectral assessment quantities, a systematic spatial representation of the second derivatives at satellite altitude has been performed. The combination of the two analysis steps (spectral and spatial) permits a first detailed assessment of the models, focusing especially on the identification of characteristic interpretable bandwidths.  相似文献   

6.
卫星精密定轨与重力场建模的同解法   总被引:1,自引:1,他引:0       下载免费PDF全文
现代卫星跟踪卫星重力测量技术显著改善了地球重力场模型的中长波段信号,并拓展了重力场模型在相关科学研究中的应用.同解法作为卫星重力观测数据的主要处理手段之一,国内一直没有实质突破.本文从基本模型和关键技术的分析出发,剖析了同解法的特点,特别是在建立同解法与几何法(运动学)定轨、一般动力学方法关系的基础上,给出了一种同解法的实现路线.在已有的精细数据预处理和并行计算研究基础上,结合GRACE卫星的实测飞行数据,在国内首次获得了真实卫星任务数据条件下的同解法结果,并进行了动力法轨道的外部质量检核、卫星非保守力分析、重力场模型的GPS水准检验等.利用卫星激光测距数据检验,卫星精密轨道的径向精度优于2cm,同时建立了质量可靠的卫星重力场模型,充分展示了同解法的优点.数值结果及其分析表明,本文所提的同解法实施方案合理可行,已经掌握了实现同解法的关键技术,获得了从仿真研究到实际飞行数据处理的新进展.最后,本文对同解法今后的发展思路,以及如何进一步挖掘同解法的潜力,提出了见解和今后的工作方向.  相似文献   

7.
8.
Since its launch in March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided a global mapping of the time-variations of the Earth’s gravity field. Tiny variations of gravity from monthly to decadal time scales are mainly due to redistributions of water mass inside the surface fluid envelops of our planet (i.e., atmosphere, ocean and water storage on continents). In this article, we present a review of the major contributions of GRACE satellite gravimetry in global and regional hydrology. To date, many studies have focused on the ability of GRACE to detect, for the very first time, the time-variations of continental water storage (including surface waters, soil moisture, groundwater, as well as snow pack at high latitudes) at the unprecedented resolution of ~400–500 km. As no global complete network of surface hydrological observations exists, the advances of satellite gravimetry to monitor terrestrial water storage are significant and unique for determining changes in total water storage and water balance closure at regional and continental scales.  相似文献   

9.
Seasonal water storage change of the Yangtze River basin detected by GRACE   总被引:13,自引:0,他引:13  
1 Introduction Large-scale mass redistribution, or temporal varia- tion of mass within the Earth system, the driving force of interactions between solid Earth and geophysical fluids envelope (i.e., atmosphere, ocean, and hydro- sphere), is an important geophysical process critical to human life. Most of the interactions between solid Earth and the atmosphere/oceans happen at seasonal and inter-annual time scales. One important contribu- tor of mass redistribution at seasonal and inter-annual …  相似文献   

10.
Earth tides     
The main geometrical characteristics and mechanical properties of bodily tides are described, using the convenient elastic parameters of Love. The problem of the Earth's deformation is a problem of spherical elasticity of the sixth order. The importance of Earth tides in astronomy and geophysics is emphasized by their relation to the precession-nutation and tesseral tidal problems, the secular retardation of the Earth's speed of rotation due to the dissipation of energy in sectorial tides, the periodic variations of the speed of rotation due to zonal tides, the satellite orbit perturbations due to the Earth's potential variation, and the radial deformations in laser distance measurements. The possibility that dynamical effects would be produced in the Earth's liquid core was pointed out by Poincaré and developed by Jeffreys, Vicente, and Molodensky. An experimental confirmation is presented here. The role of the Earth tide phenomenon in gravimetry and oceanography is also described, as are the perturbing effects due to regional tectonic features. Instrumental developments are critical in the acquisition of precise data; the calibration problem is fundamental for a correct comparison with Earth models.  相似文献   

11.
Reducing aliasing effects of insufficiently modelled high-frequent, non-tidal mass variations of the atmosphere, the oceans and the hydrosphere in gravity field models derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission is the topic of this study. The signal content of the daily GRACE gravity field model series (ITG-Kalman) is compared to high-frequency bottom pressure variability and terrestrially stored water variations obtained from recent numerical simulations from an ocean circulation model (OMCT) and two hydrological models (WaterGAP Global Hydrology Model, Land Surface Discharge Model). Our results show that daily estimates of ocean bottom pressure from the most recent OMCT simulations and the daily ITG-Kalman solutions are able to explain up to 40 % of extra-tropical sea-level variability in the Southern Ocean. In contrast to this, the daily ITG-Kalman series and simulated continental total water storage variability largely disagree at periods below 30 days. Therefore, as long as no adequate hydrological model will become available, the daily ITG-Kalman series can be regarded as a good initial proxy for high-frequency mass variations at a global scale. As a second result of this study, based on monthly solutions as well as daily observation residuals, it is shown that applying this GRACE-derived de-aliasing model supports the determination of the time-variable gravity field from GRACE data and the subsequent geophysical interpretation. This leads us to the recommendation that future satellite concepts for determining mass variations in the Earth system should be capable of observing higher frequeny signals with sufficient spatial resolution.  相似文献   

12.
The results of the theoretical and experimental research on the technique for refining the global Earth geopotential models such as EGM2008 in the continental regions are presented. The discussed technique is based on the high-resolution satellite data for the Earth’s surface topography which enables the allowance for the fine structure of the Earth’s gravitational field without the additional gravimetry data. The experimental studies are conducted by the example of the new GGMplus global gravity model of the Earth with a resolution about 0.5 km, which is obtained by expanding the EGM2008 model to degree 2190 with the corrections for the topograohy calculated from the SRTM data. The GGMplus and EGM2008 models are compared with the regional geoid models in 21 regions of North America, Australia, Africa, and Europe. The obtained estimates largely support the possibility of refining the global geopotential models such as EGM2008 by the procedure implemented in GGMplus, particularly in the regions with relatively high elevation difference.  相似文献   

13.
The earlier experiments of ionospheric tomography were conducted by receiving satellite signals from ground-based stations and then reconstructing electron density distribution from measures of the total electron content (TEC). In June 1994, National Central University built up the low-latitude ionospheric tomography network (LITN) including six ground stations spanning a range of 16.7° (from 14.6°N to 31.3°N) in latitude within 1° of 121°E longitude to receive the naval navigation satellite system (NNSS) signals (150 and 400 MHz). In the study of tomographic imaging of the ionosphere, TEC data from a network of ground-based stations can provide detailed information on the horizontal structure, but are of restricted utility in sensing vertical structure. However, an occultation observation mission termed the global positioning system/meteorology (GPS/MET) program used a low Earth orbiting (LEO) satellite (the MicroLab-1) to receive multi-channel GPS carrier phase signals (1.5 and 1.2 GHz) and demonstrate active limb sounding of the Earth's atmosphere and ionosphere. In this paper, we have implemented the multiplicative algebraic reconstruction technique (MART) to reconstruct and compare two-dimensional ionospheric structures from measured TECs through the receptions of the GPS signals, the NNSS signals, and/or both of the systems. We have also concluded the profiles retrieved from tomographic reconstruction showing much reasonable electron density results than the original vertical profiles retrieved by the Abel transformation and being in more agreement in peak electron density to nearby ionosonde measurements.  相似文献   

14.
Polar motion and UT1 contain small geophysical signals (<0.1 milliarcsecond) driven by the daily cycle in the solar heating. These signals are either irregular or quasi-harmonic therefore need to be expressed by the time series and studied using the time domain techniques. This work is focused on the complex demodulation method which seems to be particularly useful for studying high frequency geophysical signals in Earth rotation. After general introduction of the method and its properties, we describe its application for modeling diurnal and subdiurnal components of polar motion and UT1 and of the corresponding excitation functions. We also derive dynamical equations which can be used for direct comparison of the signals demodulated from the Earth rotation and geophysical excitation data.  相似文献   

15.
Due to the ESA’s satellite mission GOCE launched in March 2009, gravitational gradients sampled along the orbital trajectory approximately 250 km above the Earth’s surface have become available. Since 2010, gravitational gradients have routinely been applied in geodesy for the derivation of global Earth’s gravitational models provided in terms of fully normalized coefficients in a spherical harmonic series representation of the Earth’s gravitational potential. However, in geophysics, gravitational gradients observed by spaceborne instruments have still been applied relatively seldom. This contribution describes their possible geophysical applications in structural studies where gravitational gradients observed at satellite altitudes are compared with those derived by a spectral forward modeling technique using available global models of selected Earth’s mass components as input data. In particular, GOCE gravitational gradients are interpreted in terms of a superposition principle of gravitation as combined gravitational effects generated by a homogeneous reference ellipsoid of revolution, mean topographic and ice mass density distributions, depth-dependent mass density contrasts within bathymetry and lateral mass density anomalies with sediments and crustal layers. Respective gravitational effects are one by one removed from gravitational gradients observed at approximately 250 km elevation above ground. Removing respective gravitational gradients from observed gravitational gradients gradually reveals problematic geographic areas with model deficiencies. For the full interpretation of observed gravitational gradients, deficiencies of CRUST2.0 must be corrected and effects of deeper laying mass anomalies not included in the study considered. These findings are confirmed by parameters describing spectral properties of the gravitational gradients. The methodology can be applied for validating Earth’s gravitational models and for constraining crustal models in the development phase.  相似文献   

16.
The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella “level-2” IAG service (incorporating the International Gravity Bureau, International Geoid Service, International Center for Earth Tides, International Center for Global Earth models, and other future new services for, e.g., digital terrain models), would be a natural key element contributing to GGOS. Major parts of the work of the services would, however, remain complementary to the GGOS contributions, which focus on the long-wavelength components of the geopotential and its temporal variations, the consistent procedures for regional data processing in a unified vertical datum and Terrestrial Reference Frame, and the ensuring validations of long-wavelength gravity field data products.  相似文献   

17.
本文设计了一种高-低卫星跟踪卫星、低-低卫星跟踪卫星和卫星重力梯度测量相结合的新型重力测量卫星系统,其可在一定程度上发挥卫星重力梯度和低低卫星跟踪卫星两种测量模式各自的优势.基于重力卫星系统指标设计的半解析法,深入分析了不同重力测量卫星系统配置和不同观测量及其不同白噪声水平情况下,新型卫星重力测量模式反演重力场模型的能力.数值模拟分析结果表明:在观测值精度和星间距离相同的条件下,轨道高度是影响重力场反演精度的关键因素;随着星间距离的增大,高频重力场信号反演精度会先提高后降低,轨道高度在200~350 km之间时,星间距离在150~180 km之间时反演精度最优;星间距离变率和卫星重力梯度两类观测值仅在某些精度配置时可达到优势互补,如果某一类观测值精度很高,则另一类观测值在联合解算时贡献非常小或者没有贡献.在300 km轨道高度,若以GRACE和GOCE任务的设计指标1 μm·s-1/√Hz和5 mE/√Hz来配置新型重力测量卫星系统中星间距离变率和引力梯度观测值的精度,联合两类观测值解算200阶次模型大地水准面的精度比独立解算分别提高1.2倍和2.8倍.如果以实现100 km空间分辨率1~2 cm精度大地水准面为科学目标,考虑卫星在轨寿命,建议轨道高度选择300 km,星间距离变率和卫星重力梯度的精度分别为0.1 μm·s-1/√Hz和1 mE/√Hz.本文的研究成果可为中国研制自主的重力测量卫星系统提供参考依据.  相似文献   

18.
无论在行星大小、质量还是轨道速度等方面,金星都是太阳系中与地球最相似的行星.自1960年代初期开始,金星一直是人类深空探测的重要目标.本文简要地回顾了人类探索金星的历史,总结了对金星已有的认识,梳理了金星的主要科学问题,最后介绍了未来的国际探测计划,并建议了我国的金星探测目标.早期对金星的探测以苏联的金星计划(Венера)和美国的水手系列(Mariner)为代表,后期的探测器以欧盟、日本等国家的“金星快车(Venus Express)”、“拂晓号(Akatsuki)”为代表.这些探测结果为我们认识金星大气成分、地表地形和内部结构提供了重要的数据.金星的大气组成以CO2为主,含少量N2,与现在地球的大气组成显著不同,类似早期地球的大气组成.虽然金星地表目前没有液态水,但部分理论模拟工作表明金星地表可能曾经有液态水.一系列探测器对金星地表成分的分析表明,金星地表主要由玄武岩组成.在地形地貌方面,由于金星特殊的地表环境,金星表面风化作用对地表地貌影响很小.金星的地表主要受控于比较年轻的火山作用,发育了许多不同于地球的地貌特征,主要包括区域平原、盾状火山平原、冕状地形以及瓦片状地形等,其动力学机制可能是地幔柱—岩石圈相互作用或地幔对流,至今未发现与板块构造相关的地貌.现阶段金星没有太多大型的、活跃的火山热点,虽然无法估测准确的火山活动速率,但相比地球来说火山活动速率小很多.在内部结构方面,金星具有与地球类似的核幔壳结构.金星的内部组成也与地球类似,例如金星地幔很可能是与地球相似的橄榄岩成分.不存在内部磁场和缺乏板块构造是金星区别于地球的两个重要特征.关于金星为什么没有自身磁场,主流观点是金星地核缺乏对流,无法演化出磁场.而针对金星为什么没有演化出板块构造,目前认为主要有三个可能的原因:地表温度过高,没有软流圈,金星缺乏液态水,其中液态水的缺乏接受度最广.从大气组成、地表岩石组合、构造作用等角度来看,金星都与早期地球非常相似,是我们理解类地行星演化的天然实验室.研究金星和地球为什么会朝不同方向演化,是深入理解包括系外行星在内的行星的宜居性形成与演变的重要途径。因此,金星一直是优先级别最高的深空探测目标之一.近几年,美国、俄罗斯以及欧洲等国家和地区分别针对金星目前主要的科学问题,例如金星是否存在早期海洋、金星的宜居性以及结构和重力场等,先后提出各自的金星探测计划.我国在新的国际竞争中应该、也必然有所作为.  相似文献   

19.
The Gravity Recovery and Climate Experiment (GRACE) has been measuring temporal and spatial variations of mass redistribution within the Earth system since 2002. As large earthquakes cause significant mass changes on and under the Earth’s surface, GRACE provides a new means from space to observe mass redistribution due to earthquake deformations. GRACE serves as a good complement to other earthquake measurements because of its extensive spatial coverage and being free from terrestrial restriction. During its over 10 years mission, GRACE has successfully detected seismic gravitational changes of several giant earthquakes, which include the 2004 Sumatra–Andaman earthquake, 2010 Maule (Chile) earthquake, and 2011 Tohoku-Oki (Japan) earthquake. In this review, we describe by examples how to process GRACE time-variable gravity data to retrieve seismic signals, and summarize the results of recent studies that apply GRACE observations to detect co- and post-seismic signals and constrain fault slip models and viscous lithospheric structures. We also discuss major problems and give an outlook in this field of GRACE application.  相似文献   

20.
本文是序列文章的第五篇,其内容包括:基于连续介质力学的基本理论,在考虑到地球的自引力、液核对核幔边界的压力和外部引潮力的作用下,严格地给出了地幔的角动量方程.利用前文的有关结论,进而给出了整体地球自转的动力学方程和内核地球模型的地球自转耦合运动学方程组.本文顾及了高阶岁差章动力矩对地球自转的影响,因而在理论上扩展了文献〔1〕给出的理论模型.本文的理论对进一步研究在高阶岁差章动力矩作用下的内核地球章动是非常有意义的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号