首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A budget model covering the Baltic Sea was developed for the time period 1980–2000 to estimate water and dissolved silica (DSi) fluxes as well as internal DSi sinks/sources. The Baltic Sea was resolved by eight basins, where the largest basin — the Baltic Proper — was divided laterally into north/west and southern/east parts as well as vertically to take into account the existence of the permanent halocline. The basins demonstrated rather different patterns with regard to silica cycling. The Gulfs of Finland and Riga together with the northernmost basins, Bothnian Bay and Bothnian Sea, are distinguished by substantial specific rates of silica removal accounting for 1.6–4.9 g Si m− 2 yr− 1. Bearing in mind the large total primary production, the basins comprising the Baltic Proper with the specific removal rates 0.2 and 1.2 g Si m− 2 yr− 1, do not appear as regions with a high silica accumulation. The Arkona and the Kattegat mainly behave as regions of rapid through-flows. These results point out the northernmost Gulf of Bothnia, the Gulfs of Riga and Finland as areas with a larger share of biogenic silica accumulation than in the Baltic Proper. It is attributed to hydrographic and hydrochemical features. An estimate of diatom export production was made for the Baltic Proper showing that the diatom contribution accounts for 19–44% of the net export production.  相似文献   

2.
The Great Belt, the Øresund and the Little Belt connect the central Baltic Sea and the Kattegat. A fixed station was moored in the contraction area in the Little Belt during the period 18–28 July 1995, measuring temperature, salinity and current in two levels, while discharge was measured by the RVDana. The composite Froude number calculated at the fixed station shows that the two layer flow through this area was most often supercritical. The discharges were satisfactorily related to the currents measured at the fixed station, and time-series of transports through the Little Belt were established. When compared to the transports through the Øresund the water transport ratio (Øresund:Little Belt) was found to be 4·4, while the salt transport ratio was found to be 3·0. The resistance of the Little Belt, when considering the differences in sea level from Gedser to Hornbæk, was 1839×10−12 s2 m−5. On the basis of water level and surface salinity measurements made during the period 1931–76, a net discharge of 2300 m3 s−1and a net salt transport of 36 tonnes s−1through the Little Belt from the central Baltic Sea were found.  相似文献   

3.
A three-dimensional, eddy-permitting ocean circulation model with implemented bottom boundary layer model and flux-corrected transport scheme is used to calculate the pathways and ages of various water masses in the Baltic Sea. The agreement between simulated and observed temperature and salinity profiles of the period 1980–2004 is satisfactory. Especially the renewal of the deep water in the Baltic proper by gravity-driven dense bottom flows is better simulated than in previous versions of the model. Based upon these model results details of the mean circulation are analyzed. For instance, it is found that after the major Baltic inflow in January 2003 saline water passing the Słupsk Furrow flows directly towards northeast along the eastern slope of the Hoburg Channel. However, after the baroclinic summer inflow in August/September 2002 the deep water flow spreads along the southwestern slope of the Gdansk Basin. Further, the model results show that the patterns of mean vertical advective fluxes across the halocline that close the large-scale vertical circulation are rather patchy. Mainly within distinct areas are particles of the saline inflow water advected vertically from the deep water into the surface layer. To analyze the time scales of the circulation mean ages of various water masses are calculated. It is found that at the sea surface of the Bornholm Basin, Gotland Basin, Bothnian Sea, and Bothnian Bay the mean ages associated to inflowing water from Kattegat amount to 26–30, 28–34, 34–38, and 38–42 years, respectively. Largest mean sea surface ages of more than 30 years associated to the freshwater of the rivers are found in the central Gotland Basin and Belt Sea. At the bottom the mean ages are largest in the western Gotland Basin and amount to more than 36 years. In the Baltic proper vertical gradients of ages associated to the freshwater inflow are smaller than in the case of inflowing saltwater from Kattegat indicating an efficient recirculation of freshwater in the Baltic Sea.  相似文献   

4.
Benthic Denitrification in the Gulf of Bothnia   总被引:1,自引:0,他引:1  
Denitrification was measured over an 8-month period in the Bothnian Bay and the Bothnian Sea, the two northernmost basins of the Baltic Sea. The recorded rates varied between 0 and 0·94 mmol N m−2day−1. In the Bothnian Sea, a seasonal pattern could be discerned with high rates in spring, no rate in summer and a moderate rate in winter. In the Bothnian Bay, no such seasonality was observed. It is suggested that denitrification in the Gulf of Bothnia is regulated by sediment nitrification. Calculation of annual mean rates of denitrification gave that the amount of nitrogen consumed by denitrification corresponded to 1·45×104tons N year−1for the Bothnian Bay and 3·45×104tons N year−1for the Bothnian Sea. A comparison with total N input (river runoff, point sources and atmospheric deposition) to the two basins showed that the proportion of N removed through denitrification amounted to 23% for the Bothnian Bay and 31% for the Bothnian Sea.  相似文献   

5.
Simulations of the time and depth-dependent salinity and current fields of the Columbia River Estuary have been performed using a multi-channel, laterally averaged estuary model. The study simulated two periods. The first, in October 1980, with low riverflow of about 4,000m3s−1, which showed marked changes in the salinity intrusion processes between neap and spring tides; and second, in spring 1981, with high riverflow varying between 7,000 and 15,000m3s−1, which showed the rapid response of the salinity intrusion to changes in riverflow and that vertical mixing did not change character with increasing tidal energy because of the maintenance of stratification by freshwater flow. An extreme low flow simulation (riverflow of 2,000m3s−1) showed a more partially mixed character of the estuary channels with tidal dispersion of salt across the Taylor Sands from the North Channel to the upper reaches of the Navigation Channel. Asymmetries in the non-linear tidal mean flows, in the flood and ebb circulations, and salinity intrusion characteristics between the two major channels were observed at all riverflows. The model confirms Jay and Smith's (1990) analysis of the circulation processes in that tidal advection of salt by the vertically sheared tidal currents is the dominant mechanism by which the salinity intrusion is maintained against large freshwater flows. An accurate finite-difference method, which minimized numerical dispersion, was used for the advection terms and was an important component in reasonably simulating the October neap-spring differences in the salinity intrusion. The simulations compare favorably with elevation, current and salinity time series observations taken during October 1980 and spring 1981.  相似文献   

6.
The sensitivity of the Baltic Sea mean salinity to climatic changes of the freshwater supply is analyzed. The average salinity of the Baltic Sea is about 6‰. The low salinity is an effect of a large net freshwater supply and narrow and shallow connections with the North Sea. As a result of mixing in the entrance area, a large portion of the outflowing Baltic Sea water returns with the inflowing salty water and thus lowers the salinity of the Baltic Sea deep-water considerably. This recycling of the Baltic Sea water is a key process determining the salinity of today's Baltic Sea. The sensitivity of this recycling, and thus of the Baltic Sea salinity, to climatic changes in the freshwater supply is analyzed. A simple model is formulated for the variations of the Baltic Sea freshwater content. Historical data of the freshwater supply and the salinity in the Baltic Sea are used in the model to achieve an empirical expression relating variations of the recycling of Baltic Sea water to the variations of the freshwater supply. The recycling is found to be very sensitive to the freshwater supply. We find that an increase of freshwater supply of 30% is the level above which the Baltic Sea would turn into a lake. Recent climate modeling results suggest that river runoff to the Baltic Sea may increase dramatically in the future and thus possibly put the Baltic Sea into a new state.  相似文献   

7.
Budgets for conservative tracers are used to determine the flow through the Irish Sea and combined with available data on nutrient distributions and inputs to estimate non-conservative nutrient fluxes. Steady state salinity and caesium-137 balances yield consistent estimates of the flow through the Irish Sea of Φ≈6×104 m3s−1. Using both tracers together with a mass balance allows the inclusion of separate diffusive flux terms and results in a diffusivity estimate ofK≈450 m2s−1and a reduced flow of Φ≈4×104 m3s−1. These values are, however, sensitive to the gradients of salinity and caesium-137 concentration, which are not well defined by the observations.Following the LOICZ procedures, salinity and mass balances were combined with analogous statements for dissolved inorganic phosphorus (DIP) and dissolved inorganic nitrogen (DIN), in order to assess the non-conservative process rates. With regard to phosphorus it was found that the Irish Sea is close to balance with a slight net uptake of dissolved inorganic phosphorus, but the implied excess of uptake over release is not significant on account of uncertainties in the observations of boundary values and inputs. The DIN budget is subject to comparable uncertainties in the input data but does, however, indicate a significant imbalance with an average rate of denitrification of the order 0·3 mol N m−2y−1.The implications of these budget results and their limitations are considered in relation to the application of the budgeting approach to areas with sparse data coverage. While the application of box model disciplines to conservative tracers can lead to satisfactory estimates of advective transport, the extension to non-conservative components requires extensive data to adequately specify the boundary values and input parameters averaged over the seasonal cycle.  相似文献   

8.
The release of ammonium from the photochemical degradation of dissolved organic matter (DOM) has been proposed by earlier studies as a potentially important remineralisation pathway for refractory organic nitrogen. In this study the photochemical production of ammonium from Baltic Sea DOM was assessed in the laboratory. Filtered samples from the Bothnian Bay, the Gulf of Finland and the Arkona Sea were exposed to UVA light at environmentally relevant levels, and the developments in ammonium concentrations, light absorption, fluorescence and molecular size distribution were followed. The exposures resulted in a decrease in DOM absorption and loss of the larger sized fraction of DOM. Analysis of the fluorescence properties of DOM using parallel factor analysis (PARAFAC) identified 6 independent components. Five components decreased in intensity as a result of the UVA exposures. One component was produced as a result of the exposures and represents labile photoproducts derived from terrestrial DOM. The characteristics of DOM in samples from the Bothnian Bay and Gulf of Finland were similar and dominated by terrestrially derived material. The DOM from the Arkona Sea was more autochthonous in character. Photoammonification differed depending on the composition of DOM. Calculated photoammonification rates in surface waters varied between 121 and 382 μmol NH4+ L− 1 d− 1. Estimated areal daily production rates ranged between 37 and 237 μmol NH4+ m− 2 d− 1, which are comparable to atmospheric deposition rates and suggest that photochemical remineralisation of organic nitrogen may be a significant source of bioavailable nitrogen to surface waters during summer months with high irradiance and low inorganic nitrogen concentrations.  相似文献   

9.
X.H. Wang   《Ocean Modelling》2005,10(3-4):253-271
The Princeton Ocean Model was implemented to investigate the response of northern Adriatic Sea during the Bora event in January 2001 when strong wind and surface cooling was reported. The model has been run with realistic wind stress, surface heat flux and river runoffs forcings continuously from 1 January 1999 to 31 January 2001. The wind stress and surface heat flux was computed by the bulk parameterization, using the European Centre for Medium Range Weather Forecast analysis fields and the Comprehensive Ocean Atmosphere Data Set cloud data. All the freshwater sources along the Adriatic coastlines were represented by point or line source functions. Open boundary conditions in the Ionian Sea along a latitudinal boundary were nested within a large scale model of the Mediterranean Sea. The numerical study found that, before the Bora event of 13–17 January 2001, the water column of the northern Adriatic Sea was stratified by salinity, and the temperature was already cooler at the surface and over the shallower shelf region. The pre-Bora circulation of the northern Adriatic Sea was relatively weak and baroclinic with maximum surface currents occurred near the Italian coast. During the Bora event, the water column was well mixed in the most of coastal region of the northern Adriatic Sea. The atmospheric cooling produced colder water over the northern and western Adriatic Coast. The circulation of the northern Adriatic Sea was barotropic and dominantly wind driven, with maximum current speed of about 1 m s−1. The numerical study also demonstrated that the Bora event decreased the heat content of the water column with an area averaged value of 205 W m−2 over the shallow northern shelf. It was concluded that the heat budget of the northern Adriatic Sea during the Bora event was a balance between the surface heat loss, horizontal net heat inflow and resulting heat content decrease. The horizontal advection played a particularly important role in controlling the water temperature change over the shallower northern shelf.  相似文献   

10.
The nitrogen inputs from atmospheric deposition and bottom water entrainment to the surface layer were modelled in the summer period (May–September) over a 11-year period (1989–1999) and compared to investigate the significance of these fluxes for generating blooms in the Kattegat. In the summer periods the average atmospheric deposition was 2.81 mg N m−2 d−1 compared to average entrainment fluxes of 5.42 mg N m−2 d−1, 1.21 mg N m−2 d−1 and 1.15 mg N m−2 d−1 for the northern, central and southern part of the Kattegat, respectively. Atmospheric nitrogen deposition alone could not sustain biomass increases associated with observed blooms and entrainment fluxes dominated the high nitrogen inputs to the surface layer. The potential for a bloom through growth was typically obtained after several days of high nitrogen inputs from entrainment in the frontal area of the northern Kattegat and to some extent from atmospheric deposition. The modelled nitrogen input in this area could account directly for 30% of the observed blooms in the Northern sub-basin, and through advective transport 24% and 19% of the observed blooms in the central and southern Kattegat. The direct nitrogen inputs through atmospheric deposition and entrainment to the central and southern sub-basins were small and could not be linked to any bloom observation.  相似文献   

11.
The activity concentrations of dissolved137Cs have been determined in the water column and137Cs and134Cs in the sediments and the sediment porewaters of the southern Baltic Sea. The mean activity concentration of dissolved137Cs in the Gdansk Deep declined from 109 Bq m−3in June 1986 to 61 Bq m−3in 1999. In sediments, the activity concentrations of137Cs (33-231 Bq kg−1) were highest in muds and the activity concentrations of134Cs were about 6% of the total Cs activity. The Chernobyl contribution to137Cs activity was between 43% and 77%. The porewater activity concentrations of137Cs in muddy sediments were in the range 71 to 3900 Bq m−3and were higher than those in the overlying seawater. The diffusive flux of dissolved137Cs from the muddy sediments was estimated in the range 5 to 480 Bq m−2year−1. The flux of137Cs from sediment porewaters of the southern Baltic Sea was about 45% of the total, including fluxes of137Cs from wet and dry atmospheric deposition and the fluvial inputs. The results were used to elucidate the rate of recovery of the sediments and the waters of the southern Baltic from Chernobyl-derived137Cs.  相似文献   

12.
The Danish Straits are part of the transition area between the North Sea and the central Baltic Sea. More precisely, the Danish Straits connect Kattegat to the Arkona Basin and includes the relatively narrow and shallow sub-areas: Great Belt, Little Belt, Fehmarn Belt and Sound. The flow resistances in the straits are hydraulically determined by among other factors, the contractions, sills and stratification found in the straits. Close to the entrance to the Arkona Basin the Darss and Drogden Sills are located that trap inflowing dense water partially before it enters the central Baltic Sea. Hence, the resistances in the Danish Straits are of crucial importance for the stratification and ecosystems in the central Baltic Sea. The present work comprises calculations of flow resistance in the Great Belt based on measurements collected as part of the Great Belt Fixed Link investigations. The specific resistance in the Great Belt is determined to be an average of 41.2 × 10−12 s2 m−5, but it depends heavily on the interface position. When calculating long-term discharge time-series on the basis of the momentum equation it is advised to apply a seasonal varying resistance.  相似文献   

13.
The geomorphic, oceanographic, terrestrial and anthropogenic attributes of the European coastal zone are described and published data on ecosystem function (primary production and respiration) are reviewed. Four regions are considered: the Baltic Sea, Mediterranean Sea, Black Sea and the European Atlantic coast including the North Sea. The metabolic database (194 papers) suffers from a non-homogeneous geographical coverage with no usable data for the Black Sea which was therefore excluded from this part of our study. Pelagic gross primary production in European open shelves is, by far, the most documented parameter with an estimated mean of 41 mmol C m−2 d−1, the lowest value is reported in the Mediterranean Sea (21 mmol C m−2 d−1) and the highest one in the Atlantic/North Sea area (51 mmol C m−2 d−1). Microphytobenthic primary production, mostly measured in shallow areas, is extrapolated to the entire 0–200 m depth range. Its contribution to total primary production is low in all regions (mean: 1.5 mmol C m−2 d−1). Although macrophyte beds are very productive, a regional production estimate is not provided in this study because their geographical distribution along the European coastline remains unknown. Measurements of pelagic community respiration are clearly too sparse, especially below the euphotic zone, to yield an accurate picture of the fate of organic matter produced in the water column. With a mean value of 17 mmol C m−2 d−1, benthic community respiration consumes approximately 40% of the pelagic organic matter production. Estuaries generally exhibit high metabolic rates and a large range of variation in all parameters, except microphytobenthic primary production. Finally, the problem of eutrophication in Europe is discussed and the metabolic data obtained in the framework of the Land–Ocean Interactions in the Coastal Zone (LOICZ) project are compared with available direct measurements of net ecosystem production.  相似文献   

14.
Combination of estimated water transport and accurate measurements of total carbon dioxide (TCO2) on a hydrographic section at 58 °N allows the assessment of meridional inorganic carbon transport in the northern North Atlantic Ocean. The transport has been decomposed into contributions from the large-scale baroclinic overturning, the Ekman transport, baroclinic and a barotropic eddy terms, and an estimated contribution of the East Greenland Current. These terms are −0.27 · 106, +0.03 · 106, +0.03 · 106, +0.10 · 106, and +0.05 · 106 mol s−1, respectively, which result in a total southward inorganic carbon transport of only −0.06 · 106 mol s−1. An order of magnitude estimate of the meridional transport of dissolved organic carbon (DOC) has shown that in general this term cannot be ignored in the total carbon flux, this being +0.04 · 106 to +0.16 · 106 mol s−1 at 58 °N. A simple carbon budget has been formulated for the temperate North Atlantic, using our flux estimates as well as those of Brewer et al. (1989). This budget shows that the divergence of the meridional carbon flux, connected with the freshwater balance of the ocean may be of the same order of magnitude as the divergence of the total inorganic carbon flux. For an accurate estimate of the total carbon budget of the ocean it will be necessary to take both the DOC transport and the effects of the freshwater balance into account.  相似文献   

15.
Seasonal and diurnal reduced sulfur gas emissions were measured along a salinity gradient in Louisiana Gulf Coast salt, brackish and freshwater marshes. Reduced sulfur gas emission was strongly associated with habitat and salinity gradient. The dominant emission component was dimethyl sulfide (average: 57·3 μg S m−2 h−1) in saltmarsh with considerable seasonal (max: 144·03 μg S m−2 h−1; min: 1·47 μg S m−2 h−1) and diurnal (max: 83·58 μg S m−2 h−1; min: 69·59 μg S m−2 h−1) changes in flux rates. Hydrogen sulfide was dominant (average: 21·2 μg S m−2 h−1, max: 79·2 μg S m−2 h−1; min: 5·29 μg S m−2 h−1) form in brackishmarsh and carbonyl sulfide (average: 1·09 μg S m−2 h−1; max: 3·42 μg S m−2 h−1; min: 0·32 μg S m−2 h−1) was dominant form in freshwater marsh. A greater amount of H2S was evolved from brackishmarsh (21·22 μg S m−2 h−1) as compared to the saltmarsh (2·46 μg S m−2 h−1) and freshwater marsh (0·30 μg S m−2 h−1). Emission of total reduced sulfur gases decreased with decrease in salinity and distance inland from the coast. Emission of total reduced sulfur gases over the study averaged 73·3 μg S m−2 h−1 for the saltmarsh, 32·1 μg S m−2 h−1 for brackishmarsh and 2·76 μg S m−2 h−1 for the freshwater marsh.  相似文献   

16.
Concentrations of Hg0 in surface waters and atmosphere of the Scheldt estuary and the North Sea are presented and their relationship with biological processes is discussed. Hg0 concentrations in the Scheldt estuary range from 0.1 to 0.38 pmol·l−1 in the winter and from 0.24 to 0.65 pmol·l−1 in the summer and show a positive relationship with phytoplankton pigments. In the North Sea Hg0 concentrations range from 0.06 to 0.8 pmol·l−1 and are higher in coastal stations. Transfer velocities across the air–sea interface were calculated using a classical shear turbulence model. Volatilization fluxes of Hg0 were calculated for the Scheldt estuary and the North Sea. For the Scheldt estuary the fluxes range from 226–284 pmol·m−2·d−1 in winter and 500–701 pmol·m−2·d−1 in summer and for the North Sea the fluxes range from 59–1110 pmol·m−2·d−1 for an average windspeed of 8.1 m·s−1. These fluxes are comparable to the wet and dry depositional fluxes to the North Sea. Hg0 formation rates necessary to balance the volatilization fluxes vary from 0.2 to 4% d−1.  相似文献   

17.
The relationships between the linear dimensions and body weight and the ratio between the masses, growth, and production were studied for the bivalve Astarte borealis inhabiting the southeastern Baltic Sea. The maximal shell length was 21.09 mm, while the maximum age was 8+. The linear growth was described by the Bertalanffy equation L τ = (1 - e -0.0894(τ-(-0.7354))). The annual production was 7.60 kJ/m2 at a P s/B coefficient of 0.41. It was found that the A. borealis inhabiting the southeastern Baltic Sea was characterized by a lower linear growth rate compared to the mollusks of other parts of the geographical range due to the low salinity of the Baltic Sea.  相似文献   

18.
The Gulf of Finland is a 400-km long and 48–135-km wide tributary estuary of the Baltic Sea featuring the longitudinal two-layer estuarine flow modified by transverse circulation. Longitudinal volume transport in the deep layer is investigated by decomposing it into an averaged, slowly changing estuarine component (due to large-scale density gradients, river discharge and mean wind stress) and wind-driven fluctuating component. The derived expression relates the total deep-layer transport to the projection of wind stress fluctuation to a site-specific direction. The relationship is tested and calibrated by the results from numerical experiments carried out with the three-dimensional baroclinic circulation model. For the entrance to the Gulf of Finland, winds from northeast support standard estuarine circulation and winds from southwest work against the density-driven and riverine flow. The deep estuarine transport may be reversed if the southwesterly wind component exceeds the mean value by 4–5.5 m s−1. According to the data from hydrographic observations in the western Gulf of Finland, an event of advective halocline disappearance was documented in August 1998. Comparison of the deep-water transport estimates calculated from the wind data in 1998 with the observed salinity variations showed that the events of rapid decay of estuarine stratification were coherent with the estimated reversals of deep-layer volume transport, i.e. events of salt wedge export from the gulf.  相似文献   

19.
Two strings of moored current meters deployed between March 1993 and May 1994, together with monthly CTD surveys, provide the first comprehensive set of observations over the seasonal cycle in the Clyde Sea. In the summer, a strong thermal stratification maintained a partial isolation of the deep waters. In winter, the stratification was weaker, and a 1 °C temperature inversion was persistent from November to the end of March. Rapid inflow of dense water from the North Channel of the Irish Sea served to re-establish the strong stratification in the spring. The mean rate of exchange was estimated from the salinity (practical salinity scale) and mass budgets to be 1·1×104 m3 s−1, indicating an average flushing time for the Clyde Sea of 3–4 months.Episodic increases in deep water salinity indicated that bottom water renewal occurred throughout the winter. Intense renewal events were observed in March 1993 and February 1994, when the North Channel density was near its seasonal maximum, and were coincident with periods of high wind stress. In the month prior to these rapid spring inflows, the basin bottom salinity reached its seasonal minimum, indicating that the effects of mixing dominated over renewal at this time. A marked inflow in the summer was inferred from the salinity budget, and observed as a salinity increase at a depth of 90 m. A 2-layer flow was observed in the Arran Deep basin throughout the year, the surface flow forming part of a clockwise circulation about Arran, with an opposing bottom layer circulation. This surface circulation prevents freshwater from entering the Kilbrannan Sound, leaving this area relatively susceptible to deep water mixing by the wind.At a station in the north of the basin, the internal tidal current was observed to have an amplitude of 2–3 cm s−1, which is half the amplitude of the barotropic tide. The energy available to mix the water column mixing associated with the internal tide at this position is estimated to be 0·01 mWm−2, which is 2 orders of magnitude less than wind mixing. The kinetic energy density in the Clyde Sea was found to be predominantly in low frequency oscillations (<1·0 cycles per day), the seasonal variation exhibiting some correlation with the wind.  相似文献   

20.
Dissolved cadmium and copper concentrations have been determined in 76 surface water samples in coastal and ocean waters around Scotland by anodic stripping voltammetry (ASV). A trace metal/salinity ‘front’ is observed to the west, north and north-east of Scotland separating high salinity ocean water (>35 × 10−3) with low concentrations of dissolved Cd and Cu from lower salinity (<35 × 10−3) coastal water containing higher concentrations of Cd and Cu. Mean Cd concentrations in ocean and coastal waters are 7 ng dm−3 (0·06 n ) and 11 ng dm−3 (0·10 n ) respectively; for Cu the respective levels are 60 ng dm−3 (0·95 n ) and 170 ng dm−3 (2·68 n ). The observed distribution is attributed principally to freshwater runoff and the advection of contaminated Irish Sea water into the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号