首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper provides an overview of the experimental goals and methods of the Long-range Ocean Acoustic Propagation EXperiment (LOAPEX), which took place in the northeast Pacific Ocean between September 10, 2004 and October 10, 2004. This experiment was designed to address a number of unresolved issues in long-range, deep-water acoustic propagation including the effect of ocean fluctuations such as internal waves on acoustic signal coherence, and the scattering of low-frequency sound, in particular, scattering into the deep acoustic shadow zone. Broadband acoustic transmissions centered near 75 Hz were made from various depths to a pair of vertical hydrophone arrays covering 3500 m of the water column, and to several bottom-mounted horizontal line arrays distributed throughout the northeast Pacific Ocean Basin. Path lengths varied from 50 km to several megameters. Beamformed receptions on the horizontal arrays contained 10–20-ms tidal signals, in agreement with a tidal model. Fifteen consecutive receptions on one of the vertical line arrays with a source range of 3200 km showed the potential for incoherent averaging. Finally, shadow zone receptions were observed on an ocean bottom seismometer at a depth of 5000 m from a source at 3200–250-km range.   相似文献   

2.
For a low-frequency active sonar (LFAS) with a triplet receiver array, it is not clear in advance which signal processing techniques optimize its performance. Here, several advanced beamformers are analyzed theoretically, and the results are compared to experimental data obtained in sea trials. Triplet arrays are single line arrays with three hydrophones on a circular section of the array. The triplet structure provides the ability to solve the notorious port-starboard (PS) ambiguity problem of ordinary single-array receivers. More importantly, the PS rejection can be so strong that it allows to unmask targets in the presence of strong coastal reverberation or traffic noise. The theoretical and experimental performance of triplet array beamformers is determined in terms of two performance indicators: array gain and PS rejection. Results are obtained under several typical acoustic environments: sea noise, flow noise, coastal reverberation, and mixtures of these. A new algorithm for (beam space) adaptive triplet beamforming is implemented and tuned. Its results are compared to those of other triplet beamforming techniques (optimum and cardioid beamforming). These beamformers optimize for only one performance indicator, whereas in theory, the adaptive beamformer gives the best overall performance (in any given environment). The different beamformers are applied to data obtained with an LFAS at sea. Analysis shows that adaptive triplet beamforming outperforms conventional beamforming algorithms. Adaptive triplet beamforming provides strong PS rejection, allowing the unmasking of targets in the presence of strong directional reverberation (e.g., from a coast) and at the same time provides positive array gain in most environments.  相似文献   

3.
浅海均匀层远程混响的垂直相干性   总被引:1,自引:0,他引:1  
周纪浔 《海洋学报》1979,1(2):212-218
混响是主动声纳在浅海环境中的一种干扰,有关其空间相关特性,Urick和Lund发表了两篇实验性报告[7].本文根据浅海平均声场角度谱分析法[3],从理论上计算了浅海均匀层远程混响垂直相关特性与界面反射、散射等环境参数之间的关系,及其随距离、水听器间隔的变化,供声纳设计或在浅海环境中研究低频、小掠角的散射特性时参考.  相似文献   

4.
Forward scattering from the sea surface is discussed in the contest of a forward bounce path, or channel, through which high-frequency sound energy is transmitted. Such a channel might be used in an underwater communication or imaging task. Both time and angle spreading are inherent to the process of forward scattering by a roughened sea surface. Spreading in each domain relates, via Fourier transform, to a conjugate or coherence separation variable, e.g., angle spreading and spatial coherence. The measurement and modeling of time and angle spreading are discussed, with the modeling incorporating the bistatic cross section of the sea surface. A characteristic scale for each spread variable is defined: L for the time spread and σ&thetas;h and σ&thetas;v for the horizontal and vertical angular spread, respectively. Simplified expressions for these characteristic scales as a function of array acquisition geometry and sea surface conditions are also obtained. Data from two field experiments are discussed, one conducted in shallow waters of 30-m depth, and one conducted in deep, pelagic waters of 4000-m depth. Both experiments utilized frequencies ⩾20 kHz. The role of bubbles in forward scattering is illustrated using measurements from the deep-water experiment. It was demonstrated that bubbles can attenuate the forward-scattered signal, but otherwise have little effect on L and σ&thetas;h,v until their concentrations approach those necessary to nearly extinguish the signal scattered from the air/sea interface  相似文献   

5.
A large increase in the reliability of shipboard or stationary underwater acoustic telemetry systems is achievable by using spatially distributed receivers with aperture sizes from 0.35 to 20 m. Output from each receiver is assigned a quality measure based on the estimated error rate, and the data, weighted by the quality measure, are combined and decoded. The quality measure is derived from a Viterbi error-correction decoder operating on each receiver and is shown to perform reliability in a variety of non-Gaussian noise and jamming environments and reduce to the traditional optimal diversity system in a Gaussian environment. The dynamics of the quality estimator allow operation in the presence of high-power impulsive interference by exploiting the signal and noise differential travel times to individual sensors. The spatial coherence structure of the shallow water acoustic channel shows relatively low signal coherence at separations as short as 0.35 m. Increasing receiver spacing beyond 5 m offers additional benefits in the presence of impulsive noise and larger-scale inhomogeneities in the acoustic field. A number of data transmission experiments were carried out to demonstrate system performance in realistic underwater environments  相似文献   

6.
A portable matched-field processing (MFP) system for tracking marine mammals is presented, constructed by attaching a set of autonomous flash-memory acoustic recorders to a rope to form a four-element vertical array, or "insta-array." The acoustic data are initially time-synchronized by performing a matched-field global inversion using acoustic data from an opportunistic source, and then by exploiting the spatial coherence of the ocean ambient noise background to measure and correct for the relative clock drift between the autonomous recorders. The technique is illustrated by using humpback whale song collected off the eastern Australian coast to synchronize the array, which is then used to track the dive profile of the whale using MFP methods. The ability to deploy autonomous instruments into arbitrary "insta-array" geometries with conventional fishing gear may permit nonintrusive array measurements in regions currently too isolated, expensive, or environmentally hostile for standard acoustic equipment  相似文献   

7.
Based on the general concept of the inverse acoustic radiation problem, the temporal scanning of a stationary acoustic field along a closed contour is used to simplify the measurement approach for obtaining information on source directionality. The mathematical formulation is derived from a model of the two-dimensional acoustic field. The formulation of the inverse problem is also investigated to establish a methodology for improving the angular resolution of the array processing. The fundamental relationship between the sound sources and the circular passive synthetic array is explored, utilizing existing mathematical methods, in order to develop the processing algorithm. Other subjects of practical interest, such as directional ambiguity, effect of Doppler frequency, interference noise, and processing gain are discussed. It is concluded that the results can be used to establish guidelines for engineering design and deployment of this type of synthetic array, and to further exploit the new array signal processing technique  相似文献   

8.
The authors examine the subject of space-time processing and review fundamental environmental effects and their influence on arrays in the deep ocean sound channel. Space-time transforms are reviewed to demonstrate the analogy between spatial and temporal properties to stress the importance of convolution and matched field processing. A criterion is presented by which the resolution of such measurement systems could be calculated. The static source-receiver case is shown to be influenced by the randomness in signal phase due to scattering. Calculations and data are used to show the importance of multipath effects on the relative gain of line array measurement systems and the difficulties encountered for the determination of coherence lengths. Single path coherence lengths were found to be large and predictable using an environmental parameter and the Beran-McCoy mutual coherence functional form. However, multipath effects appeared to be dominant. The temporal fluctuation problem is briefly introduced to stress the fact that for relative source-receiver speeds of 1.5 m/s (3 knots) or greater, the fluctuations are dominated by the changes in the multipath arrivals  相似文献   

9.
To observe sound penetration into a sandy sediment, a buried acoustic receiving array was insonified by a wide band sound source carried by a remotely operated vehicle. A slanting array design was used to avoid scattering artifacts. This design overcame possible problems in previous experiments, in which scattering artifacts from the array structure could be mistaken for a propagating wave. The experiments took place in a sandy sediment off the West coast of Florida, as part of the sediment acoustics experiment, which is a multidisciplinary effort to study sediment acoustics. A coherent angle, speed, and height estimation process searched through a four-dimensional search space, of source height and elevation angle, wave speed, and propagation delay to find spherical acoustic wave fronts. Three main categories of waves were found: first refracted, dominant nonrefracted and evanescent. Later acoustic arrivals, a fourth category, remain to be analyzed. Their relative intensities effectively characterize the sediment penetrating acoustic energy. The acoustic sound pressure level of penetrating waves below the critical grazing angle was found to be greater than expected for a flat interface.  相似文献   

10.
This paper is aimed at studying the source and receiver motion effects on the energy and correlation characteristics of the acoustic field in shallow water. The statistical analysis is based on the radiation transport equation for the mutual coherence function (MCF) of the multimodal Doppler-shifted field. A general computer program has been elaborated to implement this theory for rough surface scattering by fully developed wind seas. Calculations of the expected total average acoustic intensity and two-point coherence function are presented.   相似文献   

11.
The author addresses the spatial coherence of high-frequency acoustic signals that have been forward scattered from the sea surface. The Fresnel-corrected Kirchhoff approximation is applied to derive closed-form expressions for the spatial coherence. These expressions are used to study the influence of geometrical and environmental factors on the coherence. An application of the theory involving the rejection of the surface image of a source by a vertical adaptive line array is presented. The author concludes that the environment has a strong impact on the array processing of surface-scattered fields through its influence on both vertical and horizontal spatial coherence  相似文献   

12.
The method of principal component beamforming described in this paper is an array data reduction method that allows one to observe the statistically uncorrelated components of wave energy arriving at an array of acoustic sensors. The method can be used to process array data so as to observe and identify the sources of noise, both environmental and self noise. After identifying the sources of noise, the method of principal components can be used to discriminate signal from noise. The method can be applied to active systems (subbottom profilers) as well as passive systems. A model of isotropic noise and incident bandlimited plane waves is used to study array resolution and bandwidth effects. Experimental data from a2 times 3planar acoustic array were used to identify sources of hydro-flow related noise in an underwater vehicle. In all cases studied, the technique provides a maximum spatial information analysis method to the observer.  相似文献   

13.
High-frequency (120 and 420 kHz) sound was used to survey sound scatterers in the water over Georges Bank. In addition to the biological sound scatterers (the plankton and micronekton), scattering associated with internal waves and suspended sediment was observed. Volume backscattering was more homogeneous in the vertical dimension (with occasional patches) in the shallow central portion of the Bank where there is significant mixing. In the deeper outer portion of the Bank where the water is stratified, volume backscattering was layered and internal waves modulated the vertical position of the layers in the pycnocline. The internal waves typically had amplitudes of 5-20 m, but sometimes much higher. Species composition and size data from samples of the animals and suspended sediment used in conjunction with acoustic scattering models revealed that throughout the region the animals generally dominate the scattering, but there are times and places where sand particles (suspended as high as up to the sea surface) can dominate. The source of the scattering in the internal waves is probably due to a combination of both animals and sound-speed microstructure. Determination of their relative contributions requires further study  相似文献   

14.
The paper discusses the development of a simulation tool to model high data-rate acoustic communication in shallow water. The simulation tool is able to generate synthetic time series of signals received at a transducer array after transmission across a shallow-water communication channel. The simulation tool is suitable for testing advanced signal processing techniques for message recovery. A channel model has been developed based on the physical aspects of the acoustic channel. Special emphasis has been given to fluctuations of the signal transmission caused by time-varying multipath effects. At shorter ranges, the temporal variations are dominated by acoustic scattering from the moving sea surface. Therefore, the channel model produces a coherence function which may be interpreted as a time-varying reflection coefficient for the surface scattered acoustical path. A static, range-independent ray model identifies the significant multipaths, and the surface path is modulated with the time-varying reflection coefficient. The advantages and limitations of the channel model are discussed and assumptions necessary to overcome the limitations are emphasised. Based on the assumptions, an algorithm has been developed and implemented to model how a binary message will be modulated when transmitted by a transducer, is distorted in the channel and finally is received by a transducer array  相似文献   

15.
An unexplained result of broad-band transmission experiments made more than ten years ago by DeFerrari in the Straits of Florida (center frequency ~500 Hz, bandwidth ~100 Hz, water depth ~200-m, range ~20 km) is that the measured pulse response functions failed to show the expected multipath replicas of the transmitted pulse and instead were smeared into a single broad cluster (duration ~50-~350 ms) in which the unresolved multipaths fluctuated rapidly in geophysical time (coherence time ≪12 min) leaving only a relatively stable envelope that is useful for oceanographic inversion. It is demonstrated here that the effects of internal waves on sound pulse propagation in the Straits of Florida can explain these observed results, and it is suggested that similar instabilities of acoustic multipaths due to internal waves are to be expected in other shallow-water propagation conditions. The demonstration is based on numerical simulations with the broad-band UMPE acoustic model that includes multiple forward scattering from volume inhomogeneities induced by internal wave fluctuations that are described by a broad spectrum of excitation. The simulated temporal variability, stability, and coherence of acoustic pulse arrivals are displayed on geophysical time scales from seconds to many hours and are qualitatively in agreement with the measured data in the Straits of Florida  相似文献   

16.
17.
Using the phenomenon of the partial reflection of acoustic waves from anisotropic wind-velocity and temperature inhomogeneities in the lower troposphere is justified in determining the structure of these inhomogeneities. The data (obtained with the method of bistatic acoustic sounding) on signals reflected from stratified inhomogeneities in the lower 600-m layer of the troposphere are given. A detonation-type pulsed acoustic source was used. The methods of isolating a small (in amplitude) reflected signal against the background of noise and determining the reflecting-layer height and the partial-reflection coefficient from the measured parameters (time delay and amplitude) of a reflected signal are presented. The method of estimating the vertical gradients of the effective sound speed and the squared acoustic refractive index from the partial-reflection coefficient previously calculated is described on the basis of an Epstein transition-layer model. The indicated parameters are experimentally estimated for concrete cases of recording reflected signals. A comparison of our estimates with independent analogous data simultaneously obtained for the same parameters with monitoring instruments (a sodar and a temperature profiler) has yielded satisfactory results.  相似文献   

18.
随着我国远海地形测量的日益频繁,进一步提高测量的效率和精度成为研究的热点。利用WOA18数据,对远海地形测量所涉及海域温盐等海洋要素时空分布规律展开预先分析,由此得到该海域声速垂直和水平分布规律,再利用层内常梯度的声线跟踪方法,对相关海域声速剖面获取频次和线性变化开始深度展开定量研究。结果表明,WOA18数据不但能较好优化远海多波束地形测量声速剖面,还能对声速剖面获取的频次和线性变化开始深度做出较好预测,研究结果对提高远海地形测量的精度和效率具有较高价值。  相似文献   

19.
A versatile multifrequency, multi-purpose acoustic transmitter and receiver system has been developed and used to measure low frequency acoustic backscatter from the ocean surface. The instrumentation is general purpose in that all signal and sample parameters are selected by software and a variety of transmission, scattering and reverberation experiments are possible without hardware modification. The system is battery-powered and self-contained for remote and unattended operation for periods of months, depending upon the experimental parameters that affect power and tape consumption. The main features of the system are: a high-powered broadband set of acoustic sources-with center frequencies of 100, 200, 400, and 800 Hz, programmable output signal types, a 64-element vertical hydrophone array, fifty gigabytes of data storage capacity, dynamically-tuneable band pass filters and variable sampling rates, high power microprocessors for in situ signal processing and independent subsystems for recording mooring depth and inclination. The system has been used in surface backscattering experiments at sea and results that demonstrate the capability of the system are presented and discussed  相似文献   

20.
The paper discusses an inversion method that allows the rapid determination of in situ geoacoustic properties of the ocean bottom without resorting to large acoustic receiving apertures, synthetic or real. The method is based on broad-band waterborne measurements and modeling of the waveguide impulse response between a controlled source and a single hydrophone. Results from Yellow Shark '94 experiments in Mediterranean shallow waters using single elements of a vertical array are reviewed, inversion of the bottom parameters is performed with an objective function that includes the processing gain of a model-based matched filter (MBMF) receiver relative to the conventional matched filter. The MBMF reference signals incorporate waveguide Green's functions for known geometry and water column acoustic model and hypothesized bottom geoacoustic models. The experimental inversion results demonstrated that, even for complex environmental conditions, a single transmission of a broad-band (200-800 Hz) coded signal received at a single depth and a few hundred forward modeling runs were sufficient to correctly resolve the bottom features. These included the sound speed profile, attenuation, density, and thickness of the top clay sediment layer, and sound speed and attenuation of the silty clay bottom. Exhaustive parameter search proved unequivocally the low-ambiguity and high-resolution properties of the MBMF-derived objective. The single-hydrophone results compare well with those obtained under identical conditions from matched-field processing of multitone pressure fields sampled on the vertical array. Both of these results agree with expectations from geophysical ground truth. The MBMF has been applied successfully to a field of advanced drifting acoustic buoys on the Western Sicilian shelf, demonstrating the general applicability of the inversion method presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号