首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The mechanism of Au dispersion in sediments of mountainous desert environments has been studied in two different areas of the Chilean Andes. The San Pedro de Cachiyuyo placer (ca. 1800 m a.s.l.) consists of alluvial fans and ephemeral stream sediments deposited in a stable piedmont. The primary Au source is Cu–Au-bearing hydrothermal tourmaline breccia. The relief of this area is low (1850 m) and the average annual rainfall is ca. 20 mm. The La Coipa area (ca. 4000 m a.s.l.) is characterized by a rugged relief. The annual average rainfall is ca. 100 mm. The sedimentary deposits are less sorted than in San Pedro de Cachiyuyo and consist of ephemeral stream alluvium and slope deposits formed in a periglacial environment. The primary Au sources are two volcanic-hosted epithermal precious metal deposits. At San Pedro de Cachiyuyo, the halo is less than 1 km in length and the highest Au concentration are observed at the break in slope between the hillside and the piedmont. In the La Coipa area, Au was only detected by chemical analysis in the 125–63 μm and <63 μm fraction; however, the dispersion halo extends for over 10 km from the source. In both cases the geochemical signal of gold was strongest in the fraction <63 μm.  相似文献   

2.
The Mount Morgan Au-Cu pyritic massive sulphide deposit occurs in a north-trending belt of Middle Paleozoic volcanic rocks located in south-central Queensland. The host rocks for the deposit are a normal sequence of rhyolitic tuff that have a north-northwest regional strike and easterly dips of 20° to 30°. The tuff contains thin units of chert, jasperoid and carbonate.The Mount Morgan deposit was represented by a zone of sulphide mineralization 600 m long, 100–200 m wide and 300 m deep that transects stratigraphy and can be divided into: (1) an oxidized zone, characterized by a hematitic, Au-enriched gossan with minor stratiform sphalerite-argillite; and (2) a primary zone which can be subdivided into an upper zone of greater than 50% sulphide minerals (Main Pipe orebody), and a lower siliceous stockwork zone with approximately 20% sulphide minerals (Sugarloaf orebody). Pyrite is the most abundant sulphide mineral in both the upper and lower primary zones with lesser pyrrhotite and accessory chalcopyrite, sphalerite and gold. A zone of silicification forms an envelope around the orebody and extends stratigraphically downwards in a pipe-like zone for greater than 750 m. The orebody contained 67 Mt of 4.87 g/t Au and 0.70% Cu.The distribution and variation of between 7 and 29 elements and specific conductance were examined in 1252 samples of the host rocks taken from diamond drill core and surface outcrop. The host rocks in the immediate vicinity of the deposit are marked by the development of three distinct but overlapping chemical and mineralogical zones representing an outward progression from the most intensive to a less intensive alteration. A 50-m-thick siliceous inner zone of intensely altered rocks, depleted in all investigated elements except Si, surrounds the orebody. This zone passes outward into a 100-m-thick middle zone of dominantly sericite-pyrite characterized by high concentrations of K, Fe, Cu and Co. The sericite-pyrite zone, in turn, passes into an outer 100-m-thick chlorite zone with high Fe, Mg, Mn and Zn concentrations. High concentrations of H2O+ are associated with the sericite-pyrite zone and the chlorite zone. The alteration pipe underlying the Mount Morgan orebody is characterized by depletions in Na, Ca and K and enrichments in Fe and Mg. A non-economic pyrite body contained within the alteration pipe has spatially restricted enrichment halos of Fe, Mg, Zn, Cu and Co.  相似文献   

3.
The Dest-Or epigenetic Au deposit occurs in a breccia zone within gabbro, basalt and andesite of the Archean Upper Deguisier Formation. It is located approximately 30 km NE of Noranda. Quebec and 2.5 km N of the Porcupine-Destor Fault, an important vertical shear zone that extends east-west for more than 100 km. The known orebody contains 2.44 Mt of ore at 4.29 g/t Au.Host rocks of the Upper Deguisier Formation typically contain 3.6 ppb Au, 0.8 ppm Sb and 4.5 ppm As. The Au values are comparable to those of tholeiitic mafic rocks elsewhere in the world. but Sb and As values are a little higher.Gold values on approximately 30% of the area of the Dest-Or and Bassignac properties define a log-normal distribution with a median at 9.4 ppb Au (P16 at 3.1 and P84 at 27). These are referred to as ore zone halos: they envelop orebody halos which in turn envelop orebodies.An orebody halo can best be defined by close sampling in the immediate vicinity of a known orebody. Around the Dest-Or orebody, this halo is approximately 100 m wide (60 m on the hanging wall and 40 m on the footwall), and it has a median value at 37 ppb Au (P16 at 17 and P84 at 74).Gold enrichment in the orebody is 1900 times background value. There are also lesser but significant Sb and As enrichments (20 /sX each). High W values occur in the ore ( > 30 ppm W), but background values were too low ( <5 ppm) to be established with confidence.Gold analyses in the 0.2–100 ppb range can be gainfully used in the search for blind gold ore deposits: As, Sb and W can also be used, but anomalies are less extensive and enrichment is also less pronounced.  相似文献   

4.
The Itacaiúnas Belt of the highly mineralised Carajás Mineral Province comprises ca. 2.75 Ga volcanic rocks overlain by sedimentary sequences of ca. 2.68 Ga age, that represent an intracratonic basin rather than a greenstone belt. Rocks are generally at low strain and low metamorphic grade, but are often highly deformed and at amphibolite facies grade adjacent to the Cinzento Strike Slip System. The Province has been long recognised for its giant enriched iron and manganese deposits, but over the past 20 years has been increasingly acknowledged as one of the most important Cu–Au and Au–PGE provinces globally, with deposits extending along an approximately 150 km long WNW-trending zone about 60 km wide centred on the Carajás Fault. The larger deposits (approx. 200–1000 Mt @ 0.95–1.4% Cu and 0.3–0.85 g/t Au) are classic Fe-oxide Cu–Au deposits that include Salobo, Igarapé Bahia–Alemão, Cristalino and Sossego. They are largely hosted in the lower volcanic sequences and basement gneisses as pipe- or ring-like mineralised, generally breccia bodies that are strongly Fe- and LREE-enriched, commonly with anomalous Co and U, and quartz- and sulfur-deficient. Iron oxides and Fe-rich carbonates and/or silicates are invariably present. Rhenium–Os dating of molybdenite at Salobo and SHRIMP Pb–Pb dating of hydrothermal monazite at Igarapé-Bahia indicate ages of ca. 2.57 Ga for mineralisation, indistinguishable from ages of poorly-exposed Archean alkalic and A-type intrusions in the Itacaiúnas Belt, strongly implicating a deep magmatic connection.A group of smaller, commonly supergene-enriched Cu–Au deposits (generally < 50 Mt @ < 2% Cu and < 1 g/t Au in hypogene ore), with enrichment in granitophile elements such as W, Sn and Bi, spatially overlap the Archean Fe-oxide Cu–Au deposits. These include the Breves, Águas Claras, Gameleira and Estrela deposits which are largely hosted by the upper sedimentary sequence as greisen-to ring-like or stockwork bodies. They generally lack abundant Fe-oxides, are quartz-bearing and contain more S-rich Cu–Fe sulfides than the Fe-oxide Cu–Au deposits, although Cento e Dezoito (118) appears to be a transitional type of deposit. Precise Pb–Pb in hydrothermal phosphate dating of the Breves and Cento e Dezoito deposits indicate ages of 1872 ± 7 Ma and 1868 ± 7 Ma, respectively, indistinguishable from Pb–Pb ages of zircons from adjacent A-type granites and associated dykes which range from 1874 ± 2 Ma to 1883 ± 2 Ma, with 1878 ± 8 Ma the age of intrusions at Breves. An unpublished Ar/Ar age for hydrothermal biotite at Estrela is indistinguishable, and a Sm–Nd isochron age for Gameleira is also similar, although somewhat younger. The geochronological data, combined with geological constraints and ore-element associations, strongly implicate a magmatic connection for these deposits.The highly anomalous, hydrothermal Serra Pelada Au–PGE deposit lies at the north-eastern edge of the Province within the same fault corridor as the Archean and Paleoproterozoic Cu–Au deposits, and like the Cu–Au deposits is LREE enriched. It appears to have formed from highly oxidising ore fluids that were neutralised by dolomites and reduced by carbonaceous shales in the upper sedimentary succession within the hinge of a reclined synform. The imprecise Pb–Pb in hydrothermal phosphate age of 1861 ± 45 Ma, combined with an Ar/Ar age of hydrothermal biotite of 1882 ± 3 Ma, are indistinguishable from a Pb–Pb in zircon age of 1883 ± 2 Ma for the adjacent Cigano A-type granite and indistinguishable from the age of the Paleoproterozoic Cu–Au deposits. Again a magmatic connection is indicated, particularly as there is no other credible heat or fluid source at that time.Finally, there is minor Au–(Cu) mineralisation associated with the Formiga Granite whose age is probably ca. 600 Ma, although there is little new zircon growth during crystallisation of the granite. This granite is probably related to the adjacent Neoproterozoic (900–600 Ma) Araguaia Fold Belt, formed as part of the Brasiliano Orogeny.Thus, there are two major and one minor period of Cu–Au mineralisation in the Carajás Mineral Province. The two major events display strong REE enrichment and strongly enhanced LREE. There is a trend from strongly Fe-rich, low-SiO2 and low-S deposits to quartz-bearing and more S-rich systems with time. There cannot be significant connate or basinal fluid (commonly invoked in the genesis of Fe-oxide Cu–Au deposits) involved as all host rocks were metamorphosed well before mineralisation: some host rocks are at mid- to high-amphibolite facies. The two major periods of mineralisation correspond to two periods of alkalic to A-type magmatism at ca. 2.57 Ga and ca. 1.88 Ga, and a magmatic association is compelling.The giant to world-class late Archean Fe-oxide Cu–Au deposits show the least obvious association with deep-seated alkaline bodies as shown at Palabora, South Africa, and implied at Olympic Dam, South Australia. The smaller Paleoproterozoic Cu–Au–W–Sn–Bi deposits and Au–PGE deposit show a more obvious relationship to more fractionated A-type granites, and the Neoproterozoic Au–(Cu) deposit to crustally-derived magmas. The available data suggest that magmas and ore fluids were derived from long-lived metasomatised lithosphere and lower crust beneath the eastern margin of the Amazon Craton in a tectonic setting similar to that of other large Precambrian Fe-oxide Cu–Au deposits.  相似文献   

5.
The Alkaline porphyries in the Beiya area are located east of the Jinshajiang suture, as part of a Cenozoic alkali-rich porphyry belt in western Yunnan. The main rock types include quartz-albite porphyry, quartz-K-feldspar porphyry and biotite–K-feldspar porphyry. These porphyries are characterised by high alkalinity [(K2O + Na2O)% > 10%], high silica (SiO2% > 65%), high Sr (> 400 ppm) and 87Sr/86Sr (> 0.706)] ratio and were intruded at 65.5 Ma, between 25.5 to 32.5 Ma, and about 3.8 Ma, respectively. There are five main types of mineral deposits in the Beiya area: (1) porphyry Cu–Au deposits, (2) magmatic Fe–Au deposits, (3) sedimentary polymetallic deposits, (4) polymetallic skarn deposits, and (5) palaeoplacers associated with karsts. The porphyry Cu–Au and polymetallic skarn deposits are associated with quartz–albite porphyry bodies. The Fe–Au and polymetallic sedimentary deposits are part of an ore-forming system that produced considerable Au in the Beiya area, and are characterised by low concentrations of La, Ti, and Co, and high concentrations of Y, Yb, and Sc.The Cenozoic porphyries in western Yunnan display increased alkalinity away from the Triassic Jinshajiang suture. Distribution of both the porphyries and sedimentary deposits in the Beiya area are interpreted to be related to partial melting in a disjointed region between upper mantle lithosphere of the Yangtze Plate and Gondwana continent, and lie within a shear zone between buried Palaeo-Tethyan oceanic lithosphere and upper mantle lithosphere, caused by the subduction and collision of India and Asia.  相似文献   

6.
科学的成矿预测实质上是在正确的成矿分析基础上的合理推断。埠上金矿是胶东招掖金矿带中部的一个中型金矿,经过多年开采之后,后备储量严重不足,争待扩大远景储量。由于有50~200m标高的采矿坑道及几个钻孔资料,使得采集不同垂深之样品成为易事,为矿床原生晕方法提供了基础和前提。研究后认为,埠土金矿原生晕为正向分带序列,在-300m标高之下有盲矿体存在,矿体向下仍有很大延伸,深部矿体向SW方向测伏。到199  相似文献   

7.
Sedimentary rock-hosted Au deposits in the Dian–Qian–Gui area in southwest China are hosted in Paleozoic and early Mesozoic sedimentary rocks along the southwest margin of the Yangtze (South China) Precambrian craton. Most deposits have characteristics similar to Carlin-type Au deposits and are spatially associated, on a regional scale, with deposits of coal, Sb, barite, As, Tl, and Hg. Sedimentary rock-hosted Au deposits are disseminated stratabound and(or) structurally controlled. The deposits have many similar characteristics, particularly mineralogy, geochemistry, host rock, and structural control. Most deposits are associated with structural domes, stratabound breccia bodies, unconformity surfaces or intense brittle–ductile deformation zones, such as the Youjiang fault system. Typical characteristics include impure carbonate rock or calcareous and carbonaceous host rock that contains disseminated pyrite, marcasite, and arsenopyrite—usually with μm-sized Au, commonly in As-rich rims of pyrite and in disseminations. Late realgar, orpiment, stibnite, and Hg minerals are spatially associated with earlier forming sulfide minerals. Minor base–metal sulfides, such as galena, sphalerite, chalcopyrite, and Pb–Sb–As–sulphosalts also are present. The rocks locally are silicified and altered to sericite–clay (illite). Rocks and(or) stream-sediment geochemical signatures typically include elevated concentrations of As, Sb, Hg, Tl, and Ba. A general lack of igneous rocks in the Dian–Qian–Gui area implies non-pluton-related, ore forming processes. Some deposits contain evidence that sources of the metal may have originated in carbonaceous parts of the sedimentary pile or other sedimentary or volcanic horizons. This genetic process may be associated with formation and mobilization of petroleum and Hg in the region and may also be related to As-, Au-, and Tl-bearing coal horizons. Many deposits also contain textures and features indicative of strong structural control by tectonic domes or shear zones and also suggest syndeformational ore deposition, possibly related to the Youjiang fault system. Several sedimentary rock-hosted Au deposits in the Dian–Qian–Gui area also are of the red earth-type and Au grades have been concentrated and enhanced during episodes of deep weathering.  相似文献   

8.
The Yueshan mineral belt is geotectonically located at the centre of the Changjiang deep fracture zone or depression of the lower Yangtze platform. Two main types of ore deposits occur in the Yueshan orefield: Cu–Au–(Fe) skarn deposits and Cu–Mo–Au–(Pb–Zn) hydrothermal vein-type deposits. Almost all deposits of economic interest are concentrated within and around the eastern and northern branches of the Yueshan dioritic intrusion. In the vicinity of the Zongpu and Wuhen intrusions, there are many Cu–Pb–Zn–Au–(S) vein-type and a few Cu–Fe–(Au) skarn-type occurrences.Fluid inclusion studies show that the ore-forming fluids are characterised by a Cl(S)–Na+–K+ chemical association. Hydrothermal activity associated with the above two deposit types was related to the Yueshan intrusion. The fluid salinity was high during the mineralisation processes and the fluid also underwent boiling and mixed with meteoric water. In comparison, the hydrothermal activity related to the Zongpu and Wuhen intrusions was characterised by low salinity fluids. Chlorine and sulphur species played an important role in the transport of ore-forming components.Hydrogen- and oxygen-isotope data also suggest that the ore-forming fluids in the Yueshan mineral belt consisted of magmatic water, mixed in various proportions with meteoric water. The enrichment of ore-forming components in the magmatic waters resulted from fluid–melt partitioning. The ore fluids of magmatic origin formed large Cu–Au deposits, whereas ore fluids of mixed magmatic-meteoric origin formed small- to medium-sized deposits.The sulphur isotopic composition of the skarn- and vein-type deposits varies from − 11.3‰ to + 19.2‰ and from + 4.2‰ to + 10.0‰, respectively. These variations do not appear to have been resulted from changes of physicochemical conditions, rather due to compositional variation of sulphur at the source(s) and by water–rock interaction. Complex water–rock interaction between the ore-bearing magmatic fluids and sedimentary wall rocks was responsible for sulphur mixing. Lead and silicon isotopic compositions of the two deposit types and host rocks provide similar indications for the sources and evolution of the ore-forming fluids.Hydrodynamic calculations show that magmatic ore-forming fluids were channelled upwards into faults, fractures and porous media with velocities of 1.4 m/s, 9.8 × 10− 1 to 9.8 × 10− 7 m/s and 3.6 × 10− 7 to 4.6 × 10− 7 m/s, respectively. A decrease of fluid migration velocity in porous media or tiny fractures in the contact zones between the intrusive rocks and the Triassic sedimentary rocks led to the deposition of the ore-forming components. The major species responsible for Cu transport are deduced to have been CuCl, CuCl2, CuCl32− and CuClOH, whereas Au was transported as Au2(HS)2S2−, Au(HS)2, AuHS and AuH3SiO4 complexes. Cooling and a decrease in chloride ion concentration caused by fluid boiling and mixing were the principal causes of Cu deposition. Gold deposition was related to decrease of pH, total sulphur concentration and fO2, which resulted from fluid boiling and mixing.Geological and geochemical characteristics of the two deposit types in the Yueshan mineral belt suggest that there is a close genetic relationship with the dioritic magmatism. Geochronological data show that the magmatic activity and the mineralisation took place between 130 and 136 Ma and represent a continuous process during the Yanshanian time. The cooling of the intrusions and the mineralisation event might have lasted about 6 Ma. The cooling rate of the magmatic intrusions was 80 to 120 °C my− 1, which permitted sufficient heat supply by magma to the ore-forming system.  相似文献   

9.
The volcanogenic massive sulfide deposit of Filon Norte at Tharsis is hosted by carbonaceous black slate and connected only partly with stockwork veins. The massive ores are usually composed of fine-grained pyrite with subordinate amounts of sphalerite, chalcopyrite, galena and arsenopyrite. Monoclinic pyrrhotite sometimes occurs in massive pyritic ores in the apparently middle and upper horizons of the orebody, and siderite-rich ores are interstratified with compact pyritic ores in the apparently lower horizons. From the occurrence of monoclinic pyrrhotite, together with the FeS contents of sphalerite mostly ranging from 11 to 16 mol %, it is inferred that the sulfide minerals of the massive orebody were precipitated in euxinic muds on the sea-floor at temperatures below 250°C. The negatively shifted, highly variable 34S values of the massive ores and their close similarity to those of the underlying black slates strongly suggest that the sulfide sulfur of the massive orebody and the slates is cognate and biogenic.  相似文献   

10.
The Kuroko deposits of NE Honshu are a key type deposit for the study of volcanogenic massive sulfide deposits. However, these deposits have not been studied in detail since the early 1980's and knowledge of their mode of formation is now dated. In this study, we present the analysis of 12 samples of the Kuroko deposits, 12 samples of submarine hydrothermal minerals from the Sunrise deposit and 6 samples from Suiyo Seamount, both of which are located on the Izu-Ogasawara (Bonin) Arc, for 27 elements. For the Kuroko deposit, Cd>Sb>Ag>Pb>Hg>As>Zn>Cu are highly enriched, Au>Te>Bi>Ba>Mo are moderately enriched, In>Tl are somewhat enriched and Fe is not significantly enriched relative to the average continental crust. Within each of these deposits, a similar pattern of element associations is apparent: Zn–Pb with As, Sb, Cd, Ag, Hg, Tl and Au; Fe–Cu–Ba with As, Sb, Ag, Tl, Mo, Te and Au; Si–Ba with Ag and Au; CaSO4. The enrichment of the chalcophilic elements in these deposits is consistent with hydrothermal leaching of these elements from the host rocks which are dominantly rhyolite–dacite in the case of the Kuroko deposits, rhyolite in the case of the Sunrise deposit and dacite–rhyolite in the case of the Suiyo Seamount deposit. However, this pattern of element enrichment is also similar to that observed in fumarolic gas condensates from andesitic volcanoes. This suggests that there may be a significant magmatic contribution to the composition of the hydrothermal fluids responsible for the formation of the Kuroko deposits, although it is not yet possible to quantify the relative contributions of these two sources of elements.The compositional data show that Sunrise and Suiyo Seamount deposits are much closer compositionally to the Kuroko deposits from NE Honshu than are the submarine hydrothermal deposits from the JADE site in the Okinawa Trough which contain, on average, significantly higher concentrations of Pb, Zn, Sb, As and Ag than each of these deposits. In spite of the greater similarity in tectonic setting of the Hokuroku Basin in which the Kuroko deposits formed to the Okinawa Trough (intracontinental rifted back-arc basin) compared to Myojin Knoll and Suiyo Seamount (active arc volcanoes), it appears that submarine hydrothermal deposits from Myojin Knoll and Suiyo Seamount are closer analogues of the Kuroko deposit than are those from the Okinawa Trough. The present data are consistent with the magmatic hydrothermal model for the formation of Kuroko-type deposits as formulated by Urabe and Marumo [Urabe, T., Marumo, K., 1991. A new model for Kuroko-type deposits of Japan. Episodes 14, 246–251].  相似文献   

11.
Stratiform sediment hosted Zn–Pb–Ag deposits, often referred to as SEDEX deposits, represent an economically important class of ore, that have received relatively little attention in terms of defining lithochemical halos and geochemical vectors useful to exploration. This study concentrates on the Lady Loretta deposit which is a typical example of the class of Proterozoic SEDEX deposits in northern Australia. We examined the major and trace element chemistry of carbonate-bearing sediments surrounding the deposit and defined a series of halos which extend for several hundred metres across strike and up to 1.5 km along strike. The stratiform ore lens is surrounded by an inner sideritic halo [Carr, G.R., 1984. Primary geochemical and mineralogical dispersion in the vicinity of the Lady Loretta Zn–Pb–Ag deposit, North Queensland. J. Geochem. Expl. 22, 217–238], followed by an outer ankerite/ferroan dolomite halo which merges with low iron dolomitic sediments representative of the regional background compositions. Carbonate within the inner siderite halo varies in composition from siderite to pistomesite (Fe0.6Mg0.4CO3), whereas carbonate in the outer ankerite halo varies from ferroan dolomite to ankerite (Ca0.5Mg0.3Fe0.2CO3). Element dispersion around the stratiform ore lens is variable with Pb, Cu, Ba and Sr showing very little dispersion (<50 m across strike), Zn and Fe showing moderate dispersion (<100 m) and Mn and Tl showing broad dispersion (<200 m). Within the siderite halo Cu, Mg and Na show marked depletion compared to the surrounding sediments. The magnitude of element dispersion and change in carbonate chemistry around the Lady Loretta orebody has enabled the development of three geochemical vectors applicable to exploration. Whole rock analyses are used to calculate the three vector quantities as follows: (1) SEDEX metal index = Zn + 100Pb + 100Tl; (2) SEDEX alteration index = (FeO + 10MnO)100/(FeO + 10MnO + MgO); (3) manganese content of dolomite: MnOd = (MnO × 30.41)/CaO. All three vectors increase to ore both across strike and along strike. The manganese content of dolomite (MnOd) exhibits the most systematic pattern increasing from background values of about 0.2 wt% to a maximum of around 0.6 wt% at the boundary between the ankerite and siderite halos. Siderite within the inner halo contains considerably more Mn with MnO values of 0.4 to 4.0 wt%. It is suggested here that the basket of indices defined at Lady Loretta (Zn, Tl, metal index, alteration index, MnOd and MnOs) is applicable in the exploration for stratiform Zn–Pb–Ag deposits in dolomite-rich sedimentary basins generally. The indices defined can firstly assist in the identification of sedimentary units favourable for SEDEX mineralisation, and secondly provide vectors along these units to ore. The alteration index and MnOd, however, should only be used for exploration dolomitic sequences; they are not recommended for exploration in clastic sequences devoid of carbonates.  相似文献   

12.
El Galeno and Michiquillay are early to middle Miocene Cu–Au–Mo porphyry-related deposits located in the auriferous Cajamarca district of northern Peru. The El Galeno deposit (486 Mt at 0.57% Cu, 0.14 g/t Au and 150 ppm Mo) is associated with multiple dioritic intrusions hosted within Lower Cretaceous quartzites and shales. Emplacement of the porphyry stocks (17.5–16.5 Ma) in a hanging wall anticline was structurally controlled by oblique faults superimposed on early WNW-trending fold-thrust structures. Early K-feldspar–biotite–magnetite (potassic) alteration was associated with pyrite and chalcopyrite mineralisation. A quartz–magnetite assemblage that occurs at depth has completely replaced potassically altered rocks. Late- and post-mineralisation stocks are spatially and temporally related to weak quartz–muscovite (phyllic) alteration. High Au grades are associated with early intrusive phases located near the centre of the deposit. Highest Cu grades (~0.9% Cu) are mostly associated with a supergene enrichment blanket, whilst high Mo grades are restricted to contacts with the metasedimentary rocks. The Michiquillay Cu–Au–Mo deposit (631 Mt at 0.69% Cu, 0.15 g/t Au, 100–200 ppm Mo) is associated with a Miocene (20.0–19.8 Ma) dioritic complex that was emplaced within the hanging wall of a back thrust fault. The intrusive complex is hosted in quartzites and limestones. The NE-trending deposit is crosscut by NNW-trending prospect-scale faults that influenced both alteration and metal distribution. In the SW and NE of the deposit, potassic alteration zones contain moderate hypogene grades (0.14 g/t Au and 0.8% Cu) and are characterised by chalcopyrite and pyrite mineralisation. The core of the deposit is defined by a lower grade (0.08 g/t Au and 0.57% Cu) phyllic alteration that overprinted early potassic alteration. Michiquillay contains a supergene enrichment blanket of 45–80 m thickness with an average Cu grade of 1.15%, which is overlain by a deep leached cap (up to 150 m). Cu–Au–Mo (El Galeno-Michiquillay) and Au-rich (Minas Conga) deposits in the Cajamarca region are of similar age (early–middle Miocene) and intrusive rock type (dioritic) associations. Despite these geochronological and geochemical similarities, findings from this study suggest variation in metal grade between the hybrid-type and Au-rich deposits result from a combination of physio-chemical factors. These include variations in temperature and oxygen fugacity conditions during hypogene mineralisation resulting in varied sulphide assemblages, host rock type, precipitation of ubiquitous hydrothermal magnetite, and late hydrothermal fluid flow resulting in a well-developed phyllic alteration zone.  相似文献   

13.
The Sarcheshmeh copper deposit is one of the world's largest Oligo-Miocene porphyry copper deposits in a continental arc setting with a well developed supergene sulfide zone, covered mainly by a hematitic gossan. Supergene oxidation and leaching, have developed a chalcocite enrichment blanket averaging 1.99% Cu, more than twice that of hypogene zone (0.89% Cu). The mature gossans overlying the Sarcheshmeh porphyry copper ores contain abundant hematite with variable amounts of goethite and jarosite, whereas immature gossans consist of iron-oxides, malachite, azurite and chrysocolla. In mature gossans, Au, Mo and Ag give significant anomalies much higher than the background concentrations. However, Cu has been leached in mature gossans and gives values close or even less than the normal or crustal content (< 36.7 ppm). Immature gossans are enriched in Cu (160.3 ppm), Zn (826.7 ppm), and Pb (88.6 ppm). Jarosite- and goethite-bearing gossans may have developed over the pyritic shell of most Iranian porphyry copper deposits with pyrite–chalcopyrite ratios greater than 10 and therefore, do not necessarily indicate a promising sulfide-enriched ore (Kader and Ijo). Hematite-bearing gossans overlying nonreactive alteration halos with pyrite–chalcopyrite ratios about 1.5 and quartz stringers have significant supergene sulfide ores (Sarcheshmeh and Miduk). The copper grade in supergene sulfide zone of Sarcheshmeh copper deposit ranges from 0.78% in propylitized rocks to 3.4% in sericitized volcanic rocks, corresponding to the increasing chalcopyrite–pyrite or chalcocite–pyrite ratios from 0.3 to 3, respectively. Immature gossans with dominant malachite and chrysocolla associated with jarosite and goethite give the most weakly developed enrichment zone, as at God-e-Kolvari. The average anomalous values of Au (59.6 ppb), Mo (42.5 ppm) and Ag (2.6 ppm) in mature gossans associated with the Sarcheshmeh copper mine may be a criterion that provides a significant exploration target for regional metallogenic blind porphyry ore districts in central Iranian volcano–plutonic continental arc settings. Drilling for new porphyry ores should be targeted where hematitic gossans are well developed. The ongoing gossan formation may result in natural acidic rock drainage (ARD).  相似文献   

14.
Sediment-hosted base metal sulfide deposits in the Otavi Mountain Land occur in most stratigraphic units of the Neoproterozoic Damara Supergroup, including the basal Nosib Group, the middle Otavi Group and the uppermost Mulden Group. Deposits like Tsumeb (Pb–Cu–Zn–Ge), Kombat (Cu–Pb–Zn), Berg Aukas (Zn–Pb–V), Abenab West (Pb–Zn–V) all occur in Otavi Group dolostones, whereas siliciclastic and metavolcanic rocks host Cu–(Ag) or Cu–(Au) mineralization, respectively. The Tsumeb deposit appears to have been concentrated after the peak of the Damara orogeny at around 530 Ma as indicated by radiometric age data.Volcanic hosted Cu–(Au) deposits (Neuwerk and Askevold) in the Askevold Formation may be related to ore forming processes during continental rifting around 746 Ma. The timing of carbonate-hosted Pb–Zn deposits in the Abenab Subgroup at Berg Aukas and Abenab is not well constrained, but the stable (S, O, C) and Pb isotope as well as the ore fluid characteristics are similar to the Tsumeb-type ores. Regional scale ore fluid migration typical of MVT deposits is indicated by the presence of Pb–Zn occurrences over 2500 km2 within stratabound breccias of the Elandshoek Formation. Mulden Group siliciclastic rocks host the relatively young stratiform Cu–(Ag) Tschudi resource, which is comparable to Copperbelt-type sulfide ores.  相似文献   

15.
The Archaean Yilgarn Craton (Western Australia) is a world-class metallogenic province, hosting considerable resources of Au, Ag, Ni, Cu, Zn and Fe. Here we present trace element compositions of pyrite from > 30 orogenic Au and 5 volcanic hosted massive sulphide (VHMS) deposits across the Yilgarn. Pyrites from VHMS deposits tend to have higher Sn, Se, Cu, Pb, Bi and lower Ni relative to orogenic deposits. VHMS deposit pyrites commonly have Co > Ni, As > 100Au, Te > Au, Se > Te. Orogenic gold deposits could be subdivided based on association of Au with As or Te. Pyrites from AuAs ores generally have Pb/Bi > 5, Se/Te > 5, Pb/Sb < 5 and Tl/Te > 100 and the majority of Au is refractory (in pyrite structure). At the same time AuTe association pyrites are characterised by lower values of Pb/Bi, Se/Te and Tl/Te, higher values of Ag/Au, Pb/Sb and Au generally resides in inclusions of different compositions. Our data can be used at the exploration stage to distinguish between VHMS vs Orogenic Au signatures. For all studied deposits inclusion populations are summarised with implications for Au and Ag deportment. Orogenic Au deposits from the Yilgarn mostly have multistage formation histories reflected in the presence of multiple generations of pyrites. However, only some deposits record multiple high Au mineralisation events.  相似文献   

16.
Mineral exploration in the Neoproterozoic Goiás Magmatic Arc, central Brazil, dates back to the beginning of the 1970s. The Goiás Magmatic Arc extends for more than 1000 km in the western and northern parts of Goiás, into Tocantins, and disappears under the Phanerozoic Parnaíba Basin. Two main areas of Neoproterozoic juvenile crust, the Arenópolis and the Mara Rosa arcs, are identified. They lie in the southern and northern sectors of the Goiás Arc, respectively, and are relatively well studied.The Goiás Magmatic Arc dominantly comprises tonalitic/dioritic orthogneisses and narrow NNE-striking volcano-sedimentary belts. Recent U–Pb zircon data indicate crystallization of the tonalite protoliths in two main episodes: the older between ca. 890 and 790 Ma and the younger at 670–600 Ma. Nd isotopic data indicate the very primitive nature of the original magmas, with TDM model ages mostly within the interval between 0.9 and 1.0 Ga and Nd(T) values between +3.0 and +4.6. In the Chapada–Mara Rosa area, the supracrustal rocks form three individual NNE belts, known as the eastern, central and western belts, separated from each other by metatonalites/metadiorites.Gold and Cu–Au deposits of the Mara Rosa area occur in four main associations: (i) Au–Ag–Ba (e.g., Zacarias), which are interpreted as stratiform, disseminated volcanogenic deposits, (ii) Cu–Au (e.g., Chapada) which has been interpreted either as volcanogenic or as a porphyry-type deposit, (iii) Au-only deposits (e.g., Posse), interpreted as an epigenetic disseminated deposit controlled by a mesozonal shear zone and (iv) Au–Cu–Bi (e.g., the Mundinho occurrence), which are considered as vein-type deposits controlled by magnetite-rich diorites.The gold and Cu–Au deposits located within the Goiás Magmatic Arc can be spatially and temporally related to the magmatic evolution of a collisional belt or, in other words, to an orogenic gold deposit model. These models are based on the continuous evolution of collisional plates, which can be subdivided into four stages with distinct magmatic characteristics: (i) subduction stage, (ii) syntectonic collisional magmatism stage, (iii) post-tectonic collisional magmatism stage and (iv) post-orogenic extension stage.  相似文献   

17.
We have analysed the halogen concentrations and chlorine stable isotope composition of fluid inclusion leachates from three spatially associated Fe-oxide ± Cu ± Au mineralising systems in Norrbotten, Sweden. Fluid inclusions in late-stage veins in Fe-oxide–apatite deposits contain saline brines and have a wide range of Br/Cl molar ratios, from 0.2 to 1.1 × 10−3 and δ37Cl values from −3.1‰ to −1.0‰. Leachates from saline fluid inclusions from the Greenstone and Porphyry hosted Cu–Au prospects have Br/Cl ratios that range from 0.2 to 0.5 × 10−3 and δ37Cl values from −5.6‰ to −1.3‰. Finally, the Cu–Au deposits hosted by the Nautanen Deformation Zone (NDZ) have Br/Cl molar ratios from 0.4 to 1.1 × 10−3 and δ37Cl values that range from −2.4‰ to +0.5‰, although the bulk of the data fall within 0‰ ± 0.5‰.The Br/Cl ratios of leachates are consistent with the derivation of salinity from magmatic sources or from the dissolution of halite. Most of the isotopic data from the Fe-oxide–apatite and Greenstone deposits are consistent with a mantle derived source of the chlorine, with the exception of the four samples with the most negative values. The origin of the low δ37Cl values in these samples is unknown but we suggest that there may have been some modification of the Cl-isotope signature due to fractionation between the mineralising fluids and Cl-rich silicate assemblages found in the alteration haloes around the deposits. If such a process has occurred then a modified crustal source of the chlorine for all the samples cannot be ruled out although the amount of fractionation necessary to generate the low δ37Cl values would be significantly larger.The source of Cl in the NDZ deposits has a crustal signature, which suggests the Cl in this system may be derived from (meta-) evaporites or from input from crustal melts such as granitic pegmatites of the Lina Suite.  相似文献   

18.
Orogenic disseminated and Carlin gold deposits share much similarity in alteration and mineralization.The disseminated orogenic Zhenyuan Au deposit along the Ailaoshan shear zone,southeastern Tibet,was selected to clarify their difference.The alteration and mineralization from the different lithologies,including meta-quartz sandstone,carbonaceous slate,meta-(ultra)mafic rock,quartz porphyry and lamprophyre were researched.According to the mineral assemblage and replacement relationship in all types of host rocks,two reactions show general control on gold deposition:(1)replacement of earlier magnetite by pyrite and carbonaceous material;(2)alteration of biotite and phlogopite phenocrysts in quartz porphyry and lamprophyre into dolomite/ankerite and sericite.Despite the lamprophyre is volumetrically minor and much less fractured than other host rocks,it contains a large portion of Au reserve,indicating that the chemically active lithology has played a more important role in gold precipitation compared to structure.LA-ICP-MS analysis shows that Au mainly occurs as invisible gold in fine-grained pyrite disseminated in the host rocks,with Au content reaching to 258.95 ppm.The diagenetic core of pyrite in meta-quartz sandstone enriched in Co,Ni,Mo,Ag and Hg is wrapped by hydrothermal pyrite enriched in Cu,As,Sb,Au,Tl,Pb and Bi.Different host rock lithology has much impact on the alteration and mineralization features.Carbonate and sericite in altered lamprophyre show they have higher Mg than those developed in other of host rocks denoting that the carbonate and sericite incorporated Mg from phlogopite phenocrysts in the primary lamprophyre during alteration.The ore fluid activated the diagenetic pyrite in meta-quartz sandstone leading the hydrothermal pyrite enriched in Cu,Mo,Ag,Sb,Te,Hg,Tl,Pb and Bi,but the hydrothermal pyrite in meta-(ultra)mafic rock is enriched in Co and Ni as the meta-(ultra)mafic rock host rock contain high content of Co and Ni.However,Au and As shear similar range in both types of host rocks indicating that these two elements most likely come from the deep source fluid rather than the host rocks.It was shown in the disseminated orogenic gold deposit that similar hydrothermal alteration with mineral assemblage of carbonate(mainly dolomite and ankerite),sericite,pyrite and arsenopyrite develops in all types of host rocks.This is different from the Nevada Carlin type,in which alteration is mainly dissolution and silicification of carbonate host rock.On the other hand,Au mainly occur as invisible gold in both disseminated orogenic and Carlin gold deposits.  相似文献   

19.
The Huize Zn–Pb–(Ag) district, in the Sichuan–Yunnan–Guizhou Zn–Pb–(Ag) metallogenic region, contains significant high-grade, Zn–Pb–(Ag) deposits. The total metal reserve of Zn and Pb exceeds 5 Mt. The district has the following geological characteristics: (1) high ore grade (Zn + Pb ≥ 25 wt.%); (2) enrichment in Ag and a range of other trace elements (Ge, In, Ga, Cd, and Tl), with galena, sphalerite, and pyrite being the major carriers of Ag, Ge, Cd and Tl; (3) ore distribution controlled by both structural and lithological features; (4) simple and limited wall-rock alteration; (5) mineral zonation within the orebodies; and (6) the presence of evaporite layers in the ore-hosting wall rocks of the Early Carboniferous Baizuo Formation and the underlying basement.Fluid-inclusion and isotope geochemical data indicate that the ore fluid has homogenisation temperatures of 165–220 °C, and salinities of 6.6–12 wt.% NaCl equiv., and that the ore-forming fluids and metals were predominantly derived from the Kunyang Group basement rocks and the evaporite-bearing rocks of the cover strata. Ores were deposited along favourable, specific ore-controlling structures. The new laboratory and field studies indicate that the Huize Zn–Pb–(Ag) district is not a carbonate-replacement deposit containing massive sulphides, but rather the deposits can be designated as deformed, carbonate-hosted, MVT-type deposits. Detailed study of the deposits has provided new clues to the localisation of concealed orebodies in the Huize Zn–Pb–(Ag) district and of the potential for similar carbonate-hosted sulphide deposits elsewhere in NE Yunnan Province, as well as the Sichuan–Yunnan–Guizhou Zn–Pb–(Ag) metallogenic region.  相似文献   

20.
The regolith studied here is located at the defunct Areachap mine and the newly discovered Kantienpan Cu–Zn volcanic-hosted massive sulfide (VHMS) deposit, located in the Areachap Group of the eastern part of Mesoproterozoic Namaqua Metamorphic Province. This area is highly prospective for further VHMS discoveries. Paleo and recent weathering of the upper most parts of massive sulfide deposits led to the formation of a gossan zone. Due to semi-arid climatic conditions during the late Cretaceous, affecting the African Land surface, the lowermost units of the Kalahari Group and the underlying floor rocks were calcretized. An approximately 6 m thick calcrete layer formed above the gossan zone and this was later covered by eolian Kalahari sand. Samples were collected from the eolian sand cover in the study areas to determine the best analytical method that would enable recognition of the concealed ore deposits and detect the widest secondary dispersion halo.Mobile metal ions from the finest fraction of the eolian sand samples (< 75 μm) were extracted with a NH4EDTA (EDTA) solution. The solution was analysed for Cu, Zn, Pb and Mn by inductively coupled plasma mass spectrometry (ICP-MS). The same grainsize fraction of the original samples was also analysed for comparison purposes by means of X-ray fluorescence (XRF).Results indicate that the ore zone in both areas may be recognized by both partial and total analyses of the eolian sand samples collected, although the calcrete layer, below the sand cover, acts as a partial geochemical barrier. The recognition of the ore zone depends on the regolith forming processes and the thickness of the eolian sand cover. In the Areachap area, with a relatively thick sand cover (in excess of 1 m) above the calcrete layer, the detectable geochemical halo is related to the distribution of the mobile metal ions, and partial extraction (EDTA solution) results define a larger dispersion halo than that, that could be detected by total analysis (XRF). Whereas, in the Kantienpan area with a very thin sand cover (< 50 cm) dispersion appears to be related more to the secondary redistribution of gossaniferous clasts released by recent weathering out of the calcrete, than to dispersion of mobile metal ions on the surface of sand particles. In this area, the XRF results reveal a wider dispersion of the elements of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号