首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
张嘉  王明玉 《地学前缘》2010,17(6):152-158
在地下水污染模拟预报中,弥散参数是很难确定的一个模型参数。因实验室小尺度弥散规律一般不能用于大尺度弥散过程,而野外示踪试验却耗资大、周期长,限制了其实用性。文中利用随机数值模拟手段、基于随机理论的蒙特卡罗方法及序贯高斯模拟技术来生成渗透系数随机场,并研究渗透系数对数场的方差、相关长度以及变异函数类型在不同尺度上对纵向弥散度的影响,进而建立纵向弥散度与随机分布渗透系数场的方差和相关长度的统计定量关系,并与Gelhar理论计算结果进行比较。数值模拟结果表明,经过一定迁移距离后纵向弥散度与随机分布渗透系数对数场的方差和相关长度具有良好的线性统计关系,与Gelhar理论公式表达的关系类型类似。但对于较大的方差,纵向弥散度模拟结果明显大于Gelhar理论计算值,而对于较大相关长度在迁移距离不很大时,纵向弥散度模拟结果明显小于Gelhar理论计算值。本研究可为野外大尺度地下水污染预报模型中水动力弥散参数的确定提供方法借鉴。  相似文献   

2.
Gradual deformation is a parameterization method that reduces considerably the unknown parameter space of stochastic models. This method can be used in an iterative optimization procedure for constraining stochastic simulations to data that are complex, nonanalytical functions of the simulated variables. This method is based on the fact that linear combinations of multi-Gaussian random functions remain multi-Gaussian random functions. During the past few years, we developed the gradual deformation method by combining independent realizations. This paper investigates another alternative: the combination of dependent realizations. One of our motivations for combining dependent realizations was to improve the numerical stability of the gradual deformation method. Because of limitations both in the size of simulation grids and in the precision of simulation algorithms, numerical realizations of a stochastic model are never perfectly independent. It was shown that the accumulation of very small dependence between realizations might result in significant structural drift from the initial stochastic model. From the combination of random functions whose covariance and cross-covariance are proportional to each other, we derived a new formulation of the gradual deformation method that can explicitly take into account the numerical dependence between realizations. This new formulation allows us to reduce the structural deterioration during the iterative optimization. The problem of combining dependent realizations also arises when deforming conditional realizations of a stochastic model. As opposed to the combination of independent realizations, combining conditional realizations avoids the additional conditioning step during the optimization process. However, this procedure is limited to global deformations with fixed structural parameters.  相似文献   

3.
Joint geostatistical simulation techniques are used to quantify uncertainty for spatially correlated attributes, including mineral deposits, petroleum reservoirs, hydrogeological horizons, environmental contaminants. Existing joint simulation methods consider only second-order spatial statistics and Gaussian processes. Motivated by the presence of relatively large datasets for multiple correlated variables that typically are available from mineral deposits and the effects of complex spatial connectivity between grades on the subsequent use of simulated realizations, this paper presents a new approach for the joint high-order simulation of spatially correlated random fields. First, a vector random function is orthogonalized with a new decorrelation algorithm into independent factors using the so-termed diagonal domination condition of high-order cumulants. Each of the factors is then simulated independently using a high-order univariate simulation method on the basis of high-order spatial cumulants and Legendre polynomials. Finally, attributes of interest are reconstructed through the back-transformation of the simulated factors. In contrast to state-of-the-art methods, the decorrelation step of the proposed approach not only considers the covariance matrix, but also high-order statistics to obtain independent non-Gaussian factors. The intricacies of the application of the proposed method are shown with a dataset from a multi-element iron ore deposit. The application shows the reproduction of high-order spatial statistics of available data by the jointly simulated attributes.  相似文献   

4.
Mineral deposits frequently contain several elements of interest that are spatially correlated and require the use of joint geostatistical simulation techniques in order to generate models preserving their spatial relationships. Although joint-simulation methods have long been available, they are impractical when it comes to more than three variables and mid to large size deposits. This paper presents the application of block-support simulation of a multi-element mineral deposit using minimum/maximum autocorrelation factors to facilitate the computationally efficient joint simulation of large, multivariable deposits. The algorithm utilized, termed dbmafsim, transforms point-scale spatial attributes of a mineral deposit into uncorrelated service variables leading to the generation of simulated realizations of block-scale models of the attributes of interest of a deposit. The dbmafsim algorithm is utilized at the Yandi iron ore deposit in Western Australia to simulate five cross-correlated elements, namely Fe, SiO2, Al2O3, P and LOI, that are all critical in defining the quality of iron ore being produced. The block-scale simulations reproduce the direct- and cross-variograms of the elements even though only the direct variograms of the service variables have to be modeled. The application shows the efficiency, excellent performance and practical contribution of the dbmafsim algorithm in simulating large multi-element deposits.  相似文献   

5.
The LU-matrix approach to conditional simulations allows fast generation of large numbers of realizations for a given stochastic process. Simplicity, flexibility, and quality are its main advantages. Its implementation for cases where dense grids and/or large numbers of conditioning data cause computational problems is discussed. A case study is presented.  相似文献   

6.

In the field of mineral resources extraction, one main challenge is to meet production targets in terms of geometallurgical properties. These properties influence the processing of the ore and are often represented in resource modeling by coregionalized variables with a complex relationship between them. Valuable data are available about geometalurgical properties and their interaction with the beneficiation process given sensor technologies during production monitoring. The aim of this research is to update resource models as new observations become available. A popular method for updating is the ensemble Kalman filter. This method relies on Gaussian assumptions and uses a set of realizations of the simulated models to derive sample covariances that can propagate the uncertainty between real observations and simulated ones. Hence, the relationship among variables has a compositional nature, such that updating these models while keeping the compositional constraints is a practical requirement in order to improve the accuracy of the updated models. This paper presents an updating framework for compositional data based on ensemble Kalman filter which allows us to work with compositions that are transformed into a multivariate Gaussian space by log-ratio transformation and flow anamorphosis. This flow anamorphosis, transforms the distribution of the variables to joint normality while reasonably keeping the dependencies between components. Furthermore, the positiveness of those variables, after updating the simulated models, is satisfied. The method is implemented in a bauxite deposit, demonstrating the performance of the proposed approach.

  相似文献   

7.
Traditionally within the mining industry, single models for both grade and geology of orebodies are created upon which all mine development decisions are based. These models provide a single interpretation of the extent and continuity of the mineralization envelope based on solids and sections interpreted from relatively widely spaced drilling. The inherent variable behavior of grade and geology cannot be understood from a single estimated resource model. To account for uncertainty in the geology and mineralization envelope, Newmont Mining Corporation uses multiple-point statistics (MPS), an emerging spatial simulation framework, which can be employed to generate multiple, geologically realistic, realizations of data representing attributes of mineral deposits that display complex non-linear features. MPS uses a conceptual model of the geology, termed a training image, to infer these high-order spatial relationships. A detailed application of the MPS algorithm at the structurally controlled Apensu gold deposit, Ghana, demonstrates the practical intricacies of the MPS framework and documents efficiency and effectiveness. Multiple realizations of the Apensu deposit allow for an assessment of the geologic and volumetric uncertainty, which is further combined with grade simulations to generate a more complete picture of the true uncertainty of the deposit.  相似文献   

8.
Stochastic simulation is increasingly used to map the spatial variability in the grades of elements of interest and to assess the uncertainty in the mineral resources and ore reserves. The practical implementation requires specifying a stochastic model, which describes the spatial distribution of the grades, and an algorithm to construct realizations of these grades, viewed as different possible outcomes or scenarios. In the case of the Gaussian random field model, a variety of algorithms have been proposed in the past decades, but their ability to reproduce the model statistics is often unequal. In this paper, we compare two such algorithms, namely the turning bands and the sequential algorithms. The comparison is hold through a synthetic case study and a real case study in a porphyry copper deposit located in southeastern Iran, in which it is of interest to jointly simulate the copper, molybdenum, silver, lead and zinc grades. Statistical testing and graphical validations are realized to check whether or not the realizations reproduce the features of the true grades, in particular their direct and cross variograms. Sequential simulation based on collocated cokriging turns out to poorly reproduce the cross variograms, while turning bands proves to be accurate in all the analyzed cases.  相似文献   

9.
Compensating for estimation smoothing in kriging   总被引:2,自引:0,他引:2  
Smoothing is a characteristic inherent to all minimum mean-square-error spatial estimators such as kriging. Cross-validation can be used to detect and model such smoothing. Inversion of the model produces a new estimator—compensated kriging. A numerical comparison based on an exhaustive permeability sampling of a 4-ft2 slab of Berea Sandstone shows that the estimation surface generated by compensated kriging has properties intermediate between those generated by ordinary kriging and stochastic realizations resulting from simulated annealing and sequential Gaussian simulation. The frequency distribution is well reproduced by the compensated kriging surface, which also approximates the experimental semivariogram well—better than ordinary kriging, but not as well as stochastic realizations. Compensated kriging produces surfaces that are more accurate than stochastic realizations, but not as accurate as ordinary kriging.  相似文献   

10.
Interpretation of geophysical data or other indirect measurements provides large-scale soft secondary data for modeling hard primary data variables. Calibration allows such soft data to be expressed as prior probability distributions of nonlinear block averages of the primary variable; poorer quality soft data leads to prior distributions with large variance, better quality soft data leads to prior distributions with low variance. Another important feature of most soft data is that the quality is spatially variable; soft data may be very good in some areas while poorer in other areas. The main aim of this paper is to propose a new method of integrating such soft data, which is large-scale and has locally variable precision. The technique of simulated annealing is used to construct stochastic realizations that reflect the uncertainty in the soft data. This is done by constraining the cumulative probability values of the block average values to follow a specified distribution. These probability values are determined by the local soft prior distribution and a nonlinear average of the small-scale simulated values within the block, which are all known. For each realization to accurately capture the information contained in the soft data distributions, we show that the probability values should be uniformly distributed between 0 and 1. An objective function is then proposed for a simulated annealing based approach to enforce this uniform probability constraint. The theoretical justification of this approach is discussed, implementation details are considered, and an example is presented.  相似文献   

11.
The uncertainty in the recoverable tonnages and grades in a mineral deposit is a key factor in the decision-making process of a mining project. Currently, the most prevalent approach to model the uncertainty in the spatial distribution of mineral grades is to divide the deposit into domains based on geological interpretation and to predict the grades within each domain separately. This approach defines just one interpretation of the geological domain layout and does not offer any measure of the uncertainty in the position of the domain boundaries and in the mineral grades. This uncertainty can be evaluated by use of geostatistical simulation methods. The aim of this study is to evaluate how the simulation of rock type domains and grades affects the resources model of Sungun porphyry copper deposit, northwestern Iran. Specifically, three main rock type domains (porphyry, skarn and late-injected dykes) that control the copper grade distribution are simulated over the region of interest using the plurigaussian model. The copper grades are then simulated in cascade, generating one grade realization for each rock type realization. The simulated grades are finally compared to those obtained using traditional approaches against production data.  相似文献   

12.
13.
The likelihood of Gaussian realizations, as generated by the Cholesky simulation method, is analyzed in terms of Mahalanobis distances and fluctuations in the variogram reproduction. For random sampling, the probability to observe a Gaussian realization vector can be expressed as a function of its Mahalanobis distance, and the maximum likelihood depends only on the vector size. The Mahalanobis distances are themselves distributed as a Chi-square distribution and they can be used to describe the likelihood of Gaussian realizations. Their expected value and variance are only determined by the size of the vector of independent random normal scores used to generate the realizations. When the vector size is small, the distribution of Mahalanobis distances is highly skewed and most realizations are close to the vector mean in agreement with the multi-Gaussian density model. As the vector size increases, the realizations sample a region increasingly far out on the tail of the multi-Gaussian distribution, due to the large increase in the size of the uncertainty space largely compensating for the low probability density. For a large vector size, realizations close to the vector mean are not observed anymore. Instead, Gaussian vectors with Mahalanobis distance in the neighborhood of the expected Mahalanobis distance have the maximum probability to be observed. The distribution of Mahalanobis distances becomes Gaussian shaped and the bulk of realizations appear more equiprobable. However, the ratio of their probabilities indicates that they still remain far from being equiprobable. On the other hand, it is observed that equiprobable realizations still display important fluctuations in their variogram reproduction. The variance level that is expected in the variogram reproduction, as well as the variance of the variogram fluctuations, is dependent on the Mahalanobis distance. Realizations with smaller Mahalanobis distances are, on average, smoother than realizations with larger Mahalanobis distances. Poor ergodic conditions tend to generate higher proportions of flatter variograms relative to the variogram model. Only equiprobable realizations with a Mahalanobis distance equal to the expected Mahalanobis distance have an expected variogram matching the variogram model. For large vector sizes, Cholesky simulated Gaussian vectors cannot be used to explore uncertainty in the neighborhood of the vector mean. Instead uncertainty is explored around the n-dimensional elliptical envelop corresponding to the expected Mahalanobis distance.  相似文献   

14.
Distance-based stochastic techniques have recently emerged in the context of ensemble modeling, in particular for history matching, model selection and uncertainty quantification. Starting with an initial ensemble of realizations, a distance between any two models is defined. This distance is defined such that the objective of the study is incorporated into the geological modeling process, thereby potentially enhancing the efficacy of the overall workflow. If the intent is to create new models that are constrained to dynamic data (history matching), the calculation of the distance requires flow simulation for each model in the initial ensemble. This can be very time consuming, especially for high-resolution models. In this paper, we present a multi-resolution framework for ensemble modeling. A distance-based procedure is employed, with emphasis on the rapid construction of multiple models that have improved dynamic data conditioning. Our intent is to construct new high-resolution models constrained to dynamic data, while performing most of the flow simulations only on upscaled models. An error modeling procedure is introduced into the distance calculations to account for potential errors in the upscaling. Based on a few fine-scale flow simulations, the upscaling error is estimated for each model using a clustering technique. We demonstrate the efficiency of the method on two examples, one where the upscaling error is small, and another where the upscaling error is significant. Results show that the error modeling procedure can accurately capture the error in upscaling, and can thus reproduce the fine-scale flow behavior from coarse-scale simulations with sufficient accuracy (in terms of uncertainty predictions). As a consequence, an ensemble of high-resolution models, which are constrained to dynamic data, can be obtained, but with a minimum of flow simulations at the fine scale.  相似文献   

15.
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport.  相似文献   

16.
地下水流数值模拟过程中,水文地质参数的不确定性对模拟结果影响很大。以内蒙古鄂尔多斯市某水源地为例,利用拉丁超立方抽样(LHS)方法获得了含水层渗透参数的随机组合,进行地下水流随机模拟。通过对观测资料与计算水位的绝对值平均(MAE)误差和误差均方根(RMSE)的统计分析,获得了模型较为稳定的随机模拟次数是243次。利用该随机模型对水源地设计开采量进行水位预测,并给出允许降深的风险性分布图。结果表明,预测水位和标准差分布符合实际情况,水位降深大于35 m的风险性最大达到75%。  相似文献   

17.
Generating one realization of a random permeability field that is consistent with observed pressure data and a known variogram model is not a difficult problem. If, however, one wants to investigate the uncertainty of reservior behavior, one must generate a large number of realizations and ensure that the distribution of realizations properly reflects the uncertainty in reservoir properties. The most widely used method for conditioning permeability fields to production data has been the method of simulated annealing, in which practitioners attempt to minimize the difference between the ’ ’true and simulated production data, and “true” and simulated variograms. Unfortunately, the meaning of the resulting realization is not clear and the method can be extremely slow. In this paper, we present an alternative approach to generating realizations that are conditional to pressure data, focusing on the distribution of realizations and on the efficiency of the method. Under certain conditions that can be verified easily, the Markov chain Monte Carlo method is known to produce states whose frequencies of appearance correspond to a given probability distribution, so we use this method to generate the realizations. To make the method more efficient, we perturb the states in such a way that the variogram is satisfied automatically and the pressure data are approximately matched at every step. These perturbations make use of sensitivity coefficients calculated from the reservoir simulator.  相似文献   

18.
This paper describes a new method for gradually deforming realizations of Gaussian-related stochastic models while preserving their spatial variability. This method consists in building a stochastic process whose state space is the ensemble of the realizations of a spatial stochastic model. In particular, a stochastic process, built by combining independent Gaussian random functions, is proposed to perform the gradual deformation of realizations. Then, the gradual deformation algorithm is coupled with an optimization algorithm to calibrate realizations of stochastic models to nonlinear data. The method is applied to calibrate a continuous and a discrete synthetic permeability fields to well-test pressure data. The examples illustrate the efficiency of the proposed method. Furthermore, we present some extensions of this method (multidimensional gradual deformation, gradual deformation with respect to structural parameters, and local gradual deformation) that are useful in practice. Although the method described in this paper is operational only in the Gaussian framework (e.g., lognormal model, truncated Gaussian model, etc.), the idea of gradually deforming realizations through a stochastic process remains general and therefore promising even for calibrating non-Gaussian models.  相似文献   

19.
张家洼矽卡岩型铁矿位于华北克拉通东南部,赋存在石炭系本溪组与奥陶系马家沟组之间的假整合面处及闪长岩体与奥陶系马家沟组大理岩的接触带附近,富铁矿石资源量已达大型规模。研究发现矽卡岩矿物种类在内外接触带分布有一定区别,内带为石榴石等钙质矽卡岩矿物,而外带为阳起石、金云母等镁质矽卡岩矿物,整体构成钙镁质矽卡岩。对矽卡岩矿物系统的研究表明,透辉石及石榴石发育有环带,其氧化物含量随矿物环带的形成比例不断变化,暗示酸碱度及氧逸度随着成矿流体的演化而发生相应的变化,即由早期矽卡岩阶段的相对还原的酸性环境演化为退化蚀变阶段相对氧化的碱性环境从而导致铁质逐渐萃取多次富集、沉淀,后期随着磁铁矿的沉淀又逐渐在硫化物阶段转化为还原环境生成金属硫化物。  相似文献   

20.

One main problem in the modeling of mineral deposits is to design a block model that divides the deposit into homogeneous subdomains. The spatial uncertainty in the geological boundaries becomes a critical factor prior to the modeling of the ore properties. For this reason, reducing the uncertainty of geological models leads to an improved mineral resource evaluation. This research work addresses the problem of updating the geological models by using actual online-sensor measurement data. A novel algorithm is provided, which integrates the discrete wavelet transform to the Ensemble Kalman Filter for assimilating online-sensor production data into geological models. The geological realizations in each time step are transformed to frequency coefficients and, after each assimilation step, the updated realizations are back-transformed to the original categorical distribution. Furthermore, a reconciliation process is performed to compare the online-sensor data derived from the production blocks and the updated realizations in each time step. The algorithm is illustrated through an application to the Golgohar iron deposit located in SW of Sirjan, Iran, and proves to reproduce the statistical parameters and connectivity values of the primary geological realizations.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号