首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Mineral exploration programs commonly use a combination of geological, geophysical and remotely sensed data to detect sets of optimal conditions for potential ore deposits. Prospectivity mapping techniques can integrate and analyse these digital geological data sets to produce maps that identify where optimal conditions converge. Three prospectivity mapping techniques – weights of evidence, fuzzy logic and a combination of these two methods – were applied to a 32,000 km2 study area within the southeastern Arizona porphyry Cu district and then assessed based on their ability to identify new and existing areas of high mineral prospectivity. Validity testing revealed that the fuzzy logic method using membership values based on an exploration model identified known Cu deposits considerably better than those that relied solely on weights of evidence, and slightly better than those that used a combination of weights of evidence and fuzzy logic. This led to the selection of the prospectivity map created using the fuzzy logic method with membership values based on an exploration model. Three case study areas were identified that comprise many critical geological and geophysical characteristics favourable to hosting porphyry Cu mineralisation, but not associated with known mining or exploration activity. Detailed analysis of each case study has been performed to promote these areas as potential targets and to demonstrate the ability of prospectivity modelling techniques as useful tools in mineral exploration programs.  相似文献   

2.
This paper presents a review of the available information on the significant porphyry, epithermal, and orogenic gold districts in Argentina, including the tectonic, geological, and structural settings of large deposits or deposits that have been exploited in the past. Based on this review of the geology and mineralization, targeting models are developed for epithermal and orogenic gold systems, in order to produce GIS-based prospectivity models. Using publically available digital geoscience data, weights of evidence and fuzzy logic prospectivity maps were generated for epithermal and orogenic gold mineralization in Argentina. The results of the prospectivity mapping highlight existing gold deposits within known mineralized districts throughout Argentina, as well as other highly prospective areas with no known deposits within these districts. Additionally, areas within Argentina that have no known gold mineralization (based on publically available information) were highlighted as being highly prospective based on the models used.  相似文献   

3.
The Taupo Volcanic Zone (TVZ) on the North Island of New Zealand is located above the subducting Pacific slab and hosts hydrothermal systems related to subduction, arc magmatism and crustal extension. In these systems, gold is transported primarily as sulphide complexes, with gold being deposited in response to boiling and mixing of the deep geothermal fluids. Conglomerate cobbles and hydrothermal fumaroles from the upper Retaruke River in the western TVZ are mineralised deposits that have been eroded from the nearby Miocene alluvial sedimentary plateau. Abundant gold-bearing pyrite was precipitated in the conglomerates and fumaroles by late hydrothermal process, primarily occurring as veinlets, disseminations and fine-grained aggregates which consists discrete euhedral microcrystals. Scanning electron microscopy combined with X-ray energy disperses spectroscopy shows that pyrites are commendably affected by late hydrothermal fluids, possibly by the carbonate fluid. Electron probe microanalysis revealed that the pyrite contains 20–120 ppm Au (averaging 60 ppm). Wavelength dispersive spectral elemental mapping suggests that gold is distributed uniformly in pyrite, indicating structurally bound gold (solid solution) in pyrite. Gold mineralisation recognised in the conglomerates and fumaroles demonstrates that the upper Retaruke River is a promising target for future gold exploration.  相似文献   

4.
The past two decades have seen a rapid adoption of artificial intelligence methods applied to mineral exploration. More recently, the easier acquisition of some types of data has inspired a broad literature that has examined many machine learning and modelling techniques that combine exploration criteria, or ‘features’, to generate predictions for mineral prospectivity. Central to the design of prospectivity models is a ‘mineral system’, a conceptual model describing the key geological elements that control the timing and location of economic mineralisation. The mineral systems model defines what constitutes a training set, which features represent geological evidence of mineralisation, how features are engineered and what modelling methods are used. Mineral systems are knowledge-driven conceptual models, thus all parameter choices are subject to human biases and opinion so alternative models are possible. However, the effect of alternative mineral systems models on prospectivity is rarely compared despite the potential to heavily influence final predictions. In this study, we focus on the effect of conceptual uncertainty on Fe ore prospectivity models in the Hamersley region, Western Australia. Four important considerations are tested. (1) Five different supergene and hypogene conceptual mineral systems models guide the inputs for five forest-based classification prospectivity models model. (2) To represent conceptual uncertainty, the predictions are then combined for prospectivity model comparison. (3) Representation of three-dimensional objects as two-dimensional features are tested to address commonly ignored thickness of geological units. (4) The training dataset is composed of known economic mineralisation sites (deposits) as ‘positive’ examples, and exploration drilling data providing ‘negative’ sampling locations. Each of the spatial predictions are assessed using independent performance metrics common to AI-based classification methods and subjected to geological plausibility testing. We find that different conceptual mineral systems produce significantly different spatial predictions, thus conceptual uncertainty must be recognised. A benefit to recognising and modelling different conceptual models is that robust and geologically plausible predictions can be made that may guide mineral discovery.  相似文献   

5.
This paper reports a deposit-scale GIS-based 3D mineral potential assessment of the Jiama copper-polymetallic deposit in Tibet, China. The assessment was achieved through a sequential implementation of metallogenic modelling and 3D modelling of geology, geochemistry and prospectivity. A metallogenic model for the Jiama deposit and 3D modelling workflow were used to construct multiple 3D layers of volumetric and triangular mesh models to represent geology, geochemistry and ore-controlling features in the study area. A GIS-based 3D weights-of-evidence analysis was then used to estimate the subsurface prospectivity for Cu (Mo) orebodies in the area, which led to the identification of three prospective deep-seated exploration targets. Additionally, the geochemical modelling indicates three potential fluid flow pathways based on the 3D zonation of major geochemical elements and their ratios, particularly the Zn/Pb ratios, which support the results of the weights of evidence model.  相似文献   

6.
We introduce a novel approach to analyse and assess the structural framework of ore deposits that fully integrates 3D implicit modelling in data-rich environments with field observations. We apply this approach to the early Palaeozoic Navachab gold deposit which is located in the Damara orogenic belt, Namibia. Compared to traditional modelling methods, 3D implicit modelling reduces user-based modelling bias by generating open or closed surfaces from geochemical, lithological or structural data without manual digitisation and linkage of sections or level plans. Instead, a mathematically defined spatial interpolation is used to generate 3D models that show trends and patterns that are embedded in large drillhole datasets. In our 3D implicit model of the Navachab gold deposit, distinctive high-grade mineralisation trends were identified and directly related to structures observed in the field. The 3D implicit model and field data suggest that auriferous semi-massive sulphide ore shoots formed near the inflection line of the steep limb of a regional scale dome, where shear strain reached peak values during fold amplification. This setting generated efficient conduits and traps for hydrothermal fluids and associated mineralisation that led to the formation of the main ore shoots in the deposit. Both bedding-parallel and highly discordant sets of auriferous quartz-sulphide veins are interpreted to have formed during the later lock-up stage of the regional scale dome. Additionally, pegmatite dykes crosscut and remobilise gold mineralisation at the deposit scale and appear to be related to a younger joint set. We propose that kilometre-scale active folding is an important deformation mechanism that influences the spatial distribution and orientation of mineralisation in ore deposits by forming structures (traps and pathways for fluids) at different preferred sites and orientations. We also propose that areas that experience high shear strain, located along the inflection lines of folds can act as preferred sites for syn-deformational hydrothermal mineralisation and should be targeted for regional scale exploration in fold and thrust belts. Our research also suggests that examination of existing drillhole datasets using 3D implicit modelling is a powerful tool for spatial analysis of mineralisation patterns. When combined with fieldwork, this approach has the potential to improve structural understanding of a variety of ore deposits.  相似文献   

7.
Prospectivity analyses are used to reduce the exploration search space for locating areas prospective for mineral deposits.The scale of a study and the type of mineral system associated with the deposit control the evidence layers used as proxies that represent critical ore genesis processes.In particular,knowledge-driven approaches(fuzzy logic)use a conceptual mineral systems model from which data proxies represent the critical components.These typically vary based on the scale of study and the type of mineral system being predicted.Prospectivity analyses utilising interpreted data to represent proxies for a mineral system model inherit the subjectivity of the interpretations and the uncertainties of the evidence layers used in the model.In the case study presented,the prospectivity for remobilised nickel sulphide(NiS)in the west Kimberley,Western Australia,is assessed with two novel techniques that objectively grade interpretations and accommodate alternative mineralisation scenarios.Exploration targets are then identified and supplied with a robustness assessment that reflects the variability of prospectivity value for each location when all models are considered.The first technique grades the strength of structural interpretations on an individual line-segment basis.Gradings are obtained from an objective measure of feature evidence,which is the quantification of specific patterns in geophysical data that are considered to reveal underlying structure.Individual structures are weighted in the prospectivity model with grading values correlated to their feature evidence.This technique allows interpreted features to contribute prospectivity proportional to their strength in feature evidence and indicates the level of associated stochastic uncertainty.The second technique aims to embrace the systemic uncertainty of modelling complex mineral systems.In this approach,multiple prospectivity maps are each generated with different combinations of confidence values applied to evidence layers to represent the diversity of processes potentially leading to ore deposition.With a suite of prospectivity maps,the most robust exploration targets are the locations with the highest prospectivity values showing the smallest range amongst the model suite.This new technique offers an approach that reveals to the modeller a range of alternative mineralisation scenarios while employing a sensible mineral systems model,robust modelling of prospectivity and significantly reducing the exploration search space for Ni.  相似文献   

8.
三维成矿定量预测系统设计与应用实例研究   总被引:2,自引:0,他引:2       下载免费PDF全文
隐伏矿体三维成矿定量预测是以多元地学大数据为基础的矿产预测新技术与方法。本文基于隐伏矿体三维成矿定量预测的实际需要及相关方法步骤,采用集成二次开发的方式,设计实现了一套可在三维环境下基于大数据开展定量化成矿预测工作的软件系统。本文阐述了系统的总体架构及开发方式,并对系统中各个功能模块的设计及实现过程进行详细阐述。系统融合了当前三维成矿定量预测研究的最新方法及成果,内含数据库管理、三维地球物理正演、三维空间分析以及三维预测评价等功能模块,能够对多元地学大数据进行集成和分析预测。为了验证系统的适用性和有效性,该系统被应用于长江中下游成矿带钟姑矿田三维成矿定量预测研究,相关成果表明系统的建立不但能够深化和发展三维成矿预测理论,也为新时期基于大数据的隐伏矿体找矿勘探工作提供了新方法及有力工具。  相似文献   

9.
Previous prospectivity modelling for epithermal Au–Ag deposits in the Deseado Massif, southern Argentina, provided regional-scale prospectivity maps that were of limited help in guiding exploration activities within districts or smaller areas, because of their low level of detail. Because several districts in the Deseado Massif still need to be explored, prospectivity maps produced with higher detail would be more helpful for exploration in this region.We mapped prospectivity for low- and intermediate-sulfidation epithermal deposits (LISEDs) in the Deseado Massif at both regional and district scales, producing two different prospectivity models, one at regional scale and the other at district-scale. The models were obtained from two datasets of geological evidence layers by the weights-of-evidence (WofE) method. We used more deposits than in previous studies, and we applied the leave-one-out cross validation (LOOCV) method, which allowed using all deposits for training and validating the models. To ensure statistical robustness, the regional and district-scale models were selected amongst six combinations of geological evidence layers based on results from conditional independence tests.The regional-scale model (1000 m spatial resolution), was generated with readily available data, including a lithological layer with limited detail and accuracy, a clay alteration layer derived from a Landsat 5/7 band ratio, and a map of proximity to regional-scale structures. The district-scale model (100 m spatial resolution) was generated from evidence layers that were more detailed, accurate and diverse than the regional-scale layers. They were also more cumbersome to process and combine to cover large areas. The evidence layers included clay alteration and silica abundance derived from ASTER data, and a map of lineament densities. The use of these evidence layers was restricted to areas of favourable lithologies, which were derived from a geological map of higher detail and accuracy than the one used for the regional-scale prospectivity mapping.The two prospectivity models were compared and their suitability for prediction of the prospectivity in the district-scale area was determined. During the modelling process, the spatial association of the different types of evidence and the mineral deposits were calculated. Based on these results the relative importance of the different evidence layers could be determined. It could be inferred which type of geological evidence could potentially improve the modelling results by additional investigation and better representation.We conclude that prospectivity mapping for LISEDs at regional and district-scales were successfully carried out by using WofE and LOOCV methods. Our regional-scale prospectivity model was better than previous prospectivity models of the Deseado Massif. Our district-scale prospectivity model showed to be more effective, reliable and useful than the regional-scale model for mapping at district level. This resulted from the use of higher resolution evidential layers, higher detail and accuracy of the geological maps, and the application of ASTER data instead of Landsat ETM + data. District-scale prospectivity mapping could be further improved by: a) a more accurate determination of the age of mineralization relative to that of lithological units in the districts; b) more accurate and detailed mapping of the favourable units than what is currently available; c) a better understanding of the relationships between LISEDs and the geological evidence used in this research, in particular the relationship with hydrothermal clay alteration, and the method of detection of the clay minerals; and d) inclusion of other data layers, such as geochemistry and geophysics, that have not been used in this study.  相似文献   

10.
塔尔巴哈台-萨吾尔地区位于中国新疆西北部,目前已发现若干处铜、金矿床,具有很好的成矿潜力。成矿定量预测方法常被用于综合成矿标志信息,进行成矿远景区的定量预测和评价。本文首先结合多重分形理论-奇异性指数模型进行地球化学异常提取,之后通过对区域成矿条件进行综合分析,基于地球化学异常以及构造、岩浆岩、地层与矿化的相关关系构建了塔尔巴哈台-萨吾尔地区铜-金成矿预测模型;研究进一步基于新近的找矿成果,以已知矿床和新近发现的矿化点信息作为依据,利用证据权重方法对研究区铜-金矿化的远景区进行了定量预测。预测结果显示出塔尔巴哈台-萨吾尔地区具有良好的找矿前景,区内存在多个新的成矿远景区,可作为新的找矿勘探的目标,开展进一步找矿勘查工作。  相似文献   

11.
This paper describes the geology and tectonics of the Paleoproterozoic Kumasi Basin, Ghana, West Africa, as applied to predictive mapping of prospectivity for orogenic gold mineral systems within the basin. The main objective of the study was to identify the most prospective ground for orogenic gold deposits within the Paleoproterozoic Kumasi Basin. A knowledge-driven, two-stage fuzzy inference system (FIS) was used for prospectivity modelling. The spatial proxies that served as input to the FIS were derived based on a conceptual model of gold mineral systems in the Kumasi Basin. As a first step, key components of the mineral system were predictively modelled using a Mamdani-type FIS. The second step involved combining the individual FIS outputs using a conjunction (product) operator to produce a continuous-scale prospectivity map. Using a cumulative area fuzzy favourability (CAFF) curve approach, this map was reclassified into a ternary prospectivity map divided into high-prospectivity, moderate-prospectivity and low-prospectivity areas, respectively. The spatial distribution of the known gold deposits within the study area relative to that of the prospective and non-prospective areas served as a means for evaluating the capture efficiency of our model. Approximately 99% of the known gold deposits and occurrences fall within high- and moderate-prospectivity areas that occupy 31% of the total study area. The high- and moderate-prospectivity areas illustrated by the prospectivity map are elongate features that are spatially coincident with areas of structural complexity along and reactivation during D4 of NE–SW-striking D2 thrust faults and subsidiary structures, implying a strong structural control on gold mineralization in the Kumasi Basin. In conclusion, our FIS approach to mapping gold prospectivity, which was based entirely on the conceptual reasoning of expert geologists and ignored the spatial distribution of known gold deposits for prospectivity estimation, effectively captured the main mineralized trends. As such, this study also demonstrates the effectiveness of FIS in capturing the linguistic reasoning of expert knowledge by exploration geologists. In spite of using a large number of variables, the curse of dimensionality was precluded because no training data are required for parameter estimation.  相似文献   

12.
13.
西藏铁格隆南铜(金)矿床三维模型分析与深部预测   总被引:1,自引:1,他引:0  
于萍萍  陈建平  王勤 《岩石学报》2019,35(3):897-912
铁格隆南铜(金)矿床是近年来在班公湖-怒江成矿带西段多龙矿集区新发现的超大型Cu(Au-Ag)矿床。本文针对铁格隆南矿区深部找矿问题,以现代成矿地质理论和多元地学信息综合分析技术为支撑,以构建矿床找矿模型为指导,依托数据库技术、3S技术、三维建模与可视化技术及地质统计学理论与方法,开展基于矿产地质、地球物理、地球化学等成矿条件及找矿标志的三维地质实体建模与矿化异常三维空间重构,将铁格隆南矿床的预测评价研究拓展到三维空间,揭示了区内成矿地质特征、地球化学及地球物理异常表征,据此探讨了矿床的成因及矿体分布特征。并在此基础上,开展了矿区的地质-地球化学-地球物理综合信息分析与预测评价,以期减少单一信息多解性和成矿条件不确定性,为铁格隆南矿区深部找矿工作提供参考。研究结果表明:在地质找矿模型指导下,基于深部成矿空间三维结构重构基础上的三维地质、地球物理、地球化学异常信息提取与综合分析,可以有效的识别成矿地质体和矿致异常信息,实现深部矿产资源靶区空间定位预测,为深部找矿预测研究提供了新思路。综合分析结果显示铁格隆南矿床深部找矿潜力巨大。  相似文献   

14.
The Zhonggu iron orefield is one of the most important iron orefields in China, and is located in the south of the Ningwu volcanic basin, within the middle and lower Yangtze metallogenic belt of eastern China. Here, we present the results of new 3D prospectivity modeling that enabled the delineation of areas prospective for exploration of concealed and deep-seated Baixiangshan-type mineralization and Yangzhuang-type mineralization within the Zhonggu orefield; both of these deposits are Kiruna-type Fe-apatite deposits but are hosted by different formations within the Ningwu Basin. The modeling approach used during this study involves 3 steps: (1) combining available geological and geophysical data to construct 3D geological models; (2) generation of 3D predictive maps from these 3D geological models using 3D spatial analysis and 3D geophysical methods; (3) combining all of the 3D predictive maps using logistic regression to create a prospectivity map. This approach integrates a large amount of available geoscientific data using 3D methods, including 3D geological modeling, 3D/2D geophysical methods, and 3D spatial analysis and data integration methods. The resulting prospectivity model clearly identifies highly prospective areas that not only include areas of known mineralization but also a number of favorable targets for future mineral exploration. The 3D prospectivity modeling approach showcased within this study provides an efficient way to identify camp-scale concealed and deep-seated exploration targets and can easily be adapted for regional- and deposit- scale targeting.  相似文献   

15.
In the southwestern part of the Ashanti Belt, the results of fractal and Fry analyses of the spatial pattern of 51 known mines/prospects of (mostly lode) gold deposits and the results of analysis of their spatial associations with faults and fault intersections suggest different predominant structural controls on lode gold mineralisation at local and district scales. Intersections of NNE- and NW-trending faults were likely predominantly involved in local-scale structural controls on lode gold mineralisation, whilst NNE-trending faults were likely predominantly involved in district-scale structural controls on lode gold mineralisation. The results of the spatial analyses facilitate the conceptualisation and selection of spatial evidence layers for lode gold prospectivity mapping in the study area. The applications of the derived map of lode gold prospectivity and a map of radial density of spatially coherent lode gold mines/prospects results in a one-level prediction of 37 undiscovered lode gold prospects. The applications of quantified radial density fractal dimensions of the spatial pattern of spatially coherent lode gold mines/prospects result in an estimate of 40 undiscovered lode gold prospects. The study concludes finally that analysis of the spatial pattern of discovered mineral deposits is the key to a strong link between mineral prospectivity mapping and assessment of undiscovered mineral deposits.  相似文献   

16.
After almost five decades of episodic exploration, feasibility studies are now being completed to mine the deep-water nodular phosphate deposit on the central Chatham Rise. Weights of evidence (WofE) and fuzzy logic prospectivity models have been used in these studies to help in mapping of the exploration and resource potential, to constrain resource estimation, to aid with geotechnical engineering and mine planning studies and to provide background geological data for the environmental consent process. Prospectivity modelling was carried out in two stages using weights of evidence and fuzzy logic techniques. A WofE prospectivity model covering the area of best data coverage was initially developed to define the geological and environmental variables that control the distribution of phosphate on the Chatham Rise and map areas where mineralised nodules are most likely to be present. The post-probability results from this model, in conjunction with unique conditions and confidence maps, were used to guide environmental modelling for setting aside protected zones, and also to assist with mine planning and future exploration planning. A regional scale fuzzy logic model was developed guided by the results of the spatial analysis of the WofE model, elucidating where future exploration should be targeted to give the best chance of success in expanding the known resource. The development work to date on the Chatham Rise for nodular phosphate mineralisation is an innovative example of how spatial data modelling techniques can be used not only at the exploration stage, but also to constrain resource estimation and aid with environmental studies, thereby greatly reducing development costs, improving the economics of mine planning and reducing the environmental impact of the project.  相似文献   

17.
Fuzzy logic mineral prospectivity modelling was performed to identify camp-scale areas in western Victoria with an elevated potential for hydrothermal-remobilised nickel mineralisation. This prospectivity analysis was based on a conceptual mineral system model defined for a group of hydrothermal nickel deposits geologically similar to the Avebury deposit in Tasmania. The critical components of the conceptual model were translated into regional spatial predictor maps combined using a fuzzy inference system. Applying additional criteria of land use restrictions and depth of post-mineralisation cover, downgrading the exploration potential of the areas within national parks or with thick barren cover, allowed the identification of just a few potentially viable exploration targets, in the south of the Grampians-Stavely and Glenelg zones. Uncertainties of geological interpretations and parameters of the conceptual mineral system model were explicitly defined and propagated to the final prospectivity model by applying Monte Carlo simulations to the fuzzy inference system. Modelling uncertainty provides additional information which can assist in a further risk analysis for exploration decision making.  相似文献   

18.
模糊证据权方法在镇沅(老王寨)地区金矿资源评价中的应用   总被引:11,自引:0,他引:11  
成秋明  陈志军 《地球科学》2007,32(2):175-184
采用模糊证据权方法和GeoDASGIS技术开展了镇沅(老王寨)及其邻区的金矿资源潜力评价.分别采用GeoDASGIS软件提供的局部奇异性分析技术、S-A异常分解技术、主成分分析技术、证据权、模糊证据权等技术对相关地球化学元素进行了系统的处理和分析.应用主成分分析方法确定了可能的2种不同成矿类型,并采用主成分得分确定了组合异常点,在此基础上分别采用普通证据权和模糊证据权方法编制了成矿后验概率图,圈定了有利成矿地段.对比普通证据权方法与模糊证据权方法所得结果表明,模糊证据权方法可减小图层离散化造成的有用信息损失,提高预测结果精度.  相似文献   

19.
Identifying highly favorable areas related to a particular mineralization type is the main objective of mineral prospectivity modeling (MPM). The northwestern portion of Ahar-Arasbaran porphyry copper belt (AAPCB) is situated within the Urumieh-Dokhtar magmatic belt (UDMB). Because of owning many worthwhile Cu-Mo and Cu-Au porphyry deposits, this area is entitled to incorporate diverse spatial evidence layers for the MPM. In this paper, a hybrid AHP-VIKOR, as an improved knowledge-driven MPM procedure has been proposed for integration of various exploration evidence layers. For this, the AHP is used to calculate important weights of spatial criteria while the VIKOR is applied to outline ultimate prospectivity model. Six effective spatial evidence layers pertaining to the Varzaghan District are selected: (1) multi-elemental geochemical layer of Cu-Mo-Bi-Au; (2) remotely sensed data of argillic, phyllic, and iron oxide alteration layers; and (3) geological and structural layers of Oligo-Miocene intrusions and fault. In addition, a fuzzy prospectivity model (γ?=?0.9) is implemented to assess the AHP-VIKOR approach. Two credible validation methods comprising normalized density index and success rate curve are adapted for quantitative evaluation of predictive models and enhancing the probability of exploration success. The achieved results proved the higher accuracy of the AHP-VIKOR model compared with the fuzzy model in delimiting the favorable areas.  相似文献   

20.
A major challenge for mineral exploration geologists is the development of a transparent and reproducible approach to targeting exploration efforts, particularly at the regional to camp scales, in terranes under difficult cover where exploration and opportunity costs are high. In this study, a three-pronged approach is used for identifying the most prospective ground for orogenic gold deposits in the Paleoproterozoic Granite-Tanami Orogen (GTO) in Western Australia.A key input to the analyses is the recent development of a 4D model of the GTO architectural evolution that provides new insights on the spatio-temporal controls over orogenic gold occurrences in the area; in particular, on the role of pre-mineralization (pre-1795 Ma) DGTOE–DGTO1–DGTO2 architecture in localization of gold deposits and the spatial distribution of rock types in 3D. This information is used to build up a model of orogenic gold minerals system in the area, which is then integrated into the three mutually independent but complementary mineral prospectivity maps namely, a concept-driven “manual” and “fuzzy” analysis; and a data-driven “automated” analysis.The manual analysis involved: (1) generation of a process-based gold mineral systems template to aid target selection; (2) manual delineation of targets; (3) manual estimation of the probability of occurrence of each critical mineralization process based on the available information; and (4) combining the above probabilities to derive the relative probability of occurrence of orogenic gold deposits in each of the targets. The knowledge-based Geological Information System (GIS) analysis attempts to replicate the expert knowledge used in the manual approach, but queried in a more systematic format to eliminate human heuristic bias. This involves representing the critical mineralization processes in the form of spatial predictor maps and systematically querying them through the use of a fuzzy logic model to integrate the predictor maps and to derive the western GTO orogenic gold prospectivity map. The data-driven ‘empirical’ GIS analysis uses no expert knowledge. Instead it employs statistical measures to evaluate the spatial associations between known deposits and predictor maps to establish weights for each predictor layer then combines these layers into a predictive map using a Weights of Evidence (WofE) approach.Application of a mineral systems approach in the manual analysis and the fuzzy analysis is critical: potential high value targets identified by these approaches in the western GTO lie largely under cover, whereas traditional manual targeting is biased to areas of outcrop or sub-crop amenable to direct detection technology such as exploration geochemistry, and therefore towards areas that are data rich.The results show the power of combining the three approaches to prioritize areas for exploration. While the manual analysis identifies and employs human intuition and can see through incomplete datasets, it is difficult to filter out human bias and to systematically apply to a large region. The fuzzy method is more systematic, and highlights areas that the manual analysis has undervalued, but lacks the intuitive power of the human mind that refines the target by seeing through incomplete datasets. The empirical WoE method highlights correlations with favorable host stratigraphy and highlights the control of an early set of structures potentially undervalued in the knowledge driven approaches, yet is biased due to the incomplete nature of exploration datasets and lack of abundant gold deposits due to the extensive cover.The results indicate that the most prospective areas for orogenic gold in western GTO are located in the central part of the study area, largely in areas blind to previous exploration efforts. According to our study, the procedure to follow should be to undertake the analyses in the following order: manual prospectivity analysis, followed by the conceptual fuzzy approach, followed by the empirical GIS-based method. Undertaking the manual analysis first is important to prevent explorationists from being biased by the automated GIS-based outputs. It is however emphasized that all of the prospectivity outputs from these three methods are possible, and they should not be treated as ‘treasure maps’, but instead, as decision-support aids. Therefore, a final manual prospectivity analysis redefined by the mutual consideration of output from all of the methods is required.The strategy employed in this study constitutes a new template for best-practice in terrane- to camp-scale exploration targeting that can be applied to different terranes and deposit types, particularly in terranes under cover, and provides a step forward in managing uncertainty in the exploration targeting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号