首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unconformities, which represent either periods of interruption of sedimentation or, in most cases events characterized by deposition and subsequent erosion, are commonplace geological phenomena in sedimentary basins, and will affect the pore pressure evolution of the basin fill. The effect of unconformities on pore pressure, as well as on sediment compaction and on burial processes is studied using a numerical basin model. For coarse sediments, which are permeable so that their pore pressure always remains nearly hydrostatic, the effects of both pure deposition interruption (hiatus) and deposition-erosion events are negligible for pore pressure evolution. However, for fine-grained sediments, unconformities can modify the pore pressure and the stress state to varying degrees. The results show that the rate of removal of overlying sediments, the permeability of sediments and time play important roles in the pore pressure evolution. In the East Slope of the Ordos Basin (China), in which overpressure has not been detected in deep wells, the modelling results suggest that the large-scale erosion occurring in the Late Cretaceous and in the Tertiary may have removed high overpressure existing in the basin before the erosion.  相似文献   

2.
The complex pressure and porosity fields observed in the Eugene Island (EI) 330 field (offshore Louisiana) are thought to result from sediment loading of low-permeability strata. In this field, fluid pressures rise with depth from hydrostatic to nearly lithostatic, iso-pressure surfaces closely follow stratigraphic surfaces which are sharply offset by growth-faulting, and porosity declines with effective stress. A one-dimensional hydrodynamic model simulates the evolution of pressure and porosity in this system. If reversible (elastic) compaction is assumed, sediment loading is the dominant source of overpressure (94%). If irreversible (inelastic) compaction and permeability reduction due to clay diagenesis are assumed, then thermal expansion of pore fluids and clay dehydration provide a significant component of overpressure (>20%). The model is applied to wells on the upthrown and downthrown sides of the major growth fault in the EI 330 field. Assuming that sediment loading is the only pressure source and that permeability is a function of lithology and porosity, the observed pressure and porosity profiles are reproduced. Observation and theory support a conceptual model where hydrodynamic evolution is intimately tied to the structural and stratigraphic evolution of this progradational deltaic system.

  相似文献   


3.
He  Middleton  & Tang 《Basin Research》2000,12(2):147-158
The vertical characteristics of underpressure, pore fluids and sealing condition in the Shiwu Fault Depression, south‐east Songliao Basin, are investigated. Based on the pore pressure data from drill stem tests collected from 40 wells, the vertical distribution of pore pressure in this depression consists of a shallow hydrostatic pressure system and a deep underpressure system. The observed low pressures range from about 4 to 10 MPa in the depth interval of about 1550–2800 m. The pore water chemistry data document that the ionic evaporite trends of the pore water in the underpressure zone are different from overlying sediments in the hydrostatically pressured section, indicating that the underpressure system is sealed. The study indicates that the depression has undergone rapid deposition in a rift period during the Cretaceous followed by a long‐term slow uplift and erosion in the Tertiary. On the basis of the modelled results of the abnormal pressure evolution in a typical cross‐section using a two‐dimensional numerical flow model, we believe that the predecessor of the underpressure system was an overpressure system. Since the end of the Cretaceous, the observed underpressure system has developed as a result of a geotemperature decrease ranging from 30 to 70 °C, owing to palaeoheat flow reduction and long‐term uplift and erosional cooling. The mudstones below a depth of 1550 m in the deep subnormal pressure system have small measured porosities ranging from 4% to 1.2% with calculated permeability of about 10?21–10?24 m2. The observed underpressure can be modelled if we assign permeabilities below 10?20 m2 with a linear reduction of geotemperature. The geotemperature decrease, in combination with very low permeability in the Lower Cretaceous mudstones, is therefore a possible origin for the formation of the underpressure system in this depression.  相似文献   

4.
We propose a model that explains variations in magnetic parameters of lake sediments as a record of Holocene climate change. Our model is based on records from 4 lakes and incorporates the effects of erosion, dust deposition, and the authigenesis and diagenesis of the magnetic component of the sediment. Once checked against high resolution multi proxy climate records, which are currently being established for some of our study sites, it will allow us to use magnetic proxies to establish high-resolution climate reconstructions on a regional scale.Our model utilizes a combination of concentration-dependent parameters (magnetic susceptibility, IRM) and grain-size-dependent parameters (ARM/IRM, hysteresis parameters). Magnetic mineralogy is characterized by a combination of low-temperature measurements and S-ratios, and our magnetic measurements are complemented by XRD, LOI and smearslide analyses.During periods of forest growth within the watershed, deposition of terrigenous material is low and the sediment magnetic properties are characterized by low concentrations of mainly authigenic minerals (low values of IRM, high ratios of ARM/IRM). During the early to mid-Holocene dry period, deposition of terrigenous material increased due to intensified dust deposition and the erosion of lake margins caused by lowered water levels. Concentration of magnetic minerals increases (high IRM, ) and so does the grain-size of the magnetic fraction (low ARM/IRM). During the late-Holocene, sediment magnetic properties depend on the varied position of the site with respect to the prairie–forest ecotone.  相似文献   

5.
Wave propagation is studied in a general anisotropic poroelastic solid. The presence of dissipation due to fluid-viscosity as well as hydraulic anisotropy of pore permeability are also considered. Biot's theory is used to derive a system of modified Christoffel equations for the propagation of plane harmonic waves in porous media. A non-trivial solution of this system is ensured by a determinantal equation. This equation is separated into two different polynomial equations. One is the quartic equation whose roots represent the complex velocities of four attenuating waves in the medium. The other is a eighth-degree polynomial whose roots represent the vertical slowness values for the four waves propagating upward and downward in a finite porous medium. Procedure is explained to associate the numerically obtained roots with the waves propagating in the medium. The slowness surfaces of waves reflected at the boundary of the medium are computed for a realistic numerical model. The behaviours of phase velocity surfaces are analysed with the help of numerical examples.  相似文献   

6.
Summary . A two-space singular perturbation technique is employed to derive approximate governing equations for flow of a viscous heat-conducting fluid through a rigid porous solid. It is assumed that buoyancy forces are significant, and it is shown that standard approximations used in the study of flow through a porous medium are valid provided that Gr ≫ 1, where Gr is a Grashof number calculated using a typical pore radius as the length scale. Results previously derived in the literature for flow through an isotropic random array of spherical particles are used to show how the permeability and conductivity tensors can be calculated for a problem of interest in planetary science.  相似文献   

7.
近几十年来,土壤侵蚀日益加剧,伴随着土地质量的退化,已成为影响区域可持续发展的主要环境问题。利用放射性核素137Cs进行土壤侵蚀研究能够简便、快速、准确地获取土壤流失、沉积和空间重新分布等详细信息。从元素来源、空间分布、背景值、示踪原理、活度测定、转换模型等方面对该方法进行了详细描述,在总结其优缺点的基础上,对其未来的发展方向做出了展望。  相似文献   

8.
土壤风力侵蚀研究现状与进展   总被引:12,自引:1,他引:11  
土壤风蚀实质上是土壤颗粒在风力作用下发生位移的自然过程,它包含了土壤夹带起沙、空间输移及沉降淀积等三个阶段。风蚀研究的根本任务是对土壤风蚀的范围、强度及数量进行监测、评价以及预测预报。为此,科学家在断面尺度、地块(图斑)尺度以及区域尺度上,以年、月、日、小时等时间尺度展开了研究。当前的风蚀研究主要有以下四个方向:实验室和野外风洞实验研究、野外观测与网络监测、风蚀评价以及风蚀估算与过程模拟研究等。实验室和野外风洞实验有助于人们深入理解风蚀的基本过程;而网络监测数据对于实现风蚀研究从局部到整体的尺度转换具有重要意义;在风蚀评价方面,对风蚀发源地的风蚀评价研究卓有成效,但针对风蚀物运移过程及沉降过程的研究成果还不多见;在风蚀估算和过程模拟方面,一些模型或应用系统已经在不同的区域以不同的时空尺度取得良好的效果,但是要将这些模型和系统在不同的时空尺度上做进一步推广还有许多工作要做。遥感和GIS等现代地理信息技术在区域尺度的风蚀研究中有着显著的优势,并贯穿了风蚀研究的全过程。  相似文献   

9.
《Geomorphology》2006,73(1-2):115-130
Field observations and theoretical analysis have been used in the literature to assess slope instability caused by permeability variations. This investigation aims to study the influence of permeability variations on slope behaviour by experimental means. It focuses particularly on the pore water pressure generation in the vicinity of soils with different permeabilities, and the corresponding failure mode. A series of generated failures in a model with 2 soil layers was performed by means of a flume device. The soil layers were made of a medium-sized sand and a fine sand, placed in horizontal layers. A combination of photography and pore water pressure measurements was used to examine the relationship between the pore water pressure generation and failure modes. Experiments were conducted for different arrangements of soil layers (by changing the soil layer position), and infiltration direction (downward infiltration by sprinkling water on the soil, and upward infiltration from the bottom of the lower soil layer).The results revealed no clear link between the failure mode and recorded pore water pressure. Instead, the failure mode was seen to depend mostly on the relative layer position, and the recorded pore water pressures on the imposed infiltration direction. Failure was not confined to a single failure mode, but ranged instead from retrogressive slides and lateral spreads to seepage erosion. Regarding the hydrologic response, interesting results were recorded for experiments performed by downward infiltration, where perched water tables were formed. The granular nature of both soils and the absence of an impermeable barrier at the downslope end of the model seem to have favoured water seepage as the controlling failure mechanism, enhancing seepage erosion and sliding, and restricting other failure modes that require a high soil saturation such as flow failure.As the drainage conditions were not controlled, these experiments provided a unique opportunity to study the effect of water seepage as a trigger. In some experiments, failure evolution was seen to be dominated by sand washout, which started after the pore water pressure reached its maximum, suggesting that the dragging effect of seepage forces have a minor impact on triggering failure. An extra set of experiments conducted in a triaxial apparatus supported the efficacy of pore water pressure as a trigger rather than the dragging effect of seepage forces. The results obtained here provide an insight into the pre-failure mechanisms and processes of heterogeneous natural slopes.  相似文献   

10.
Reconstructing ancient topography through erosion modelling   总被引:1,自引:1,他引:1  
One of the main aims of geomorphology is to understand how geomorphic processes change topography over long time scales. Over the last decades several landscape evolution models have been developed in order to study this question. However, evaluation of such models has often been very limited due to the lack of necessary field data. In this study we present a topography based hillslope erosion and deposition model that is based on the WATEM/SEDEM model structure and works on a millennial time scale. Soil erosion, transport and deposition are calculated using slope and unit contributing area. The topography is iteratively rejuvenated by taking into account modelled erosion and deposition rates, thereby simulating topographic development backwards in time. A first attempt has been made to spatially evaluate the model, using detailed estimates for historical soil erosion and sediment deposition volumes, obtained from an augering campaign in a small catchment in the Belgian Loess Belt. The results show that the model can simulate realistic soil redistribution patterns. However, further research is necessary in order to deal with artificial flaws that cause routing problems and significantly influence results. Common problems and issues related to this type of backward modelling are also discussed.  相似文献   

11.
Record of sea-level fall in tropical carbonates   总被引:3,自引:0,他引:3  
Stratigraphic forward modeling and comparison with published case studies have been used to determine the controls and stability domains of two conceptual models concerning relative sea-level fall in carbonate sequence stratigraphy. In the standard model, deposition occurs principally during rise and stillstands of relative sea level; a continuous erosional unconformity develops during sea-level fall. The falling-stage systems tract model (FST) postulates significant deposition during sea-level fall. Sedimentological principles, numerical models and published case studies of tropical carbonate sequences indicate that presence or absence of FST is not simply a function of the rate of sea-level fall but depends on the balance of the rates of erosion, sea-level fall and carbonate production, whereby the FST is favoured by high production, slow erosion and slow sea-level fall. Case studies plotted in the parameter space spanned by these variables support the modeling results. The ranges of rates required for the FST in the modeling runs are common in the geologic record. Consequently, the FST can be expected to be more common in tropical carbonate rocks than published records, particularly seismic data, currently indicate.  相似文献   

12.
The paper presents a personal summary of the role of magnetic measurements in lake sediment studies. Examples are used to illustrate the main variations in lake sediment magnetic properties and the processes controlling their variations. These are considered in terms of sediment sequences: (1) that are virtually devoid of magnetic minerals; (2) the magnetic properties of which are dominated by input of magnetic minerals from ‘primary’, unweathered catchment sources (3) with magnetic properties indicative of erosion of weathered material, mainly magnetically enhanced topsoil; (4) that have received minimal input of terrigenous ferrimagnetic minerals but are rich in biogenic magnetite (5) parts of which have experienced dissolution diagenesis (6) in which signals from erosion, biogenic magnetite and dissolution can all be detected and (7) that are dominated by the presence of authigenic greigite. Additional issues, including the importance of particle size variations as a control of magnetic properties, the under-representation of haematite and goethite in the magnetic record and the significance of atmospheric deposition are also considered. A concluding section briefly outlines the present status of environmental magnetism and its role in palaeoenvironmental research based on lake sediment studies.  相似文献   

13.
Simple net model constructed by authors, facies analysis and compaction models, were applied to evaluate reservoir properties of sandstone facies of the Carpathian Flysch (the Istebna sandstones). The applied net model was built on the base of fractal approach proposed by Don Turcotte in 1977 and computer analysis of images. Laboratory measurements include porosity, density, permeability to nitrogen, mercury injection capillary pressure tests, and microscopic analysis of thin sections. D.W. Houseknecht's theory, proposed in 1987, was applied for compaction and cementation modeling. The residual saturation data were used to validate obtained results. Net model allows an evaluation of filtration properties of analyzed sandstones and to distinguish the classes of similarity of pore space. The extracted parameters of classes of similarity were correlated with facies scheme of the investigated geological structure. Influence of compaction and cementation on pore space parameters was discussed.  相似文献   

14.
乌兰布和沙漠流动沙丘风蚀空间分布规律及其影响因素   总被引:2,自引:0,他引:2  
为科学治理黄河乌兰布和沙漠沿岸风沙入黄问题,以该河段风沙危害严重的刘拐沙头流动沙丘为研究对象,开展沿岸沙丘风蚀与沉积规律及其影响因素研究。结果表明:(1)沙丘不同部位风蚀与沉积存在差异,与风速在沙丘的空间分布相关。迎风坡坡脚、坡中以风蚀为主,风蚀速率分别为1.07、1.31 cm·d-1;坡顶风蚀和沉积交替进行,风蚀速率2.16 cm·d-1,沉积速率1.36 cm·d-1;沙丘背风坡受反向气流影响以沉积为主,沉积速率2.19 cm·d-1,风蚀主要出现夏秋季节反向风时期;丘间地受上风向沙丘阻挡的影响,一般以沉积为主,平均沉积速率0.12 cm·d-1。丘间地净风蚀量与背风坡显著差异(P<0.05),但与坡脚、坡中和坡顶差异不显著(P>0.1);背风坡净风蚀量与坡脚、坡中和坡顶极显著差异(P<0.01)。从总风蚀速率来看,风沙活动活跃强度排序:坡顶 > 背风坡 > 坡中 > 坡脚 > 丘间地。(2)冬春季节风蚀与夏秋季节存在显著差异(P<0.05),风力和降水的季节性差异是造成风蚀季节性差异的主要因素。研究结果可为沿岸流动沙丘风沙入黄防治和完善黄河沿岸风沙防护体系提供参考。  相似文献   

15.
Land use land cover (LULC) plays an important role in influencing the spatial intensity of water erosion which is the primary governor of horizontal translocation of soil organic carbon (SOC). The fate of redistributed SOC through erosion remains debatable and the mineralization rate of exposed SOC protected in soil aggregates is the major focus of this argument. Cohesive spatially explicit modeling of SOC and erosion can potentially reduce some of the controversy. To this end we simulated erosion/deposition, and photosynthetic (in situ) flux of SOC in a small watershed of ~ 28.42 ha, located in the Big Creek basin of southern Illinois. The main objectives of this research were: (a) to study erosion and deposition dynamics under different LULC, (b) to examine the extent of carbon dislocation and deposition possible in the study area, and (c) to determine the net SOC accretion and reduction possible by accounting for gains through annual photosynthesis and deposition, and losses from erosion under different LULC scenarios. To fulfill our objectives, we combined GeoWEPP, an erosion/deposition process model, with CENTURY 4.0, an ecosystem model used for simulating SOC. Our results show that between 11 and 31% of the eroded soil gets deposited in the same basin depending on the LULC type, leaving the remainder to be transported downstream. Additionally, as expected, SOC flux due to erosion and deposition varies with the type of management practices. In the case of conservation management practices, the flux associated with erosion and deposition remains below 10% in comparison to in situ SOC transformations due to annual photosynthesis. However in the case of non-conservation management practices this proportion rises above 50%.  相似文献   

16.
《Basin Research》2018,30(5):895-925
Kilometre‐scale geobodies of diagenetic origin have been documented for the first time in a high‐resolution 3D seismic survey of the Upper Cretaceous chalks of the Danish Central Graben, North Sea Basin. Based on detailed geochemical, petrographic and petrophysical analyses, it is demonstrated that the geobodies are of an open‐system diagenetic origin caused by ascending basin fluids guided by faults and stratigraphic heterogeneities. Increased amounts of porosity‐occluding cementation, contact cement and/or high‐density/high‐velocity minerals caused an impedance contrast that can be mapped in seismic data, and represent a hitherto unrecognized, third type of heterogeneity in the chalk deposits in addition to the well‐known sedimentological and structural features. The distribution of the diagenetic geobodies is controlled by porosity/permeability contrasts of stratigraphic origin, such as hardgrounds associated with formation tops, and the feeder fault systems. One of these, the Top Campanian Unconformity at the top of the Gorm Formation, is particularly effective and created a basin‐wide barrier separating low‐porosity chalk below from high‐porosity chalk above (a Regional Porosity Marker, RPM). It is in particular in this upper high‐porosity unit (Tor and Ekofisk Formations) that the diagenetic geobodies occur, delineated by “Stratigraphy Cross‐cutting Reflectors” (SCRs) of which eight different types have been distinguished. The geobodies have been interpreted as the result of: (i) escaping pore fluids due to top seal failure, followed by local mechanical compaction of high‐porous chalks, paired with (ii) ascension of basinal diagenetic fluids along fault systems that locally triggered cementation of calcite and dolomite within the chalk, causing increased contact cements and/or reducing porosity. The migration pathway of the fluids is marked by the SCRs, which are the outlines of high‐density bodies of chalk nested in highly porous chalks. This study, thus, provides new insights into the 3D relationship between fault systems, fluid migration and diagenesis in chalks and has important applications for basin modelling and reservoir characterization.  相似文献   

17.
WaTEM/SEDEM模型及其应用研究进展与展望   总被引:2,自引:0,他引:2  
土壤侵蚀产沙模型是开展水土保持研究的重要工具。土壤侵蚀物理模型除能够模拟和预测土壤侵蚀沉积的空间分布外,其可移植性功能较强,因此得到了很多研究者的青睐,但大多数物理模型运行时需要的参数较多,因而限制了模型应用和推广。本文介绍了比利时鲁汶大学研发的分布式土壤侵蚀模型WaTEM/SEDEM(Waterand Tillage Erosion Model and Sediment Delivery Model)模型,分别从WaTEM/SEDEM 模型的产生、结构、国内外应用进行了系统阐述,并在已有的应用研究基础上,总结了该模型的优缺点,展望其应用前景。  相似文献   

18.
This article presents an object-based conceptual framework and numerical algorithms for representing and analyzing coastal morphological and volumetric changes based on repeat airborne light detection and ranging (LiDAR) surveys. This method identifies and delineates individual zones of erosion and deposition as discrete objects. The explicit object representation of erosion and deposition zones is consistent with the perception and cognition of human analysts and geomorphologists. The extracted objects provide ontological and epistemological foundation to localize, represent, and interpret erosion and deposition patches for better coastal resource management and erosion control. The discrete objects are much better information carriers than the grid cells in the field-based representation of source data. A set of spatial and volumetric attributes are derived to characterize and quantify location, area, shape, orientation, depth, volume, and other properties of erosion and deposition objects. Compared with the conventional cell-by-cell differencing approaches, our object-based method gives a concise and high-level representation of information and knowledge about coastal morphological dynamics. The derived attributes enable the discrimination of true morphological changes from artifacts caused by data noise and processing errors. Furthermore, the concise object representation of erosion and deposition zones facilitates overlay analysis in conjunction with other GIS data layers for understanding the causes and impacts of morphological and volumetric changes. We have implemented a software tool for our object-based morphological analysis, which will be freely available for the public. An example is used to demonstrate the utility and effectiveness of this new method.  相似文献   

19.
Heat capacities of solid sediments and pore fluids within a basin can influence geothermal gradients when sedimentation or erosion is rapid. This paper provides data on specific heat capacities of pore fluids and porous rocks. It includes data on specific heat capacities of water, ice, and gas hydrates at reference temperatures, as well as equations for calculating the specific heat capacity of those substances as a function of temperature. It also provides values for specific heat capacities of oil and natural gases at low temperatures, as well as equations describing the temperature and pressure dependence of the specific heat capacities of those substances. Finally, it shows how to calculate the specific heat capacity of mixtures of solid materials, or of mixtures of solids and pore fluids. The data and equations provided herein can be incorporated directly into existing modeling software by users and software developers.  相似文献   

20.
A numerical model has been developed for the simulation of turbidity currents driven by nonuniform, non cohesive sediment and flowing over a complex three dimensional submarine topography. The model is based on an alternative approach known as Cellular Automata paradigm. The model is validated by comparing a simulation with a reported field-scale event. The chosen case is a turbidity current which occurred in Capbreton Canyon and was initiated by a storm in December 1999. Using data from recent oceanographic cruises, the deposit of the event has been precisely described, which constrain values of model parameters. The model simulates the 1999 turbidity current over the actual canyon topography and related turbidite using three different types of particle. The model successfully simulates areas of erosion and deposition in the canyon. It predicts the vertical and longitudinal grain size evolution, and shows that the fining-up sequence can be deposited by several phases of deposition and erosion related to the current energetic variation during its evolution. This result could explain the presence of intrabed contacts or the frequent lack of facies in Bouma sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号