首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Feedbacks in the Land-Surface and Mixed-Layer Energy Budgets   总被引:2,自引:1,他引:1  
A mixed-layer model of the surface energy budget and the planetary boundary layer (PBL) is developed, based on the prognostic equations for soil temperature, mixed layer potential temperature and specific humidity and the growth and abrupt collapse of the PBL. Detailed parameterizations of the longwave radiative fluxes are included. The feedbacks in the uncoupled (i.e. surface energy budget with non-responding PBL) and coupled land surface and atmospheric mixed-layer energy budgets are examined. A simplified, time continuous, version of the model, in which the specific humidity budget is the balance of evapotranspiration and dry-air entrainment, and the PBL height is given by the lifted condensation level, is shown to be in good agreement with the complete model. By forcing the simplified model with daily mean rather than periodic solar radiation, an equilibrium model state is achieved where the fluxes are in close agreement with the daily mean fluxes corresponding to the periodic forcing. The model also agrees favorably with measurements from the FIFE field experiment. Feedbacks are examined using the equilibrium model state. The uncoupled and coupled model sensitivities with respect to the minimal stomatal resistance and the atmospheric specific humidity not only differ in magnitude, but in sign as well. This results puts into question the extent to which uncoupled land-surface models that are forced with atmospheric variables may be used in sensitivity studies.  相似文献   

2.
Recently a range of sophisticated large-eddy simulations of thecloud-topped boundary layer have been intercompared and furthercompared with observations and single column models. Here we comparethese results with perhaps the simplest model of the cloud-toppedboundary layer, namely a mixed-layer model. Results from the model aredescribed with two aims in mind. Firstly, the good results act as areminder of the success of simple models, and, secondly, we suggestthat a simple mixed-layer model could be used as a baseline for futuremodel intercomparisons.The mixed-layer model is based on two assumptions that follow previousstudies. Firstly, the liquid-water potential temperature and the total waterspecific humidity are assumed to be constant with height in the boundarylayer. Secondly, turbulence entrains air across the inversion into the boundarylayer at a rate that is assumed to be proportional to the jump in radiative flux at the cloud top and inversely proportional to the jump in buoyancy at the inversion. The constant of proportionality is called the entrainment efficiency.Results from the model for the entrainment rate and height evolutionof the boundary layer are compared with the observations and modelsconsidered in a EUCREM intercomparison study. Thepresent mixed-layer model accurately predicts the observed heightevolution of the boundary layer, but over-estimates the entrainmentrate to a similar degree as the large-eddy simulations. We show that,if the subsidence rate is reduced to the value given by observationsrather than the value used in the EUCREM intercomparison study,then the model agrees well with observed value of the entrainment rateif the entrainment efficiency is taken to be 0.6. With this value, themodel also agrees well with a further case study byBechtold et al. An entrainment efficiency of 0.6 is a little higherthan suggested by large eddy simulations, but such simulations do notcurrently resolve the entrainment events explicitly. Hence this pointdeserves further study.  相似文献   

3.
A slab mixed-layer model with zero-order entrainment for both temperature and humidity is developed in order to examine the relative magnitude of advective and turbulence flux convergence effects. The model formulation provides an analytic function for the ratio of surface-layer to entrainment-layer humidity flux. Model results are compared with measured mixed-layer properties over one day at a coastal location. It is concluded that the model is highly successful at simulating the mixed-layer depth, and mean mixed-layer humidity. It is suggested that a first-order model may be more appropriate for the latter half of the day when the mixed-layer depth is decreasing due to the dominance of advection over vertical turbulence flux convergence.  相似文献   

4.
A mesoscale planetary boundary layer (PBL) numerical model has been developed to study airflow over complex topography. Turbulence closures using the turbulent kinetic energy (TKE) and dissipation () equations are investigated in combination with the level 2.5 scheme of Mellor and Yamada (1982) to determine eddy diffusivities for momentum and heat. This modified E- closure is simpler than the level 3 one which requires more prognostic equations for moist turbulent transport.One-dimensional (1-D) model results show that the PBL mean flows under various stability conditions are not significantly sensitive to the modified Blackadar and Kolmogorov eddy mixing-length formulations used in this E- model, although the latter yields excessively large mixing lengths in the entrainment region of the upper PBL. Eddy mixing lengths in the Kolmogorov-type formulation can be better defined by introducing background dissipation. Using the same prognostic TKE equation, the 1-D model results are not significantly affected by different diagnostic formulations in the closures. The simulated results compare well with large-eddy simulations and those obtained using higher-order closure schemes including the level 3 one. The results are found to be insensitive to eddy Prandtl number, in contrast to the 2-D model results (see Part II).  相似文献   

5.
The limiting surface Bowen ratios are calculated which maintain mixed-layer saturation pressure and relative humidity, both with and without boundary-layer entrainment. The equations are formally the same as those of Culf (1994) for equilibrium evaporation, but differ numerically because the coefficients are calculated at the mixed-layer saturation temperature (at the lifting condensation level) rather than at the surface temperature. The diurnal cycle over land is used to illustrate the value of these constraints.  相似文献   

6.
At the top of the planetary boundary layer, the entrainment of air, which incorporates dry and warm air from the free troposphere into the boundary layer, is a key process for exchanges with the free troposphere since it controls the growth of the boundary layer. Here, we focus on the semi-arid boundary layer where the entrainment process is analyzed using aircraft observations collected during the African Monsoon Multidisciplinary Analysis experiment and large-eddy simulations. The role of the entrainment is specifically enhanced in this region where very large gradients at the planetary boundary-layer top can be found due to the presence of the moist, cold monsoon flow on which the dry, warm Harmattan flow is superimposed. A first large-eddy simulation is designed based on aircraft observations of 5 June 2006 during the transition period between dry conditions and the active monsoon phase. The simulation reproduces the boundary-layer development and dynamics observed on this day. From this specific case, sensitivity tests are carried out to cover a range of conditions observed during seven other flights made in the same transition period in order to describe the entrainment processes in detail. The combination of large-eddy simulations and observations allows us to test the parametrization of entrainment in a mixed-layer model with zero-order and first-order approximations for the entrainment zone. The latter representation of the entrainment zone gives a better fit with the conditions encountered in the Sahelian boundary layer during the transition period because large entrainment thicknesses are observed. The sensitivity study also provides an opportunity to highlight the contribution of shear stress and scalar jumps at the top of the boundary layer in the entrainment process, and to test a relevant parametrization published in the recent literature for a mixed-layer model.  相似文献   

7.
A single-column model (SCM) is developed in the regional climate model RegCM4. The evolution of a dry convection boundary layer (DCBL) is used to evaluate this SCM. Moreover, four planetary boundary layer (PBL) schemes, namely the Holtslag-Boville scheme (HB), Yonsei University scheme (YSU), and two University of Washington schemes (UW01, Grenier-Bretherton-McCaa scheme and UW09, Bretherton-Park scheme), are compared by using the SCM approach. A large-eddy simulation (LES) of the DCBL is performed as a benchmark to examine how well a PBL parameterization scheme reproduces the LES results, and several diagnostic outputs are compared to evaluate the schemes. The results show that the SCM is proper constructed. In general, with the DCBL case, the YSU scheme performs best for reproducing the LES results, which include well-mixed features and vertical sensible heat fluxes; the simulated wind speed, turbulent kinetic energy, entrainment flux, and height of the entrainment zone are all underestimated in the UW09; the UW01 has all those biases of the UW09 but larger, and the simulated potential temperature is not well mixed; the HB is the least skillful scheme, by which the PBL height, entrainment flux, height of the entrainment zone, and the vertical gradients within the mixed layer are all overestimated, and a inversion layer near the top of the surface layer is wrongly simulated.Although more cases and further testing are required, these simulations show encouraging results towards the use of this SCM framework for evaluating the simulated physical processes by the RegCM4.  相似文献   

8.
A model of internal boundary-layer development   总被引:3,自引:2,他引:3  
A slab model of the boundary layer was used to study the dynamics of the internal boundary layer associated with changes in surface temperature. The usual numerical procedure involving finite differences was avoided by solving the governing equations in a Lagrangian framework. The results of the modelling study showed that mixed-layer growth was enhanced by: (a) an increase in surface roughness; (b) an increase in the surface temperature change; and (c) a decrease in the horizontal velocity. It was found that the vertical velocity induced by variations in the horizontal velocity could play an important role in controlling the expansion of the mixed layer.The second part of the study involved the formulation of a model by simplifying the governing equations. The analytical solution obtained from the model compared favourably with the results of the numerical model. Furthermore, the analytical expression for the mixed-layer height was virtually identical to that presented by Raynor et al. (1974) to fit their observational data.  相似文献   

9.
High frequency measurements of near-surface meteorological data acquired in north Benin during the 2006 West African monsoon seasonal cycle, in the context of the African Monsoon Multidisciplinary Analysis (AMMA) experiment, offer insight into the characteristics of surface turbulence in relation to planetary boundary-layer (PBL) processes. A wide range of conditions is encountered at the lower and upper limits of the PBL: (i) from water-stressed to well-fed vegetation, and (ii) from small to large humidity and temperature jumps at the PBL top inversion, due to the Saharan air layer overlying the monsoonal flow. As a result, buoyant convection at the surface and entrainment at the PBL top play very different roles according to the considered scalar. We show that, when the boundary-layer height reaches the shear level between the monsoonal and Harmattan flows, the temperature source and humidity sink at the boundary-layer top are sufficient to allow the entrainment to affect the entire boundary layer down to the surface. This situation occurs mainly during the drying and moistening periods of the monsoon cycle and affects the humidity statistics in particular. In this case, the humidity turbulent characteristics at the surface are no longer driven solely by buoyant convection, but also by entrainment at the boundary-layer top. Consequently, the Monin–Obukhov similarity theory appears to fail for the parameterisation of humidity-related moments.  相似文献   

10.
许多研究调查了模式预报对边界层方案的敏感性,但是这些研究基本上针对的是热力驱动的混合边界层。对于动力驱动的边界层,不同边界层方案的不同性能以及所带来的不同边界层气象要素的预报还不清楚。运用WRF3.4.1中三种边界参数化方案(YSU、MYJ、ACM2)对新疆2.28大风过程进行数值模拟分析,结果显示:三种边界参数化方案基本能模拟出发生大风的区域及大风过程中10m风速、2m温度和比湿的变化趋势;三种方案模拟的边界层内大气的温度、湿度出现差异与它们对边界层顶的夹卷过程、边界层内垂直混合的处理有关;YSU方案的模拟结果使得更多的高空动量下传,同时更多的有效位能转化为动能,MYJ方案模拟的20m/s的风场区域更大,受地形影响更明显,边界层内湍流更强。  相似文献   

11.
An attempt is made to study the planetary boundary layer (PBL) characteristics during the winter period at Anand (22.4°N, 72.6°E), a semi-arid region, which is located in the western part of India. A one-dimensional turbulent kinetic energy (TKE) closure model is used for the study. The structure of the PBL,which consists of profiles of zonal and meridional components of wind,potential temperature and specific humidity, is simulated. A one-dimensional soil heat and moisture transport parameterization scheme is incorporated for the accurate representation of the energy exchange processes at the soil-atmosphere interface. The diurnal variation of fluxes of sensible heat, latent heat, shortwave radiation, net radiation and soil flux, soil temperature at different depths, Richardson number and TKE at the height of the constant flux layer is studied. The model predictions are compared with the available observations obtained from a special Land Surface Processes (LSP) experiment.  相似文献   

12.
This paper compares a number of one-dimensional closure models for the planetary boundary layer (PBL) that are currently in use in large-scale atmospheric models. Using the results of a large-eddy simulation (LES) model as the standard of comparison, the PBL models are evaluated over a range of stratifications from free convective to neutral and a range of surface shear stresses. Capping inversion strengths for the convective cases range from weakly to strongly capped. Six prototypical PBL models are evaluated in this study, which focuses on the accuracy of the boundary-layer fluxes of momentum, heat, and two passive scalars. One scalar mimics humidity and the other is a top-down scalar entrained into the boundary layer from above. A set of measures based on the layer-averaged differences of these fluxes from the LES solutions is developed. In addition to the methodological framework and suite of LES solutions, the main result of the evaluation is the recognition that all of the examined PBL parameterizations have difficulty reproducing the entrainment at the top of the PBL, as given by the LES, in most parameter regimes. Some of the PBL models are relatively accurate in their entrainment flux in a subset of parameter regimes. The sensitivity of the PBL models to vertical resolution is explored, and substantive differences are observed in the performance of the PBL models, relative to LES, at low resolution typical of large scale atmospheric models.  相似文献   

13.
Jump or slab models are frequently used to calculate the depth of the convectively mixed layer and its potential temperature during the course of a clear day. Much attention has been paid theoretically to the parameterization of the budget for turbulent kinetic energy that is required in these models. However, for practical applications the sensitivity of the solutions of the model equations to variations in the entrainment formulation and in the initial and boundary conditions is also very important. We analyzed this sensitivity on the basis of an analytical solution for the model which uses the well-known constant heat flux ratio. The initial conditions for the mixed-layer height (h) and potential temperature ( m ) quickly lose their influence. Only the initial temperature deficit is important. The mixed-layer temperature at noon on convective days is insensitive to the entrainment coefficient c. It is governed by the integral of the heat input and by the stable lapse rate. A change in c from 0.2 to 0.5 leads to a variation of 20% in h. This is not very much considering the accuracy in the determination of h from actual observations.  相似文献   

14.
The Penman–Monteith equation is extended to describe evaporation of intercepted rain, transpiration and the interaction between these processes in a single explicit function. This single-layer model simulates the effects of heat exchange, stomatal blocking and changed humidity deficit close to the canopy as a function of canopywater storage. Evaporation depends on the distribution of water over the canopy and the energy exchange between wet and dry parts. Transpiration depends on the dry canopy surface resistance that is described with a Jarvis-type response. The explicit functions obtained for water vapour fluxes facilitate a straightforward identificationof the various processes. Canopy water storage amounts and xylem sapflow were measured simultaneously during drying episodes after rainfall in a dense, partially wet, Douglas-fir forest. Estimates of evaporation and transpiration rates are derived from these observations. The analysis shows that evaporation induced transpirationreduction is mainly caused by energy consumption. Changes in water vapour deficit have a minor effect due to a compensating stomatal reaction. The remaining difference between observed and modelled transpiration reduction can be attributed to partial blocking of stomata by the water layer.  相似文献   

15.
Meteorological modelling in the planetary boundary layer (PBL) over Greater Paris is performed using the Weather Research and Forecast (WRF) numerical model. The simulated meteorological fields are evaluated by comparison with mean diurnal observational data or mean vertical profiles of temperature, wind speed, humidity and boundary-layer height from 6 to 27 May 2005. Different PBL schemes, which parametrize the atmospheric turbulence in the PBL using different turbulence closure schemes, may be used in the WRF model. The sensitivity of the results to four PBL schemes (two non-local closure schemes and two local closure schemes) is estimated. Uncertainties in the PBL schemes are compared to the influence of the urban canopy model (UCM) and the updated Coordination of Information on the Environment (CORINE) land-use data. Using the UCM and the CORINE land-use data produces more realistic modelled meteorological fields. The wind speed, which is overestimated in the simulations without the UCM, is improved below 1,000 m height. Furthermore, the modelled PBL heights during nighttime are strongly modified, with an increase that may be as high as 200 %. At night, the impact of changing the PBL scheme is lower than the impact of using the UCM and the CORINE land-use data.  相似文献   

16.
17.
Large eddy simulation and study of the urban boundary layer   总被引:7,自引:1,他引:6  
  相似文献   

18.
A comprehensive planetary boundary-layer (PBL) and synoptic data set is used to isolate the mechanisms that determine the vertical shear of the horizontal wind in the convective mixed layer. To do this, we compare a fair-weather convective PBL with no vertical shear through the mixed layer (10 March 1992), with a day with substantial vertical shear in the north-south wind component (27 February). The approach involves evaluating the terms of the budget equations for the two components of the vertical shear of the horizontal wind; namely: the time-rate-of-change or time-tendency term, differential advection, the Coriolis terms (a thermal wind term and a shear term), and the second derivative of the vertical transport of horizontal momentum with respect to height (turbulent-transport term). The data, gathered during the 1992 STorm-scale Operational and Research Meteorology (STORM) Fronts Experiments Systems Test (FEST) field experiment, are from gust-probe aircraft horizontal legs and soundings, 915-MHz wind profilers, a 5-cm Doppler radar, radiosondes, and surface Portable Automated Mesonet (PAM) stations in a roughly 50 × 50 km boundary-layer array in north-eastern Kansas, nested in a mesoscale-to-synoptic array of radiosondes and surface data.We present evidence that the shear on 27 February is related to the rapid growth of the convective boundary layer. Computing the shear budget over a fixed depth (the final depth of the mixed layer), we find that the time-tendency term dominates, reflecting entrainment of high-shear air from above the boundary layer. We suggest that shear within the mixed layer occurs when the time-tendency term is sufficiently large that the shear-reduction terms – namely the turbulent-transport term and differential advection terms – cannot compensate. In contrast, the tendency term is small for the slowly-growing PBL of 10 March, resulting in a balance between the Coriolis terms and the turbulent-transport term. Thus, the thermal wind appears to influence mixed-layer shear only indirectly, through its role in determining the entrained shear.  相似文献   

19.
An efficient, pianetary boundary layer (PBL) model is developed and validated with empirical data for applications in general circulation models (GCMs). The purpose of this PBL model is to establish the turbulent surface fluxes as a function of the principal external PBL parameters in a numerically efficient way. It consists of a surface layer and a mixed layer matched together with the conditions of constant momentum and heat flux at the interface. An algebraic solution to the mean momentum equations describes the mixed-layer velocity profile and thus determines the surface wind vector. The velocity profile is globally valid by incorporating the effect of variable Coriolis force without becoming singular at the equator. Turbulent diffusion depends on atmospheric stability and is modeled in the surface layer by a drag law and with first-order closure in the mixed layer. Radiative cooling in the stably stratified PBL is considered in a simple manner. The coupled system is solved by an iterative method. In order to preserve the computational efficiency of the large-scale model, the PBL model is implemented into the GISS GCM by means of look-up tables with the bulk PBL Richardson number, PBL depth, neutral drag coefficient, and latitude as independent variables.A validation of the PBL model with observed data in the form of Rossby number similarity theory shows that the internal feedback mechanisms are represented correctly. The model, however, underpredicted the sensible heat-flux. A subsequent correction in the turbulence parameterization yields better agreement with the empirical data. The behavior of the principal internal PBL quantities is presented for a range of thermal stabilities and latitudes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号