首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
龙泉山断裂带属龙门山前陆隆起,与青藏高原龙门山的隆升演化密切相关。为探讨龙泉山断裂带断层活动方式、期次及年代特征,在该断裂带不同部位采集了断层泥样品,通过扫描电镜(SEM)对样品中的石英颗粒进行了痕迹微形貌和溶蚀微形貌观察,通过电子自旋共振(ESR)测试了样品断层的最新活动年龄,并结合区域地震资料,进一步研究了龙泉山断裂带断层的发震潜力。结果表明: 龙泉山断裂带断层运动方式以黏滑为主,兼蠕滑; 具有多期次活动特征,强烈活动时间为早更新世—中更新世,晚更新世也有明显断层活动,全新世断层活动不明显; SEM 、ESR、热释光(TL)测得的断层最新活动年龄为(1 210±121)~(110±10.0) ka; 最新活动年代和活动性具有分段性,中段断层活动性较弱,北段和南段断层活动性较强。总之,龙泉山断裂带为1条活动性断裂带,具有一定的发震潜力,地震沿断裂带呈带状分布,但相比其西侧的龙门山断裂带,其活动性已大大降低。  相似文献   

2.
断层泥作为断裂脆性剪切变形的产物,记录了断层滑动方式和活动时间等信息,尤其是断层泥中石英颗粒表面微形貌特征的识别和统计,可以为估算断层活动相对时间提供证据。青川断裂作为秦岭构造带的南界,晚新生代以来发生右旋走滑运动,沿断裂带出露完整的断层破碎带,断层泥非常发育。本文以该断裂带中段:木鱼—大安段发育的青灰色和紫红色断层泥为研究对象,在野外调查的基础上,重点对断层泥中石英颗粒表面的微形貌进行了扫描电子显微镜观察,发现两类(Ⅱ和Ⅲ类)中-深度溶蚀石英形貌和一类(Ia类)弱溶蚀石英形貌,未见Io类破裂微形貌。石英微形貌类型的统计结果指示青川断裂中段最新活动时间在晚更新世,全新世没有明显活动,与断裂带全新世河流阶地未发生构造扰动的现象一致。  相似文献   

3.
以水泉子沟—天山口断裂带杨树林剖面为研究对象,利用扫描电镜分析技术(SEM)对从该剖面野外采集的断层泥样品中分离出来的石英颗粒进行微观形貌研究,进而对石英颗粒的微形貌类型进行识别分类和统计分析,估算断层活动的相对时间;同时利用模糊数学方法确定了断层的活动方式.结果表明,断层活动始于早更新世,经历过多期次活动,直至全新世...  相似文献   

4.
断层中的断层泥是断层活动的信息载体.在木里地区,理塘断裂带表现出多期次活动特征,早期以韧性剪切为主,晚期表现出高角度张性左行走滑特征.通过对理塘断裂带断层泥石英表面微形貌特征观察、统计及分析,结果表明:石英表面形貌结构以次贝壳状和桔皮状为主,表明断裂的最新活动期在早-晚更新世(Qp1-Qp3),与电子磁旋共振(ESR)...  相似文献   

5.
朱学强  吴德超 《地质与资源》2010,19(1):58-62,70
通过对金沙江上游叶巴滩水电站外围竹英-贡达断裂带的新活动性研究,利用扫描电镜对选取的断层泥中的石英颗粒样品进行溶蚀微形貌的观察和统计分析,发现断层泥中的石英颗粒表面的溶蚀微形貌特征简单,以橘皮状为主,表明竹英-贡达断裂不具有新活动性.这与电子自旋共振测年方法显示的结果一致,同时也说明了该方法可以反映断层活动的年代信息.  相似文献   

6.
临潼-长安活动断裂带是渭河盆地内部西安凹陷与骊山凸起之间一条重要的活动断裂带,由2条次级断层组成,以灞河、皂河为界划分为北东、中、南西3段,前人对晚更新世以来的断裂的活动性存在2种不同的认识。为了确定临潼-长安断裂带晚更新世以来的活动性,文中以黄土S1、L1S和S0为确定垂直位移的标志和年代标尺,通过DEM地貌分析、断层露头调查,结合地壳形变资料,分析得出临潼-长安断裂带北东段晚更新世以来断裂活动性强,中段活动性其次,南西段活动性弱,与DEM显示的现今临潼-长安活动断裂带上下盘的地貌差异有很好的吻合性。  相似文献   

7.
断层泥石英微形貌特征在断层活动性研究中的意义   总被引:1,自引:0,他引:1  
断层泥是断层活动的信息载体,其中的石英颗粒微形貌特征能够反映断层活动方式、期次和活动年代。利用环境扫描电镜,对西藏拉萨那林拉卡断裂白定段断层泥石英样品进行了溶蚀微形貌统计分析及应力痕迹微形貌观察。结果表明:石英颗粒呈现出以钟乳状为主和桔皮状为主的两种截然不同的溶蚀微形貌特征。对照Kanaori Y等关于石英微形貌与年代关系的图谱可知,该断层形成以后至少有过两次再活动,其活动年代分别为上新世至早更新世和中更新世。这与热释光定年法确定该断层最后一次活动时间为287.08 Ka±24.40 Ka的结果相吻合;另外,代表晚期活动特征的应力痕迹微形貌观察结果显示,同一石英颗粒上发育了代表蠕滑和粘滑两种滑动的阶步状刻痕(蠕滑)-撞击碎裂痕(粘滑)组合,以及阶步状刻痕(蠕滑)-贝壳状断口(粘滑)-平直擦线(粘滑)的组合,说明该断层在晚期(中更新世)曾经历了蠕滑和粘滑两种滑动方式。代表蠕滑的阶步状刻痕清晰突显,而代表粘滑的线状擦痕明显受到溶蚀,这说明粘滑运动在先,蠕滑运动在后。此外,擦痕线的叠加、切穿现象还表明,断层在中更新世的滑动至少有3个亚期次。综合应力痕迹微形貌特征认为,3个亚期次滑动的前两次表现为粘滑,第三次为蠕滑或粘滑向蠕滑过渡类型。  相似文献   

8.
渤海湾盆地惠民凹陷临商断层特征及其活动机制   总被引:1,自引:0,他引:1  
临商断层为济阳坳陷惠民凹陷内部NE向展布的控洼断层之一,详细地分析这些断层的活动性对于深入了解古近系沙河街组沙三段开始沉积以来惠民凹陷的差异分化具有重要的意义。本文通过详细解剖临商断层的几何学特征,不同时期、位置的断层活动性,并结合新生代以来渤海湾盆地的构造演化,得出以下认识:①临商断层的雏形为一右旋走滑正断层。②断层的主枝由西往东活动速率逐渐增强,而分枝断层则表现为中间强、两侧弱。③时间上的差异性表现为古近系沙河街组沙三段沉积期—古近系沙河街组沙二段沉积期断层的活动性较强,在古近系沙河街组沙二段沉积期达到最高值,而后逐渐减弱,古近系东营组沉积期出现小规模的增强,新近系馆陶组沉积期断层活动性达到最低值,新近系明化镇组沉积期断层活动性开始增强。④空间上断层活动的差异主要是由于该断层走滑过程中形成的同向走滑断层的位置造成的,而时间上的差异性与渤海湾盆地新生代的构造演化具有较好的一致性。  相似文献   

9.
活动断层的构造地球化学研究现状   总被引:1,自引:0,他引:1  
活动断层在形成演化过程中经常伴随很多复杂的构造地球化学作用,并导致诸如应力矿物的生长、断层泥矿物颗粒表面微形貌的形成、气体同位素异常等地质现象的出现,它们都可以用来判识活动断层的活动性、启闭性以及断裂带的三维展布状况,尤其是断裂带的深度等问题.因此,有关活动断裂带的断层泥、流体地球化学以及相关的水一岩相互作用等问题一直吸引众多科学家的密切关注,并在许多领域取得了丰硕的成果.但是,由于构造地质作用的极端复杂性,构造地球化学研究也仍然存在一些需要深入探究的科学问题.  相似文献   

10.
美姑河断裂活动性研究及对水电工程影响评价   总被引:1,自引:0,他引:1  
美姑河断裂带穿越拟建的美姑河瓦洛水电站,其展布及活动性直接影响工程建设。通过地貌、第四系、地质构造及地震等野外地质调查和断裂带石英形貌扫描、ESR测年等方法综合研究表明,美姑河断裂带是由3条断层组成的叠瓦断层带,在中更新世(Q2)以来已不具活动性,不属于活动断层,亦不具有诱发地震的能力,因此断裂带活动性对工程建设影响不大。  相似文献   

11.
河北东北部兴隆煤田区逆冲构造的特征及其区域构造意义   总被引:1,自引:0,他引:1  
兴隆煤田及邻区的逆冲构造系基底卷入变形的厚皮逆冲构造,并具有典型的断坪-断坡式几何学结构.断层上盘逆冲方向指向NNW,沿着主干逆冲断层发生的倾向位移量约为13.1 km,逆冲断层及相关褶皱变形所造成的局部表层地壳缩短率约32.3%.对兴隆逆冲构造的几何学结构、运动学性质及其地层效应的分析表明,在申家胡同到黄土梁近东西向一线以南的区域,寻找到因逆冲断层作用导致的隐伏煤田的可能性是极小的.主干逆冲断层上、下盘地层大面积陡立乃至倒转的特征,更容易用断展褶皱,尤其是三角形剪切断展褶皱模型做出合理解释.该逆冲构造主要逆冲断层的上、下盘盖层岩系不整合于基底结晶变质岩系之上,地层序列发育完整而且可以一一对应,不存在沿着相对软弱层发育的大规模逆冲断层之断坪,因此,将该逆冲构造作为区域上承德逆冲构造的根带是不合适的.  相似文献   

12.
龚正  李海兵  唐方头  吴羿锋  王磊 《地质学报》2023,97(7):2111-2125
2008年汶川地震促使人们思考青藏高原东南缘走向和规模与龙门山断裂带相近的丽江- 小金河断裂的活动历史,但受限于地质条件制约断裂尤其是其北段相关研究极其薄弱。基岩断裂带的物质组成与结构特征是断层长期活动的产物,蕴含丰富的历史活动信息。本文以丽江- 小金河断裂盐源段多个天然剖面为研究对象,通过详细的断裂带宏观结构调查、断层岩显微构造及XRD分析发现:① 断层破碎带以一套厚度>20 m的破裂面密集带为特征,优势破裂面走向为NE20°~30°,推测为丽江- 小金河断裂长期活动形成的张剪性破裂;② 断层带核部以断层角砾岩和断层泥为主,灰岩角砾岩黏土矿物含量~2%,以伊利石和伊蒙混层为主,粉砂岩断层泥黏土矿物含量~52%,以坡缕石和绿泥石为主,石英含量36%,缺失长石类矿物。断裂带宏观结构和断层岩微观结构特征均表现为角砾呈棱角状,砾径差异极大且呈零散状分布,符合快速滑动特征,指示断层滑移方式为黏滑。此外,核部断层岩带统计厚5~8 m,这一规模相对于龙门山映秀- 北川断裂带核部180~280 m和安县- 灌县断裂带核部40~50 m显著偏小,表明前者自形成以来的活动性远低于后者,两者的地震行为并不能简单类比。结合断裂在宏观结构特征、断层岩成分与种类以及所反映的滑动方式与隆升剥蚀量的差异,认为丽江- 小金河断裂更可能是鲜水河断裂切断锦屏山- 龙门山构造带之后形成的,晚新生代与龙门山断裂带具有不同的活动历史。  相似文献   

13.
14.
龙泉山断裂带隐伏断层氡气特征及其活动性分析   总被引:2,自引:1,他引:1       下载免费PDF全文
龙泉山断裂构造带作为龙门山推覆带的前陆隆起,严格控制了成都平原东边界,其活动性历来受到人们的关注。通过对龙泉山断裂带的氡气进行测量,可以有效地判断隐伏断层的位置及其活动性。测量结果显示,龙泉山断裂带北段东坡活动性强于西坡,主断层的活动性明显强于边缘隐伏断层,4条断层的活动性由强到弱依次为合兴场断层红花塘断层龙泉驿断层松林场断层。龙泉山断裂带同一条断层在地表由多个破碎带组成,其氡气异常特征与断层活动性和破碎带特征呈正相关性,即断层活动性越强,氡气异常特征越显著。龙泉山断裂带氡气平均异常浓度是背景值的9.6倍,将各异常带峰值浓度与背景值进行对比分析,大致归纳出了龙泉山地区隐伏断层活动性的相对判别标准。  相似文献   

15.
Field investigations allow to constrain the co-seismic surface rupture zone of ~400km with a strike-slip up to 16.3 m associated with the 2001Mw 7.8 Central Kunlun earthquake that occurred along the western segment of the Kunlun fault,northern Tibet.The co-seismic rupture structures are almost duplicated on the pre-existing fault traces of the Kunlun fault.The deformational characteristics of the co-seismic surface ruptures reveal that the earthquake had a nearly pure strike-slip mechanism.Theg eologic and topographice vidence clearly shows that spatial distributions of the co-seismic surface ruptures are re-stricted by the pre-existing geological structures of the Kunlun fault.  相似文献   

16.
The internal structure and permeability of the Neodani fault, which was last activated at the time of the 1891 Nobi earthquake (M8.0), were examined through field survey and experiments. A new exposure of the fault at a road construction site reveals a highly localized feature of the past fault deformation within a narrow fault core zone. The fault of the area consists of three zone units towards the fault core: (a) protolith rocks; (b) 15 to 30 m of fault breccia, and (c) 200 mm green to black fault gouge. Within the fault breccia zone, cataclastic foliation oblique to the fault has developed in a fine-grained 2-m-wide zone adjacent to the fault. Foliation is defined by subparallel alignment of intact lozenge shaped clasts, or by elongated aggregates of fine-grained chert fragments. The mean angle of 20°, between the foliation and the fault plane suggests that the foliated breccia accommodated a shear strain of γ<5 assuming simple shear for the rotation of the cataclastic foliation. Previous trench surveys have revealed that the fault has undergone at least 70 m of fault displacement within the last 20,000 years in this locality. The observed fault geometry suggests that past fault displacements have been localized into the 200-mm-wide gouge zone. Gas permeability analysis of the gouges gives low values of the order of 10−20 m2. Water permeability as low as 10−20 m2 is therefore expected for the fault gouge zone, which is two orders of magnitude lower than the critical permeability suggested for a fault to cause thermal pressurization during a fault slip.  相似文献   

17.
抚边河断裂距大渡河干流大型水利工程金川水电站仅35km,因其近期较强的地震活动性成为电站区域稳定性评价的重要考虑因素。研究从地球物理、地震、地质、地貌等方面分析了断层存在的证据和活动性,首次发现断层切割第四系的直接证据。分析了断层活动性对大坝建设的影响。  相似文献   

18.
华熊地块马超营断裂走滑特征及演化   总被引:11,自引:0,他引:11  
对华熊地块南部的马超营断裂带的几何样式、组成特征及其变形特点等研究结果表明,马超营断裂带经历了韧性变形和脆性变形期。韧性变形分布于该断裂带的南侧,并发生了绿片岩相的动力变质作用,其中的S-C组构特征所指示的运动方向在其南北两侧,分别为向南和向北逆冲,呈现正花状特点,反映了该断裂带具有走滑逆冲性质的断裂。韧性变形主要发生于前印支期。燕山期,全面陆-陆碰撞期间其主要表现为脆性变形特征。脆性变形主要发育于其北侧,北东向的康山-七里坪断裂、红庄-陶村断裂是其次一级的派生断裂。通过对北东向断裂运动方向和前人的成果分析,以及这些构造的平面分布样式对比认为该断裂为一条左行走滑特征的断裂带。在此基础上,结合区域动力学背景,进而讨论了它的演化特征。  相似文献   

19.
The Penola Trough is an intensely faulted northwest – southeast-trending half-graben structure. It is bound to the south by the major listric Hungerford/Kalangadoo Fault system. Several large prominent faults observed in the Penola Trough show offset of basement at depth. These basement-rooted faults have exerted significant controls on the geometry of smaller intra-rift faults throughout the entire structural history of the area. Faulting of the basement was initiated during the initial rift event of the Late Jurassic – Early Cretaceous. Faulting first propagated through a pre-existing basement fabric oblique to the north – south extension direction prevalent during this time. This resulted in the formation of the Hungerford/Kalangadoo and St George Faults with a northwest – southeast and north-northeast – south-southwest trend, respectively. A series of east – west-trending basement faults subsequently initiated perpendicular to the north – south extension direction as extensional strain increased in magnitude. Significant displacement along these basement-rooted faults throughout the initial rift event was associated with the formation of a complex set of intra-rift faults. These intra-rift faults exhibit a broadly east – west orientation consistent with the interpreted north – south extensional direction. However, this east – west orientation locally deviates to a more northwest – southeast direction near the oblique-trending St George Fault, attributed to stress perturbation effects. Many of the intra-rift faults die out prior to the end of the Early Cretaceous initial rift event while displacement on basement faults continued throughout. Faulting activity during the Late Cretaceous post-rift fault event was almost exclusively localised onto basement faults, despite a significant change in extension direction to northeast – southwest. A high-density, en échelon array of northwest – southeast-trending fault segments formed directly above the St George Fault and the large east – west-trending basement faults contemporaneously reactivated. Seismic variance data show that post-rift fault segments that are hard-linked to the St George Fault at depth have propagated through near-surface units. Non-basement-linked post-rift fault segments that lie away from the St George basement have not. This suggests that recent fault activity has continued to occur preferentially along basement faults up to relatively recent times, which has significant implications for fault seal integrity in the area. This is empirically validated by our structural analysis of fault-dependent hydrocarbon traps in the area, which shows that partially breached or breached hydrocarbon columns are associated with basement faults, whereas unbreached hydrocarbon columns are not.  相似文献   

20.
《International Geology Review》2012,54(13):1575-1615
Salinia, as originally defined, is a fault-bounded terrane in westcentral California. As defined, Salinia lies between the Nacimiento fault on the west, and the Northern San Andreas fault (NSAF) and the main trace of the dextral SAF system on the east. This allochthonous terrane was translated from the southern part of the Sierra Nevada batholith and adjacent western Mojave Desert region by Neogene-Quaternary displacement along the SAF system. The Salina crystalline basement formed a westward promontory in the SW Cordilleran Cretaceous batholithic belt, relative to the Sierra Nevada batholith to the north and the Peninsular Ranges batholith to the south, making Salinia batholithic rocks susceptible to capture by the Pacific plate when the San Andreas transform system developed. Proper restoration of offsets on all branches of the San Andreas system is a critical factor in understanding the Salinia problem. When cumulative dextral slip of 171 km (106 mi) along the Hosgri–San Simeon–San Gregorio–Pilarcitos fault zone (S–N), or dextral slip of 200 km (124 mi) along the Hosgri–San Simeon–San Gregorio–Pilarcitos–northern San Andreas fault system, is added to the cumulative dextral slip of 315–322 km (196–200 mi) along the main trace of the SAF north of the San Emigdio–Tehachapi mountains, central California, there is a minimum amount of cumulative dextral slip of 486 km (302 mi) or a maximum amount of cumulative dextral slip of 522 km (324 mi) along the entire SAF system north of the Tehachapi Mountains. When these sums are compared with the offset distance (610–675 km or 379–420 mi) between the batholithic rocks associated with the Navarro structural discontinuity (NSD) in northern California, and those in the ‘tail’ of the southern Sierra Nevada granitic rocks in the San Emigdio–Tehachapi mountains, central California, a minimum deficit of from ~100 km (~62 mi) to a maximum deficit of ~189 km (~118 mi) is needed to restore the crystalline rocks associated with the NSD with the crystalline terranes within the San Emigdio and Tehachapi mountains – the enigma of Salinia. Two principal geologic models compete to explain the enigma (i.e. the discrepancy between measured dextral slip along traces of the SAF system and the amount of separation between the Sierra Nevada batholithic rocks near Point Arena in northern California and the Mesozoic and older crystalline rocks in the San Emigdio and Tehachapi mountains in southern California). (i) One model proposes pre-Neogene (>23 Ma), Late Cretaceous or Maastrichtian (<ca. 71 Ma) to early Palaeocene or Danian (ca. 66 Ma) sinistral slip of 500–600 km (311–373 mi) along the Nacimiento fault and of the western flank of Salinia from the eastern flank of the Peninsular Ranges (sinistral slip but in the opposite sense to later Neogene (<23 Ma) dextral slip along and within the SAF system. (ii) A second model proposes that the crystalline rocks of Salinia comprise a series of 100 km- (60 mi-) scale allochthonous (extensional) nappes that rode southwestward above the Rand schist–Sierra de Salinas (SdS) shear zone subduction extrusion channels. The allochthonous nappes are from NW–SE: (i) Farallon Islands–Santa Cruz Mountains–Montara Mountain, and adjacent batholithic fragments that appear to have been derived from the top of the deep-level Sierra Nevada batholith of the western San Emigdio–Tehachapi mountains; (ii) the Logan Quarry–Loma Prieta Peak fragments that appear to have been derived from the top of a buried detachment fault that forms the basement surface beneath the Maricopa sub-basin of the southernmost Great Valley; (iii) The Pastoria plate–Gabilan Range massif that appears to have been derived from the top of the deep-level SE Sierra Nevada batholith; and (iv) the Santa Lucia–SdS massif, which appears to be lower batholithic crust and underlying extruded schist that were breached westwards from the central to western Mojave Desert region. In this model, lower crustal batholithic blocks underwent ductile stretching above the extrusion channel schists, while mid- to upper-crustal level rocks rode southwestwards and westwards along trenchward dipping detachment faults. Salinian basement rocks of the Santa Lucia Range and the Big Sur area record the most complete geologic history of the displaced terrane. The oldest rocks consist of screens of Palaeozoic marine metasedimentary rocks (the Sur Series), including biotite gneiss and schist, quartzite, granulite gneiss, granofels, and marble. The Sur Series was intruded during Cretaceous high-flux batholithic magmatism by granodiorite, diorite, quartz diorite, and at deepest levels, charnockitic tonalite. Local nonconformable remnants of Campanian–Maastrichtian marine strata lie on the deep-level Salinia basement, and record deposition in an extensional setting. These Cretaceous strata are correlated with the middle to upper Campanian Pigeon Point (PiP) Formation south of San Francisco. The Upper Cretaceous strata, belonging to the Great Valley Sequence, include clasts of the basement rocks and felsic volcanic clasts that in Late Cretaceous time were brought to a coastal region by streams and rivers from Mesozoic felsic volcanic rocks in the Mojave Desert. The Rand and SdS schists of southern California were underplated beneath the southern Sierra Nevada batholith and the adjacent Salinia-Mojave region along a shallow segment of the subducting Farallon plate during Late Cretaceous time. The subduction trajectory of these schists concluded with an abrupt extrusion phase. During extrusion, the schists were transported to the SW from deep- to shallow-crustal levels as the low-angle subduction megathrust surface was transformed into a mylonitic low-angle normal fault system (i.e. Rand fault and Salinas shear zone). The upper batholithic plate(s) was(ere) partially coupled to the extrusion flow pattern, which resulted in 100 km-scale westward displacements of the upper plate(s). Structural stacking, temporal and metamorphic facies relations suggest that the Nacimiento (subduction megathrust) fault formed beneath the Rand-SdS extrusion channel. Metamorphic and structural relations in lower plate Franciscan rocks beneath the Nacimiento fault suggest a terminal phase of extrusion as well, during which the overlying Salinia underwent extension and subsidence to marine conditions. Westward extrusion of the subduction-underplated rocks and their upper batholithic plates rendered these Salinia rocks susceptible to subsequent capture by the SAF system. Evidence supporting the conclusion that the Nacimiento fault is principally a megathrust includes: (i) shear planes of the Nacimiento fault zone in the westcentral Coast Ranges locally dip NE at low angles. (ii) Klippen and/or faulted klippen are locally present along the trace of the Nacimiento fault zone from the Big Creek–Vicente Creek region south of Point Sur near Monterey, to east of San Simeon near San Luis Obispo in central California. Allochthonous detachment sheets and windows into their underplated schists comprise a composite Salinia terrane. The nappe complex forming the allochthon of Salinia was translated westward and northwestward ~100 km (~62 mi) above the Nacimiento megathrust or Franciscan subduction megathrust from SE California between ca. 66 and ca. 61 Ma (i.e. latest Cretaceous–earliest Palaeocene time). Much, or all, of the westward breaching of the Salinia batholithic rocks likely occurred above the extrusion channels of the Rand-SdS schists; following this event, the Franciscan Sur-Obispo terrane was thrust beneath the schists, perhaps during the final stages of extrusion in the upper channel. Later, the Sur-Obispo terrane was partially extruded from beneath the Salinia nappe terrane, during which time the upper plate(s) underwent extension and subsidence to marine conditions. Attenuation of the Salinia nappe sequence during the extrusion of the Franciscan Complex thinned the upper crust, making the upper plates susceptible to erosion from the top of the Franciscan Complex near San Simeon, where it is now exposed. In the San Emigdio Mountains, the relatively thin structural thickness of the upper batholithic plates made them susceptible to late Cenozoic flexural folding and disruption by high-angle dip–slip faults. The ~100 km (~62 mi) of westward and northwestward breaching of the Salinia batholithic rocks above the Rand-SdS channels, and the underlying Nacimiento fault followed by ~510 km (~320 mi) of dextral slip from ~23 Ma to Holocene time along the SAF system, allow for the palinspastic restoration of Salinia with the crystalline rocks of the San Emigdio–Tehachapi mountains and the Mojave terrane, resolving the enigma of Salinia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号