首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Land-use activities are increasingly globalized and industrialized. While this contributes to a reduction of pressure on domestic ecosystems in some regions, spillover effects from these processes represent potential obstacles for global sustainable land-use. This contribution scrutinizes the complex global resource nexus of national land-use intensity, international trade of biomass goods, and resource footprints in land-use systems. Via a systematic account of the global human appropriation of net primary production (HANPP) and input–output modelling, we demonstrate that with growing income countries reduce their reliance on local renewable resources, while simultaneously consuming more biomass goods produced in other countries requiring higher energy and material inputs. The characteristic 'outsourcing' country appropriates 43% of its domestic net primary production, but net-imports a similar amount (64 gigajoules per capita and year) from other countries and requires energy (11 GJ/cap/yr) and material (~400 kg/cap/yr) inputs four to five times higher as the majority of the global population to sustain domestic land-use intensification. This growing societal disconnect from domestic ecological productivity enables a domestic conservation of ecosystems while satisfying growing demand. However, it does not imply a global decoupling of biomass consumption from resource and land requirements.  相似文献   

2.
The global use of and pressure on land resources will continue to rise in tandem with the predicted rise in global population and food demand. Addressing unavoidable trade-offs between satisfying human needs and biodiversity conservation for future generations is of paramount importance when tackling the global environmental challenges of land use. Food consumption patterns are inextricably linked to land-use and land-use changes. The domestic supply and final use of food by humans and feed by animals within the borders of a country have environmental impacts overseas. Countries like Denmark, with considerably high livestock production, import “virtual” land needed to produce cereals and other fodder crops. Denmark's high meat and dairy consumption and trade levels make it a compelling case for this study. The overarching question is: how much land is required to support food and feed consumption in Denmark? This paper assesses the global cropland footprint of Danish food and feed supply from 2000 to 2013 using a consumption-based physical accounting approach. In addition to domestic croplands for local food and supply, we estimate the hectares of cropland displaced in other countries to satisfy Danish demand for food and feed in this period. Secondly, we calculate Denmark's global cropland requirements for the supply of specific livestock products, namely; pork, eggs, beef, milk, and mutton. Globally, animals provide a third of the protein in human diets and agricultural GDP. The total global cropland footprint of Danish food and feed supply decreased by 18% from 1568 kha in 2000 to 1282 kha in 2013 because of a reduction in the consumption of ruminant livestock products. A high share of this reduction can be attributed to increased local self-sufficiency in feed supply as opposed to rising food imports. The share of cropland used for feed in total cropland declined by 5% whereas the share of cropland used for food increased from 28% in 2000 to 32% by 2013. Our findings suggest that reducing domestic meat consumption coupled with local self-sufficiency policies for both food and feed supply could be a means of lowering ecological degradation in exporting countries.  相似文献   

3.
Human appropriation of land for food production has fundamentally altered the Earth system, with impacts on water, soil, air quality, and the climate system. Changes in population, dietary preferences, technology and crop productivity have all played important roles in shaping today’s land use. In this paper, we explore how past and present developments in diets impact on global agricultural land use. We introduce an index for the Human Appropriation of Land for Food (HALF), and use it to isolate the effects of diets on agricultural land areas, including the potential consequences of shifts in consumer food preferences. We find that if the global population adopted consumption patterns equivalent to particular current national per capita rates, agricultural land use area requirements could vary over a 14-fold range. Within these variations, the types of food commodities consumed are more important than the quantity of per-capita consumption in determining the agricultural land requirement, largely due to the impact of animal products and in particular ruminant species. Exploration of the average diets in the USA and India (which lie towards but not at global consumption extremes) provides a framework for understanding land use impacts arising from different food consumption habits. Hypothetically, if the world were to adopt the average Indian diet, 55% less agricultural land would be needed to satisfy demand, while global consumption of the average USA diet would necessitate 178% more land. Waste and over-eating are also shown to be important. The area associated with food waste, including over-consumption, given global adoption of the consumption patterns of the average person in the USA, was found to be twice that required for all food production given an average Indian per capita consumption. Therefore, measures to influence future diets and reduce food waste could substantially contribute towards global food security, as well as providing climate change mitigation options.  相似文献   

4.
Affluence drives the global displacement of land use   总被引:2,自引:0,他引:2  
Increasing affluence is often postulated as a main driver for the human footprint on biologically productive areas, identified among the main causes of biodiversity loss, but causal relationships are obscured by international trade. Here, we trace the use of land and ocean area through international supply chains to final consumption, modeling agricultural, food, and forestry products on a high level of resolution while also including the land requirements of manufactured goods and services. In 2004, high-income countries required more biologically productive land per capita than low-income countries, but this connection could only be identified when land used to produce internationally traded products was taken into account, because higher-income countries tend to displace a larger fraction of land use. The equivalent land and ocean area footprint of nations increased by a third for each doubling of income, with all variables analyzed on a per capita basis. This increase came largely from imports, which increased proportionally to income. Export depended mostly on the capacity of countries to produce useful biomass, the biocapacity. Our analysis clearly shows that countries with a high biocapacity per capita tend to spare more land for nature. Biocapacity per capita can be increased through more intensive production or by reducing population density. The net displacement of land use from high-income to low-income countries amounted to 6% of the global land demand, even though high-income countries had more land available per capita than low-income countries. In particular, Europe and Japan placed high pressure on ecosystems in lower-income countries.  相似文献   

5.
Both supply and demand side changes are necessary to achieve a sustainable food system. However, the weight accorded to these depends on one’s view of what the priority goals are for the food system and the extent to which production systems versus consumption patterns are open to change. Some stakeholders see the problem as one of ‘not enough food’ and focus on the need to sustainably increase supply, while others consider the resource demanding and ‘greedy’ consumption patterns of the Western world as the main problem and emphasize the need to shift diets. In this study global land use and greenhouse gas emissions are estimated for a set of scenarios, building on four ‘livestock futures’ reflecting these different perspectives. These scenarios are: further intensification of livestock systems; a transition to plant-based eating; a move towards artificial meat and dairy; and a future in which livestock production is restricted to the use of ‘ecological leftovers’ i.e. grass from pastures, food waste and food and agricultural byproducts. Two dietary variants for each scenario are modelled: 1) a projected diet following current trends and 2) a healthy diet with more fruits and vegetables and fewer animal products, vegetable oils and sugar. Livestock production in all scenarios (except the baseline scenario) was assumed to intensify to current levels of intensive production in North-Western Europe. For each scenario, several variant assumptions about yield increases and waste reductions were modelled. Results show that without improvements in crop productivity or reductions on today’s waste levels available cropland will only suffice if production of all protein currently supplied by animal foods is replaced by (hypothetical) artificial variants not requiring any land. With livestock intensities corresponding to current ones in North-Western Europe and with yield gaps closed by 50% and waste reduced by 50%, available cropland will suffice for all scenarios that include a reduction of animal products and/or a transition to poultry or aquaculture. However, in the scenario based on an extrapolation of current consumption patterns (animal product amounts and types consumed in proportions corresponding to the current average consumption in different world regions) and with livestock production based on feed from cropland, available cropland will not be enough. The scenario that makes use of pastures for ruminant production and food waste for pigs, uses considerably less cropland and could provide 40–56 kg per capita per year of red meat. However, such a livestock future would not reduce GHG emissions from agriculture on current levels. This study confirms previous research that to achieve a sustainable food future, action is needed on all fronts; improved supply and reduced demand and waste.  相似文献   

6.
Diets lower in meat could reduce agricultural expansion and intensification thereby reducing biodiversity impacts. However, land use requirements, associated with alternate diets, in biodiverse regions across different taxa are not fully understood. We use a spatially explicit global food and land system model to address this gap. We quantify land-use change in locations important for biodiversity across taxa and find diets low in animal products reduce agricultural expansion and intensity in regions with high biodiversity. Reducing ruminant meat consumption alone however was not sufficient to reduce fertiliser and irrigation application in biodiverse locations. The results differed according to taxa, emphasising that land-use change effects on biodiversity will be taxon specific. The links shown between global meat consumption and agricultural expansion and intensification in the biodiverse regions of the world indicates the potential to help safeguard biodiverse natural ecosystems through dietary change.  相似文献   

7.
Today Africa is a small emitter, but it has a large and faster-than-average growing population and per capita income that could drive future energy demand and, if unconstrained, emissions. This paper uses a multi-model comparison to characterize the potential future energy development for Continental and Sub-Saharan Africa under different assumptions about population and income. Our results suggest that population and economic growth rates will strongly influence Africa’s future energy use and emissions. We show that affluence is only one face of the medal and the range of future emissions is also contingent on technological and political factors. Higher energy intensity improvements occur when Africa grows faster. In contrast, climate intensity varies less with economic growth and it is mostly driven by climate policy. African emissions could account for between 5 % and 20 % of global emissions, with Sub-Saharan Africa contributing between 4 % and 10 % of world emissions in 2100. In all scenarios considered, affluence levels remain low until the middle of the century, suggesting that the population could remain dependent on traditional bioenergy to meet most residential energy needs. Although the share of electricity in final energy, electric capacity and electricity use per capita all rise with income, even by mid-century they do not reach levels observed in developed countries today.  相似文献   

8.
Urban growth has received little attention in large-scale land change assessments, because the area of built-up land is relatively small on a global scale. However, this area is increasing rapidly, due to population growth, rural-to-urban migration, and wealth increases in many parts of the world. Moreover, the impacts of urban growth on other land uses further amplified by associated land uses, such as recreation and urban green. In this study we analyze urban land take in cropland areas for the years 2000 and 2040, using a land systems approach. As of the year 2000, 213 Mha can be classified as urban land, which is 2.06% of the earth’s surface. However, this urban land is more than proportionally located on land that is suitable and available for crop production. In the year 2040, these figures increase to 621 Mha, or 4.72% of all the earth’s surface. The increase in urban land between 2000 and 2040 is also more than proportionally located on land that is suitable and available for crop production, thus further limiting our food production capacity. The share of urban land take in cropland areas is highest in Europe, the Middle-East and Northern Africa, and China, while it is relatively low in Oceania and Sub-Saharan Africa. Between 2000 and 2040, urban growth caused the displacement of almost 65 Mton of crop production, which could yield an expansion of up to 35 Mha of new cropland. Land-use planning can influence both the location and the form of urbanization, and thus appears as an important measure to minimize further losses in crop production.  相似文献   

9.
Agricultural land use to meet the demands of a growing population, changing diets, lifestyles and biofuel production is a significant driver of biodiversity loss. Globally applicable methods are needed to assess biodiversity impacts hidden in internationally traded food items. We used the countryside species area relationship (SAR) model to estimate the mammals, birds, amphibians and reptiles species lost (i.e. species ‘committed to extinction’) due to agricultural land use within each of the 804 terrestrial ecoregion. These species lost estimates were combined with high spatial resolution global maps of crop yields to calculate species lost per ton for 170 crops in 184 countries. Finally, the impacts per ton were linked with the bilateral trade data of crop products between producing and consuming countries from FAO, to calculate the land use biodiversity impacts embodied in international crop trade and consumption. We found that 83% of total species loss is incurred due to agriculture land use devoted for domestic consumption whereas 17% is due to export production. Exports from Indonesia to USA and China embody highest impacts (20 species lost at the regional level each). In general, industrialized countries with high per capita GDP tend to be major net importers of biodiversity impacts from developing tropical countries. Results show that embodied land area is not a good proxy for embodied biodiversity impacts in trade flows, as crops occupying little global area such as sugarcane, palm oil, rubber and coffee have disproportionately high biodiversity impacts.  相似文献   

10.
Global GDP projections for the 21st century are needed for the exploration of long-term global environmental problems, in particular climate change. Greenhouse gas emissions as well as climate change mitigation and adaption capacities strongly depend on growth of per capita income. However, long-term economic projections are highly uncertain. This paper provides five new long-term economic scenarios as part of the newly developed shared socio-economic pathways (SSPs) which represent a set of widely diverging narratives. A method of GDP scenario building is presented that is based on assumptions about technological progress, and human and physical capital formation as major drivers of long-term GDP per capita growth. The impact of these drivers differs significantly between different shared socio-economic pathways and is traced back to the underlying narratives and the associated population and education scenarios. In a highly fragmented world, technological and knowledge spillovers are low. Hence, the growth impact of technological progress and human capital is comparatively low, and per capita income diverges between world regions. These factors play a much larger role in globalization scenarios, leading to higher economic growth and stronger convergence between world regions. At the global average, per capita GDP is projected to grow annually in a range between 1.0% (SSP3) and 2.8% (SSP5) from 2010 to 2100. While this covers a large portion of variety in future global economic growth projections, plausible lower and higher growth projections may still be conceivable. The GDP projections are put into the context of historic patterns of economic growth (stylized facts), and their sensitivity to key assumptions is explored.  相似文献   

11.
Biodiversity footprints quantify the impacts on ecosystems caused by final consumption in a region, accounting for imports and exports. Up to now, footprint analyses have typically been applied to analyze past or present consumption patterns. Here, we quantify future land-based biodiversity footprints associated with three diverging Shared Socio-economic Pathways (SSPs), using loss in Biodiversity Intactness Index (BII) as an indicator of biodiversity loss. For each SSP, we retrieved socio-economic and land use projections to 2100 from the IMAGE-MAGNET model and calculated associated biodiversity footprints for seven aggregated world regions. We then compared these with the functional diversity component of the biosphere integrity planetary boundary. Our results indicate that the global land-based biodiversity impact stays below the boundary (tentatively set at 90% of original BII) in all scenario-year combinations. Contrastingly, the per capita boundary is transgressed in one, four and five out of the seven world regions in 2100 for SSP1 (‘sustainability’), SSP2 (‘middle of the road’) and SSP3 (‘regional rivalry’), respectively. These results indicate a strong difference in the biodiversity impact of final consumption between the regions and between SSPs. Even in the ‘sustainability’ scenario, the per capita biodiversity footprint of consumption in North America needs to be reduced to meet the per capita boundary. Thus, policy-making to safeguard the environment would benefit from adopting region-specific strategies: focusing on realizing agricultural efficiency gains in regions with unexploited potential, while focusing on promoting dietary changes towards less animal-based consumption in regions with limited potential for additional efficiency gains.  相似文献   

12.
Climate change may cause most harm to countries that have historically contributed the least to greenhouse gas emissions and land-use change. This paper identifies consequentialist and non-consequentialist ethical principles to guide a fair international burden-sharing scheme of climate change adaptation costs. We use these ethical principles to derive political principles – historical responsibility and capacity to pay – that can be applied in assigning a share of the financial burden to individual countries. We then propose a hybrid ‘common but differentiated responsibilities and respective capabilities’ approach as a promising starting point for international negotiations on the design of burden-sharing schemes. A numerical assessment of seven scenarios shows that the countries of Annex I of the United Nations Framework Convention on Climate Change would bear the bulk of the costs of adaptation, but contributions differ substantially subject to the choice of a capacity to pay indicator. The contributions are less sensitive to choices related to responsibility calculations, apart from those associated with land-use-related emissions. Assuming costs of climate adaptation of USD 100 billion per year, the total financial contribution by the Annex I countries would be in the range of USD 65–70 billion per year. Expressed as a per capita basis, this gives a range of USD 43–82 per capita per year.  相似文献   

13.
In recent decades there has been a sustained and substantial shift in human diets across the globe towards including more livestock-derived foods. Continuing debates scrutinize how these dietary shifts affect human health, the natural environment, and livelihoods. However, amidst these debates there remain unanswered questions about how demand for livestock-derived foods may evolve over the upcoming decades for a range of scenarios for key drivers of change including human population, income, and consumer preferences. Future trends in human population and income in our scenarios were sourced from three of the shared socioeconomic pathways. We used scenario-based modeling to show that average protein demand for red meat (beef, sheep, goats, and pork), poultry, dairy milk, and eggs across the globe would increase by 14% per person and 38% in total between the year 2020 and the year 2050 if trends in income and population continue along a mid-range trajectory. The fastest per person rates of increase were 49% in South Asia and 55% in sub-Saharan Africa. We show that per person demand for red meat in high-income countries would decline by 2.8% if income elasticities of demand (a partial proxy for consumer preferences, based on the responsiveness of demand to income changes) in high-income countries decline by 100% by 2050 under a mid-range trajectory for per person income growth, compared to their current trajectory. Prices are an important driver of demand, and our results demonstrate that the result of a decline in red meat demand in high-income countries is strongly related to rising red meat prices, as projected by our scenario-based modeling. If the decline in the income elasticity of demand occurred in all countries rather than only in high-income countries, then per person red meat demand in high-income countries would actually increase in 2050 by 8.9% because the income elasticity-driven decline in global demand reduces prices, and the effect of lower prices outweighs the effect of a decline in the income elasticity of demand. Our results demonstrate the importance of interactions between income, prices, and the income elasticity of demand in projecting future demand for livestock-derived foods. We complement the existing literature on food systems and global change by providing quantitative evidence about the possible space for the future demand of livestock-derived foods, which has important implications for human health and the natural environment.  相似文献   

14.
Issues concerning what measures should be adopted to achieve a sustainable world with less carbon dioxide emission and in what magnitude should we reduce our emission have been on agenda in both international negotiations and countries’ policy making aimed at coping with potential global climate change. These issues cannot be easily addressed unless comprehensive understanding about the countries’ status quo as well as historical relationship between economic development and carbon dioxide emission are gained. In this paper, we examine the historical relationship between economic development and carbon dioxide emission; the ex ante restrictions on function forms and the poorly handled robustness issues rife in economics literature are synthetically addressed. Evidence from recent four decades indicates that per capita carbon dioxide emission first significantly and monotonously increase at low income level and flattens after per capita income reaches at about 22,000 $ (2005 constant price). We perform various robustness checks by employing different data sources, different model specifications and different econometric estimates. The captured development–emission relationship is robust. Our empirical results indicate factors such as urbanization, population density, trade, energy mix and economic environment impact the absolute level of carbon dioxide emission not the overall income elasticity structure of carbon dioxide emission.  相似文献   

15.
In this paper we present the initial results from a project to develop a population health model so we can extend the scenarios included in the IPCC’s Special Report on Emission Scenarios to include population health status. Our initial hypothesis was that some climatic variable, particularly temperature, would have a significant impact on health outcomes. After experiments – using the Global Burden of Disease (GBD) data on Years of Life Lost (YLL) and Years Lived with disability (YLD) both by WHO region and by five degree latitude band as outcome variables – failed, we settled on life expectancy (LE) as the best measure of health status. We discovered that there is a solid relationship between LE and the GBD data from our first experiments, allowing us to extend the results from the LE model. The LE model used cross section data on LE for 91 countries and included temperature, per capita income, access to clean water and sanitation, literacy, simple medical attention, nutrition, per capita medical expenditure, electricity use per capita, and automobiles per capita as independent variables. While all were individually associated with LE, our model of choice included literacy, access to clean water and sanitation, simple medical attention, an indictor variable for Sub-Saharan Africa and purchasing-power parity per capita income. Note that neither temperature nor calories enter into this model. The fit between life expectancy, as predicted by this model, and actual life expectancy was quite good (R 2 =0.90), except for Rwanda, Uganda, and Madagascar; these countries accounted for one half of the unexplained variation in the model. The LE model was then used to develop trajectories of life expectancy in India for the four IPCC SRES storylines, where values for the independent variables were extrapolated based on the story line content. YLL and YLD estimates were created using the current cross relationship of these outcomes to LE. Given the lack of a general role for climate in our LE model, future work is planned to explore how to add detailed climate related impacts, to explore alternative nutritional variables, as well as extend the data set to allow a cross-section time-series approach.  相似文献   

16.
The literature on tourism and climate change lacks an analysis of the global changes in tourism demand. Here, a simulation model of international tourism is presented that fills that gap. The current pattern of international tourist flows is modelled using 1995 data on departures and arrivals for 207 countries. Using this basic model the impact on arrivals and departures through changes in population, per capita income and climate change are analysed. In the medium to long term, tourism will grow, however, the change from climate change is smaller than from population and income changes.  相似文献   

17.
“一带一路”沿线国家2020—2060年人口经济发展情景预测   总被引:1,自引:0,他引:1  
本文应用IPCC共享社会经济路径(SSPs),开展“一带一路”沿线国家的人口和经济情景预测,研究可持续路径(SSP1)、中间路径(SSP2)、区域竞争路径(SSP3)、不均衡路径(SSP4)和化石燃料为主发展路径(SSP5)下,“一带一路”沿线国家社会经济的变化趋势,构建“一带一路”沿线国家人口和经济发展情景数据库,服务于气候变化影响、风险、适应和减缓路径方案设计。研究表明:(1)2016年“一带一路”沿线国家总人口占全球人口的62.3%,GDP总量占全球的31.2%。其中“21世纪海上丝绸之路”经过的东南亚和南亚地区经济总量大,但人口密集,人均GDP较低;“丝绸之路经济带”涵盖的中亚、西亚、东欧等地区人口密度小,经济相对发达。(2)“一带一路”沿线国家未来人口和经济整体呈增长趋势,但不同的社会经济发展政策对人口经济变化有重大影响。不同的SSPs路径下,2060年人口将比2016年水平增加3.3亿(SSP5)~18.3亿(SSP3),经济总量达到2016年水平的3.0(SSP3)~6.4倍(SSP5)。人口占全球总量的比重持续减少,经济比重则有所增加。(3)21世纪中期(2051—2060年),“一带一路”沿线国家平均人口密度约95人/km2,GDP约164万美元/km2。不同社会经济发展政策间人口经济分布有一定差异,SSP3路径下大部分国家人口增长迅速,但经济发展缓慢,人均GDP多低于2万美元;SSP5路径下人口相对较少,经济发展迅速,大多数国家人均GDP超过2.5万美元;其他3种路径下人口经济发展介于SSP3和SSP5之间。  相似文献   

18.
Human activities use more than half of accessible freshwater, above all for agriculture. Most approaches for reconciling water conservation with feeding a growing population focus on the cropping sector. However, livestock production is pivotal to agricultural resource use, due to its low resource-use efficiency upstream in the food supply chain. Using a global modelling approach, we quantify the current and future contribution of livestock production, under different demand- and supply-side scenarios, to the consumption of “green” precipitation water infiltrated into the soil and “blue” freshwater withdrawn from rivers, lakes and reservoirs. Currently, cropland feed production accounts for 38% of crop water consumption and grazing involves 29% of total agricultural water consumption (9990 km3 yr−1). Our analysis shows that changes in diets and livestock productivity have substantial implications for future consumption of agricultural blue water (19–36% increase compared to current levels) and green water (26–69% increase), but they can, at best, slow down trends of rising water requirements for decades to come. However, moderate productivity reductions in highly intensive livestock systems are possible without aggravating water scarcity. Productivity gains in developing regions decrease total agricultural water consumption, but lead to expansion of irrigated agriculture, due to the shift from grassland/green water to cropland/blue water resources. While the magnitude of the livestock water footprint gives cause for concern, neither dietary choices nor changes in livestock productivity will solve the water challenge of future food supply, unless accompanied by dedicated water protection policies.  相似文献   

19.
Since the World War II, many economies have transitioned from an agrarian, biomass-based to an industrial, minerals-based metabolic regime. Since 1950, world population grew by factor 2.7 and global material consumption by factor 3.7–71 Gigatonnes per year in 2010. The expansion of the resource base required by human societies is associated with growing pressure on the environment and infringement on the habitats of other species. In order to achieve a sustainability transition, we require a better understanding of the currently ongoing metabolic transition and its potential inertia. In this article, we present a long-term global material flow dataset covering material extraction, trade, and consumption of 177 individual countries between 1950 and 2010. We trace patterns and trends in material flows for six major geographic and economic country groupings and world regions (Western Industrial, the (Former) Soviet Union and its allies, Asia, the Middle East and Northern Africa, Latin America and the Caribbean, and Sub-Saharan Africa) as well as their contribution to the emergence of a global metabolic profile during a period of rapid industrialization and globalization. Global average material use increased from 5.0 to 10.3 tons per capita and year (t/cap/a) between 1950 and 2010. Regional metabolic rates range from 4.5 t/cap/a in Sub-Saharan Africa to 14.8 t/cap/a in the Western Industrial grouping. While we can observe a stabilization of the industrial metabolic profile composed of relatively equal shares of biomass, fossil energy carriers, and construction minerals, we note differences in the degree to which other regions are gravitating toward a similar form of material use. Since 2000, Asia has overtaken the Western Industrial grouping in terms of its share in global resource use although not in terms of its per capita material consumption. We find that at a sub-global level, the roles of the world regions have changed. There are, however, no signs yet that this will lead to stabilization or even a reduction of global resource use.  相似文献   

20.
Taking a global perspective this paper sets out to theoretically and empirically identify prosperity patterns for four groups of countries at different levels of economic development. It conceptualizes ‘prosperity’ in terms of ecological sustainability, social inclusion, and the quality of life and contextualizes this definition in global perspective. Subsequently, it operationalizes and measures these dimensions on the basis of data from sources such as the World Bank, the Global Footprint Network and the OECD for 138 countries and by applying dual multiple factor analysis. Building on earlier research that suggested that higher development levels in terms of GDP per capita are capable of providing social and individual prosperity but at the expense of environmental sustainability, we ask whether other interrelations between prosperity indicators exist on other levels of economic development. Empirically distinguishing between ‘rich’, ‘emerging’, ‘developing’ and ‘poor countries’ the paper finds that social and individual prosperity indicators largely increase with economic development while ecological sustainability indicators worsen. Our analyses further reveal that ‘social cohesion’ can be established under different economic and institutional conditions, that subjective wellbeing increases with income rises at all levels of economic development and that a decoupling of carbon emissions from the provision of prosperity is, in principle, achievable, while a reduction of the global matter and energy throughput poses a much greater challenge. The paper concludes by highlighting the repercussions of these findings for the trajectories that countries at different levels of economic development would need to undertake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号