首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
龙门山平驿铺组沉积体系及旋回层序研究   总被引:5,自引:1,他引:5  
本文首次从龙门山区下泥盆统平驿铺组中,划分出河口湾、三角洲、滨岸和陆棚四个沉积体系和三个Ⅲ级T-R旋回层序。平面上,四个沉积体系组成了扬子板块西侧的古大陆边缘由过渡相区和滨岸相区相间分布的古地理格局;垂向上,两相区中的三个Ⅲ级T—R旋回层序也由不同的沉积体系组成,旋回层序的演化虽然受构造差异沉降影响,但仍以Ⅲ级海平面升降变化为主要控制因素,并具同步演化规律,可分别代表古大陆边缘活动型和相对稳定型的两种Ⅲ级T—R旋回层序模式。  相似文献   

2.
龙门山泥盆纪层序地层的碳,锶同位素效应   总被引:13,自引:0,他引:13  
郑荣才  刘文均 《地质论评》1997,43(3):264-272
龙门山泥盆纪具准Ⅱ级T-R旋回的层序组,与碳、锶同位素地层曲线演化总趋势所反映的海平面升降变化规律基本一致,具极好的区域性和全球性对比意义。Ⅲ级T-R旋回层序,部分与同位素地层曲线拟合;部分有特征的异常高值波峰或低值波谷。同位素效应分别与正常海平面变化和有机碳高速埋藏、缺氧水体入侵、生物生态萧条或绝灭,以及构造和火山活动等区域性或全球性事件相联系,各具不同的区域性和全球性对比意义。  相似文献   

3.
通过对哈拉奇地区泥盆系岩石学特征、层序地层格架、岩石地球化学特征和沉积构造的研究,对研究区泥盆纪地层进行了层序地层划分和沉积环境的恢复。研究区泥盆系划分为4个三级层序,沉积物源区主要为被动大陆边缘的再旋回造山带物源区,研究区泥盆系为无障壁滨浅海沉积环境。构造运动和海平面升降系该区泥盆系三级层序及其内部体系域形成的主要控制因素。  相似文献   

4.
通过对哈拉奇地区泥盆系岩石学特征、层序地层格架、岩石地球化学特征和沉积构造的研究,对研究区泥盆纪地层进行了层序地层划分和沉积环境的恢复。研究区泥盆系划分为4个三级层序,沉积物源区主要为被动大陆边缘的再旋回造山带物源区,研究区泥盆系为无障壁滨浅海沉积环境。构造运动和海平面升降系该区泥盆系三级层序及其内部体系域形成的主要控制因素。  相似文献   

5.
古新世特提斯北缘前黑海地区盆地的演化与油气远景   总被引:1,自引:0,他引:1  
本文以EXXON公司P.R.Vail等人创立的层序地层学理论为准,对华南泥盆系的层序地层进行了区域上的研究、分析、对比。研究结果表明,从下泥盆统的洛赫科夫阶至上泥盆统的法门阶可识别出20~21个Ⅲ级层序。华南泥盆系的岩石地层、生物地层、年代地层的系、统、阶界线均已确定,与层序地层研究结果对比,生物地层界线均比相应的层序地层界线滞后。本文试图以层序地层序列为准,建立一新的地层系统作为相应的生物地层、年代地层的系、统、阶相对应的辅助性地层系统。研究结果表明,在岩石地层、生物地层、年代地层研究程度高的地区,可建立层序地层的系、统、阶界线系统以利于野外作业。华南地区的泥盆系内,除弗拉斯阶与法门阶的阶间界线置于饥饿层(starvedsection)外,其他的阶、统、系界线均位于有关阶(统)顶部层序中的HST的顶面。  相似文献   

6.
龙门山平驿铺组沉积体系及旋回层序研究①   总被引:2,自引:0,他引:2  
本文首次从龙门山区下泥盆统平驿铺组中,划分出河口湾、三角洲、滨岸和陆棚四个沉积体系和三个Ⅲ级T-R旋回层序。平面上,四个沉积体系组成了扬子板块西侧的古大陆边缘由过渡相区和滨岸相区相间分布的古地理格局;垂向上,两相区中的三个Ⅲ级T-R旋回层序也由不同的沉积体系组成,旋回层序的演化虽然受构造差异沉降影响,但仍以Ⅲ级海平面升降变化为主要控制因素,并具同步演化规律,可分别代表古大陆边缘活动型和相对稳定型的两种Ⅲ级T-R旋回层序模式。  相似文献   

7.
滇东曲靖地区志留系层序地层特征和年代地层界线再讨论   总被引:4,自引:4,他引:4  
曲靖地区志留—泥盆纪地层连续沉积,生物门类丰富,长期以来倍受国内外地质学家关注。笔者根据层序地层学理论和研究方法,在关底组至翠峰山组西山村段之间确定了3个三级相对海平面变化旋回(层序),这些三级旋回(层序)和旋回边界(层序边界)与Vail等(1977)确定的全球性相对海平面变化旋回有很好的可比性。据此,结合生物组合分析曲靖地区志留系的年代界线为:(1)S D界线在玉龙寺组第二段之底(上易剥页岩之底、最大海泛面),但有一枚卢德洛上带化石Ozarkodinacrispa出现在于上易剥页岩的中部;(2)Pridolian Ludlovian界线置于妙高组第二段之底(第三个层序边界);(3)Ludlovian Wenlockian界线置于关底组第一段上部(第二个层序边界)。  相似文献   

8.
郭建华 《地质论评》1998,44(5):529-535
湖平面的升降旋回是控制储集岩分布的主要因素,因此,可根据这些客观存在的宙积旋回界面进行等时储层的划分与对比,辽河西部凹陷属断陷湖盆,这种湖盆中的旋回沉积层序的格架不同于被动大陆边缘型盆地的沉积层序格架,可用湖进一湖退(T-R)旋回来进行描述,区内不同级别或不同频率的T-R旋回分析对应于油层,油组及砂岩组,油层大致相当于全球三级旋回,是区内构造幕式性活动的结果,而油组及砂岩组侧分别相当全球四级及五级  相似文献   

9.
通过精细露头层序地层学的研究,将三叠纪标定了二级层序2个,三级层序9个。提出并厘定了层序旋回的等级系列:一级(200—400Ma),二级(10—100Ma),三级(1—10Ma),四级(0.1—0.2Ma),五级(0.2—0.05Ma)和六级(±0.02Ma)层序旋回。将三叠纪盆地划分为被动边缘(T1+2)和前陆盆地(T3)阶段。进一步标定了古构造沉降对有效容纳空间及层序形成的贡献。提出并规范了高频层序的内涵本质及其划分方案。建立并标定了不同物质背景之下的高频层序四种鉴定类型:三角洲河口坝或滨岸旋回序列型;波痕指数垂向有序变化型;厚层灰岩或白云岩与薄层灰岩或白云岩有序叠置偶合型和砂屑灰岩与砂、泥岩层偶型。高频层序行为堆叠样式及其所携带的信息可深刻地揭示三级层序的内部构架,提高地层对比精度。为建立高分辨率层序地层学和定量编制全球海平面变化曲线奠定了基础。  相似文献   

10.
华南上泥盆统和下石炭统层序地层学   总被引:9,自引:0,他引:9  
王训练  李世隆  王约 《地球学报》1997,18(1):98-105
本文把华南法门阶上部和杜内阶分为4个层序,自下而上依次命名为SQ0、SQ1、SQ2和SQ3。其中SQ0属斯图年阶(Strunian)(泥盆系最顶部),其余3个层序归杜内阶。这4个层序可以与欧美等地同期的层序进行对比,表明当时的海平面升降变化及其由此而产生的沉积层序具有全球的一致性。层序地层学、生物地层学和事件地层学综合研究表明,华南浅海相区与Siphonodelapraesulcata-S.sulcata界线一致的泥盆-石炭系界线不仅高于Cystophrentis带顶界,而且还应高于引起Cystophrentis绝灭的海退事件层的顶界。因此建议以Cystophrentis-Pseudouralina间隔带中最明显的一个海进面,即SQ1的海进体系域的底界作为华南浅海相区泥盆-石炭系界线。这条界线与泥盆-石炭纪之交海退事件层的顶界正好一致,大致相当于Pseudouralina组合带底部。  相似文献   

11.
华南泥盆纪沉积演化及海水进退规程   总被引:26,自引:1,他引:26       下载免费PDF全文
陈代钊  陈其英 《地质科学》1994,29(3):246-255
根据湘黔桂地区泥盆纪沉积相带的时空展布和迁移规律,建立了华南泥盆纪完整的海平面变化曲线,识别出2个Ⅱ级海侵-海退(T-R)旋回和16个Ⅲ级旋回。湘桂海域和黔东南海域的T-R型式有明显差异,可能为不同沉积背景所致。早泥盆世的T-R型式与南西西伯利亚的较为相似,中、晚泥盆世的T-R型式则与欧美地区相似,反映了早泥盆世已受到古特提斯海的影响。  相似文献   

12.
southChinaisoneofWellknownregionSwitheddeVelops~~inthe~es~intheGulzhouandG~provinCeSwherethe~manhashowellstudiedwithgreatachie~,whichhave~a~a~nfromthe~iSbothatdomticandabroad.SinCelabac~hasbornethe.hotPOint"forthemeearchofoutcrops~stratigraphyinClam,andconS~yyieldssomehigh--qualitypapeds(Muetal.,1992;XuandMa1992;Xuetal.,1993;DUetal.,1994;DUandYak1994;Gongatal.,1994;Wuetal.,1994;ChenandChen,1994a,b).Onthebasisofco~noftheDevonhasequenceinGultheuandG~,SouthernQinlingandho~han.thispape…  相似文献   

13.
East and Southeast Asia is a complex assembly of allochthonous continental terranes, island arcs, accretionary complexes and small ocean basins. The boundaries between continental terranes are marked by major fault zones or by sutures recognized by the presence of ophiolites, mélanges and accretionary complexes. Stratigraphical, sedimentological, paleobiogeographical and paleomagnetic data suggest that all of the East and Southeast Asian continental terranes were derived directly or indirectly from the Iran-Himalaya-Australia margin of Gondwanaland. The evolution of the terranes is one of rifting from Gondwanaland, northwards drift and amalgamation/accretion to form present day East Asia. Three continental silvers were rifted from the northeast margin of Gondwanaland in the Silurian-Early Devonian (North China, South China, Indochina/East Malaya, Qamdo-Simao and Tarim terranes), Early-Middle Permian (Sibumasu, Lhasa and Qiangtang terranes) and Late Jurassic (West Burma terrane, Woyla terranes). The northwards drift of these terranes was effected by the opening and closing of three successive Tethys oceans, the Paleo-Tethys, Meso-Tethys and Ceno-Tethys. Terrane assembly took place between the Late Paleozoic and Cenozoic, but the precise timings of amalgamation and accretion are still contentious. Amalgamation of South China and Indochina/East Malaya occurred during the Early Carboniferous along the Song Ma Suture to form “Cathaysialand”. Cathaysialand, together with North China, formed a large continental region within the Paleotethys during the Late Carboniferous and Permian. Paleomagnetic data indicate that this continental region was in equatorial to low northern paleolatitudes which is consistent with the tropical Cathaysian flora developed on these terranes. The Tarim terrane (together with the Kunlun, Qaidam and Ala Shan terranes) accreted to Kazakhstan/Siberia in the Permian. This was followed by the suturing of Sibumasu and Qiangtang to Cathaysialand in the Late Permian-Early Triassic, largely closing the Paleo-Tethys. North and South China were amalgamated in the Late Triassic-Early Jurassic and finally welded to Laurasia around the same time. The Lhasa terrane accreted to the Sibumasu-Qiangtang terrane in the Late Jurassic and the Kurosegawa terrane of Japan, interpreted to be derived from Australian Gondwanaland, accreted to Japanese Eurasia, also in the Late Jurassic. The West Burma and Woyla terranes drifted northwards during the Late Jurassic and Early Cretaceous as the Ceno-Tethys opened and the Meso-Tethys was destroyed by subduction beneath Eurasia and were accreted to proto-Southeast Asia in the Early to Late Cretaceous. The Southwest Borneo and Semitau terranes amalgamated to each other and accreted to Indochina/East Malaya in the Late Cretaceous and the Hainanese terranes probably accreted to South China sometime in the Cretaceous.  相似文献   

14.
Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian–west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian–Triassic), Meso-Tethys (late Early Permian–Late Cretaceous) and Ceno-Tethys (Late Triassic–Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China–Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan–Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and Sibumasu Terrane (including the Baoshan and Tengchong blocks of Yunnan) collided with the Sukhothai Arc and South China/Indochina in the Triassic, closing the Palaeo-Tethys. A third collage of continental blocks, including the Lhasa block, South West Borneo and East Java–West Sulawesi (now identified as the missing “Banda” and “Argoland” blocks) separated from NW Australia in the Late Triassic–Late Jurassic by opening of the Ceno-Tethys and accreted to SE Sundaland by subduction of the Meso-Tethys in the Cretaceous.  相似文献   

15.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   

16.
华北地台是我国最大的早前寒武纪克拉通,一般认为其演化史中一个显著的特征是早奥陶世末到中石炭世初存在着巨大的沉积间断,但是近来的研究表明,地台外缘仍发育着上述间断期间的地层,从而可据此揭示出该时期地台的地史经历、大陆边缘的位置和性质,早古生代期间地台内部主要受南部被动大陆边缘的影响,海水源自古秦岭洋,朝鲜半岛上的所谓“临津江带”不宜与秦岭造山带对比,鄂尔多斯盆地西缘大陆边缘的确定,提示早古生代时阿拉善地块可能不属于中朝地台,周边大陆边缘的存在表明中朝地台是一个完整的陆块,不象是与杨子陆块来自统一的“中国地台”。  相似文献   

17.
《Cretaceous Research》2002,23(3):409-438
Four transgressive-regressive (T-R) cycles and five T-R subcycles have been recognized in Lower Cretaceous strata of the northeastern Gulf of Mexico. These T-R cycles are the LKEGR-TR 1 (Lower Cretaceous, Eastern Gulf Region) (upper Valanginian–upper Aptian), the LKEGR-TR 2 (upper Aptian–middle Albian), the LKEGR-TR 3 (middle–upper Albian), and the LKEGR-TR 4 (upper Albian–lower Cenomanian) cycles. The LKEGR-TR 1 Cycle consists of three subcycles: LKEGR-TR 1–1 (upper Valanginian–lower Aptian), LKEGR-TR 1–2 (lower Aptian) and LKEGR-TR 1–3 (upper Aptian) subcycles. The LKEGR-TR 2–1 (upper Aptian–lower Albian) and the LKEGR-TR 2–2 (lower–middle Albian) subcycles constitute the LKEGR-TR 2 Cycle. The LKEGR-TR 3 and the LKEGR-TR 4 cycles consist of a single T-R cycle.Recognition of these T-R cycles is based upon stratal geometries, nature of cycle boundaries, facies stacking patterns within cycles, and large-scale shifts in major facies belts. The T-R subcycles are characterized by shifts in major facies belts that are not of the magnitude of a T-R cycle. The cycle boundary may be marked by a subaerial unconformity, ravinement surface, transgressive surface or surface of maximum regression. A single T-R cycle consists of an upward-deepening event (transgressive aggrading and backstepping phases) and an upward-shallowing event (regressive infilling phase). These events are separated by a surface of maximum transgression. The aggrading phase marks the change from base-level fall and erosion to base-level rise and sediment accumulation; this phase signals the initiation of the creation of shelf-accommodation space. The marine transgressive and flooding events of the backstepping phase are widespread and provide regional correlation datums. Therefore, these T-R cycles and subcycles can be identified, mapped, and correlated in the northeastern Gulf of Mexico area. The progradational events associated with the regressive infilling phase represent a major influx of siliciclastic sediments into the basin, the development of major reef build-ups at the shelf margin, and a significant loss of shelf-accommodation space. These T-R cycles are interpreted to be the result of the amount of and change in shelf-accommodation due to a combination of post-rift tectonics, loading subsidence, variations in siliciclastic sediment supply and dispersal systems, carbonate productivity and eustasy associated with a passive continental margin. The T-R cycles, where integrated with biostratigraphic data, can be correlated throughout the northern Gulf of Mexico region and have the potential for global correlation of Lower Cretaceous strata.  相似文献   

18.
东亚陆缘带构造扩张的深部热力学机制   总被引:6,自引:2,他引:6  
近年来,我国地球科学家提出“陆缘构造扩张”观点,较好的解释了亚洲东部大陆边缘于新生代发生扩张离散运动的原因。本文基于“陆缘构造扩张”观点,探讨东亚陆缘带构造扩张的深部热力学机制。东亚陆缘带是具有强烈岩浆活动和构造变形的扩张带,此构造带的主要地球物理特征是频繁的地震活动和明显的地热异常。东亚陆缘扩张带地震层析成像显示,太平洋板块低角度俯冲到欧亚板块之下并平卧于670km相变界面之上。这种图像可能是俯冲后撤导致陆缘扩张的结果。热模拟及地球动力学计算表明:俯冲后撤时间距今约76Ma,海沟带后撤为陆缘壳体的生长留下空间,并形成东亚陆缘壳体增生扩展的前沿带,陆缘扩张量约700km。  相似文献   

19.
徐亚军  杜远生 《地球科学》2018,43(2):333-353
华南的广西运动被认为是发生在早古生代的陆内造山作用,然而触发陆内变形的地球动力学机制仍然不清.广西运动形成了泥盆系与下伏岩石之间广泛的不整合面以及分布在局部地区的下古生界内部的多个不整合面.广西运动期间的构造热事件和古生物响应时间在460~380 Ma,时间上对应于奥陶系和泥盆系之间的多个不整合,而分布在华南南缘的寒武系和奥陶系之间的不整合面(郁南运动)仅与少量的530~480 Ma之间的变质事件相当,但是却同步于广泛分布在东冈瓦纳北缘的造山事件.华南南部寒武系-奥陶系不整合面上下的碎屑锆石年代学研究表明,早古生代华南与印度北缘相连,而三亚地块在寒武纪是澳大利亚西缘的一部分,直到奥陶纪才与华南拼合,同步于冈瓦纳最终的聚合.郁南运动之后,华夏板块处于冈瓦纳内部,来自冈瓦纳东缘造山作用的应力向大陆内部传播,在具有弱流变学性质的南华盆地聚集,导致盆地构造反转,触发了广西运动.早古生代的华南经历了从板缘碰撞(郁南运动)到陆内造山(广西运动)的演化过程.   相似文献   

20.
杨科佑 《第四纪研究》1996,16(3):272-276
第四纪最突出的事件是青藏高原和南海海盆的形成和演化。众多中外学者几乎一致认为,青藏高原的形成是由于印度克拉通向北的推动,南海等西太平洋边缘海是在太平洋板块和菲律宾海板块向西俯冲的过程中形成的。笔者另辟蹊径,提出,由于新生代(尤其是第四纪)以来两个相互交切的东亚断裂和南亚断裂的深部物理运动,使得南海等西太平洋边缘海地区的陆壳物质被逐渐吸入地幔,经转化为“幔源壳质”以后,再不断输送、补充给青藏地区。其结果必然是,南海等西太平洋边缘海地区的陆壳迅速转化为过渡型壳甚至洋壳,青藏地区则由洋壳转化为陆壳,并迅速隆起、增厚。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号