首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seismic imaging of gas hydrates in the northernmost South China sea   总被引:1,自引:1,他引:0  
Horizon velocity analysis and pre-stack depth migration of seismic profiles collected by R/V Maurice Ewing in 1995 across the accretionary prism off SW Taiwan and along the continental slope of the northernmost South China Sea were implemented for identifying gas hydrates. Similarly, a survey of 32 ocean-bottom seismometers (OBS), with a spacing of about 500 m, was conducted for exploring gas hydrates on the accretionary prism off SW Taiwan in April 2006. Travel times of head wave, refraction, reflection and converted shear wave identified from the hydrophone, vertical and horizontal components of these OBS data were applied for imaging P-wave velocity and Poisson’s ratio of hydrate-bearing sediments. In the accretionary prism off SW Taiwan, we found hydrate-bearing sediment, with a thickness of about 100–200 m, a relatively high P-wave velocity of 1.87–2.04 km/s and a relatively low Poisson’s ratio of 0.445–0.455, below anticlinal ridges near imbricate emergent thrusts in the drainage system of the Penghu and Kaoping Canyons. Free-gas layer, with a thickness of about 30–120 m, a relatively low P-wave velocity of 1.4–1.8 km/s and a relatively high Poisson’s ratio (0.47–0.48), was also observed below most of the bottom-simulating reflectors (BSR). Subsequently, based on rock physics of the three-phase effective medium, we evaluated the hydrate saturation of about 12–30% and the free-gas saturation of about 1–4%. The highest saturation (30% and 4%) of gas hydrates is found below anticlines due to N–S trending thrust-bounded folds and NE-SW thrusting and strike-slip ramps in the lower slope of the accretionary prism. We suggest that fluid may have migrated through the relay-fault array due to decollement folding and gas hydrates have been trapped in anticlines formed by the basement rises along the thrust faults. In contrast, in the rifted continental margin of the northernmost South China Sea, P-wave velocities of 1.9–2.2 km/s and 1.3–1.6 km/s, and thicknesses of about 50–200 m and 100–200 m, respectively, for a hydrate layer and a free-gas layer were imaged below the remnant and erosional ridges in the upper continental slope. High P-wave velocity of hydrate-bearing sediment below erosional ridges may also indicate high saturation of hydrates there. Normal faults due to rifting in the South China continental crust may have provided conduits for gas migration below the erosional ridges where P-wave velocity of hydrate-bearing sediment in the passive continental margin of the northernmost South China Sea is greater than that in the active accretionary prism off SW Taiwan.  相似文献   

2.
Acouso-physical properties of sea floor sediments in the southeast offshore sea area of Hainan Island on the northern continental shelf of the South China Sea are analyzed. In many cruises, conductivity-temperature-depth measurements of seawater, measurements of shallow stratum and side-scan sonar have been made. Acoustic parameters, basic sedimentary parameters, physical-mechanical parameters and 14C age, etc., have been measured. The sediment elastic parameters, including Young's modulus, bulk modulus, constrained modulus, rigidity modulus, Poisson's ratio, Lames constant, etc., have been calculated. Results show that the compression wave velocity of the seafloor sediment in the sea area ranges from 1474–1700 m/s, and there are high and low sound velocity sediment types in the different sea areas; the shear wave velocity is 150–600 m/s; at 100 kHz the sediment sound attenuation is 35–260 dB/m, the sediment density is 1.4–2.0 g/cm3; the sediment porosity is 42–88%. Sound field parameters and describing sound reciprocity between sea and seafloor are described.  相似文献   

3.
The continental-shelf morphology is dominated by glacial erosion and deposition. Erosion is prominent on the near-shore shelf and deposition along the outer shelf edge. The continental slope is characterized by delta-shaped progradations (glaciomarine-sediment fans) seaward of the shelf channels. Canyons cross the continental slope only in the region southeast of Cape Farewell. The continental rise is incised by a number of submarine canyons. Broad sediment ridges on the upper continental rise are probably canyon-eroded remains of extensive Plio-Pleistocene fans. A mid-ocean channel which crosses the continental rise is possibly related to the axis of maximum depth of Denmark Strait. Despite the presence of strong bottom currents, there is no indication of depositional sediment drifts along the continental margin of Greenland between Cape Farewell and Denmark Strait. This may be a function of high current velocity or low sediment load.Sea floor older than 60 m.y. B.P. is present just seaward of the Greenland continental margin implying either downwarped continental material or an early rift formed prior to the separation of Greenland from the European plate. A left lateral offset of anomalies 20 and 21 at 65°N indicates a major fracture zone related to the Greenland continental margin offset nearby.  相似文献   

4.
The understanding of the morphology and the shallow geo-hazards of the seafloor is a major focus for both academic and private industry research. On November and December 2009 a geophysical pipeline survey was carried out by Fugro Oceansismica S.p.A. (FOSPA) and FUGRO France (FFSA) for DORIS Engineering on behalf of GRTgaz (Engineering centre, Transmission Pipe Department; www.grtgaz.com) which are currently investigating the possibility of laying a pipeline between Sardinia and Corsica as a spur line from the planned GALSI Project. The Project, ??Alimentation de la Corse en gaz naturel??, consists of a corridor 100 km long and 1.0 km wide along the Corsica-Sardinia shelf. The integration of the multibeam, sidescan sonar and sparker data provided a high resolution seafloor mapping for geo-hazard assessment. In this article the data acquired along a break of slope section (approximately 20 km × 1.5 km), in the eastern sector of the Strait of Bonifacio are described. The area was abandoned during the survey, because of its unsuitability. Indeed, in this area the continental shelf, approximately 100 m deep and deepening gently eastward, is characterized by an uneven morphology, with different seabed features such as Beach-rocks mainly NNW-SSE oriented. Also, the continuity of the continental margin, identified around ?110/?115 m, is interrupted by four canyon heads which incise the slope and are associated with glide deposits.  相似文献   

5.
Based on multi-beam echo soundings and high-resolution single-channel seismic profiles, linear sand ridges in U14 and U2 on the East China Sea (ECS) shelf are identified and compared in detail. Linear sand ridges in U14 are buried sand ridges, which are 90 m below the seafloor. It is presumed that these buried sand ridges belong to the transgressive systems tract (TST) formed 320–200 ka ago and that their top interface is the maximal flooding surface (MFS). Linear sand ridges in U2 are regressive sand ridges. It is presumed that these buried sand ridges belong to the TST of the last glacial maximum (LGM) and that their top interface is the MFS of the LGM. Four sub-stage sand ridges of U2 are discerned from the high-resolution single-channel seismic profile and four strikes of regressive sand ridges are distinguished from the submarine topographic map based on the multi-beam echo soundings. These multi-stage and multi-strike linear sand ridges are the response of, and evidence for, the evolution of submarine topography with respect to sea-level fluctuations since the LGM. Although the difference in the age of formation between U14 and U2 is 200 ka and their sequences are 90 m apart, the general strikes of the sand ridges are similar. This indicates that the basic configuration of tidal waves on the ECS shelf has been stable for the last 200 ka. A basic evolutionary model of the strata of the ECS shelf is proposed, in which sea-level change is the controlling factor. During the sea-level change of about 100 ka, five to six strata are developed and the sand ridges develop in the TST. A similar story of the evolution of paleo-topography on the ECS shelf has been repeated during the last 300 ka.  相似文献   

6.
Multiple stages of large-scale shelf sand ridges, including the shoreface-attached and the offshore types, have developed in the Miocene successions on the mid-shelf region of the Pear River Mouth Basin, northern South China Sea. Utilizing a high-quality 3D seismic data set, accompanying 2D seismic profiles and well logs, the morphology, architecture and genesis of these shelf sand ridges have been systematically investigated in this study. The ridges are of very large scale, with the largest one having a maximum height of 64 m, a width of more than 20 km and a length of 37 km within the 3D survey area. Being mound-shaped, they also display obvious asymmetry character, with the ridge crest preferentially located on the SE side. Three main internal components, including the ridge front, central ridge and the ridge tail, have been recognized through careful anatomy analysis of the two most well-imaged ridges, each displaying distinct expressions on seismic amplitudes and geometries. In the plan view, most of the shelf sand ridges are generally NE–SW oriented and widening to the SW direction. Scouring features can also be clearly observed along the SW direction, including scour depressions and linear sandy remnants. On well logs, the shelf sand ridges are represented by an overall coarsening-upward pattern. Intervals with blocky sandstones are preferentially present on higher locations due to a differential winnowing process controlled by shelf topography.Plenty of evidence indicates that these ridges were primarily formed by the reworking of forced regressive or lowstand deltaic deposits under a persistent southwesterly flowing current during the subsequent transgression. This very current is a composite one, which is speculated to consist of winter oceanic current, SCSBK (South China Sea Branch of Kuroshio) intrusion onto the shelf and internal waves propagating from the Luzon Strait. Tidal currents might have contributed to the SE growth of the ridge. In response to the reglaciation of Antarctic ice-sheet and the closure of Pacific-Indian ocean seaway in the middle Miocene, the intensification of the North Pacific western boundary current was considered to have potential links to the initiation of the shelf sand ridges at ∼12 Ma. The development of shelf ridges was terminated and replaced by rapid deltaic progradation at ∼5.5 Ma.  相似文献   

7.
A shallow gas depth-contour map covering the Skagerrak-western Baltic Sea region has been constructed using a relatively dense grid of existing shallow seismic lines. The digital map is stored as an ESRI® shape file in order to facilitate comparison with other data from the region. Free gas usually occurs in mud and sandy mud but is observed only when sediment thickness exceeds a certain threshold value, depending on the water depth of the area in question. Gassy sediments exist at all water depths from approx. 20 m in the coastal waters of the Kattegat to 360 m in the Skagerrak. In spite of the large difference in water depths, the depth of free gas below seabed varies only little within the region, indicating a relatively fast movement of methane in the gas phase towards the seabed compared to the rate of diffusion of dissolved methane. Seeps of old microbial methane occur in the northern Kattegat where a relatively thin cover of sandy sediments exists over shallow, glacially deformed Pleistocene marine sediments. Previous estimates of total methane escape from the area may be correct but the extrapolation of local methane seepage rate data to much larger areas on the continental shelf is probably not justified. Preliminary data on porewater chemistry were compared with the free gas depth contours in the Aarhus Bay area, which occasionally suffers from oxygen deficiency, in order to examine if acoustic gas mapping may be used for monitoring the condition of the bay.  相似文献   

8.
Sedimentary processes and structures across the continental rise in the western Weddell Sea have been investigated using sediment acoustic and multichannel seismic data, integrated with multibeam depth sounding and core investigations. The results show that a network of channels with associated along-channel ridges covers the upper continental slope. The seismic profiles reveal that the channels initially developed as erosive turbidite channels with associated levees on their northern side due to Coriolis force. Later they were partly or fully infilled, probably as a result of decreasing turbidite activity. Now the larger ones exist as erosive turbidite channels of reduced size, whereas the smaller ones are non-erosive channels, their shape being maintained by contour current activity. Drift bodies only developed where slumps caused a distinctive break in slope inclination on the upper continental rise, which served to initiate the growth of a drift body fed by contour currents or by the combined action of turbidites and contourites. The history of sedimentation can be reconstructed tentatively by correlation of seismo-stratigraphic units with the stages of evolution of the drifts on the western side of the Antarctic Peninsula. Three stages can be distinguished in the western Weddell Sea after a pre-drift stage, which is delimited by an erosional unconformity at the top: (1) a growth stage, dominated by turbidites, with occasional occurrence of slumps during its initial phase; (2) during a maintenance stage turbiditiy-current intensity (and presumably sedimentation rate also) decreased, probably as a result of the ice masses retreating from the shelf edge, and sedimentation became increasingly dominated by contour current activity; and (3) a phase of sheeted-sequence formation. A southward decrease in sediment thickness shows that the Larsen Ice Shelf plays an important role in sediment delivery to the western Weddell Sea. This study shows that the western Weddell Sea has some characteristics in common with the southern as well as the northwestern Weddell Sea: contour currents off the Larsen Ice Shelf have been present for a long time, probably since the late Miocene, but during times of high sediment input from the shelves as a result of advancing ice masses a channel-levee system developed and dominated over the contour-current transport of sediment. At times of relatively low sediment input the contour-current transport dominated, leading to the formation of drift deposits on the upper continental rise. Seaward of areas without shelf ice masses the continental rise mainly shows a rough topography with small channels and underdeveloped levees. The results demonstrate that sediment supply is an important, maybe the controlling factor of drift development on the Antarctic continental rise.  相似文献   

9.
海南岛东部陆架海底地貌   总被引:4,自引:0,他引:4  
通过二十多条测线的测深、旁测声纳和浅地层连续测量的调查以及底质等资料,概述了海南岛东部陆架海底堆积平原地貌及其上的地貌类型,其中海底沟,坎、岗阜等地貌类型的线性排列和古海岸线的位置相应。  相似文献   

10.
The objective of this study is to document and interpret a recently discovered carbonate-cemented coastal barrier on the inner shelf of the Gulf of Valencia (western Mediterranean Sea). The coastal barrier was identified in a high-resolution digital bathymetric model based on a cartographic survey of the study area using a multibeam echosounder. Moreover, radiocarbon dating and petrographic analyses were performed on a rock sample recovered from the seabed. The data reveal the submerged coastal barrier to be approx. 1.7 km wide and 70 km long, and incised by channels of various dimensions. Aligned more or less parallel to the modern coastline, it is interpreted as corresponding to the shoreline of a former sea-level stillstand. The barrier and lagoon system became stranded above sea level in the course of a subsequent forced regression, which also caused the incision of the river courses. Age dating of the cemented rock suggests that the fossil coastal barrier most probably formed during the prolonged Tyrrhenian (Eemian) sea-level highstand, induration taking place by carbonate cementation at the contact between freshwater and seawater (beach-rock formation). The fact that the fossil barrier is today submerged below modern sea level is explained by the sustained subsidence affecting the region.  相似文献   

11.
Surface samples of sediment cores from the Weddell Sea contain foraminiferal assemblages which are distinctly divided into calcareous or arenaceous populations and reflect CaCO3 dissolution in some regions. Water depth apparently is only partly responsible for this CaCO3 dissolution, the present CCD varying from 250 m to greater than 3700 m. Other factors such as water-mass properties, biological producitivity and sedimentation, all of which are controlled by the glacial regime of a region, are of major importance.Perennial sea-ice formation over the southwestern continental shelf causes a deficiency in surface productivity, limits air—sea interaction and produces cold, Saline Shelf Water which is apparently undersaturated with respect to CaCO3. In the eastern Weddell Sea, less severe glacial conditions appear to favor CaCO3 preservation on the continental shelf. In this area the CCD coincides approximately with major water-mass boundaries varying from over 700 m to approximately 500 m.The deepest and most widespread occurrence of calcareous foraminiferal assemblages coincides with the present region of Antarctic Bottom Water production in the Weddell Sea. Here the CCD is depressed from approximately 1500 m to over 3700 m from east to west along the outer edge of the slope and reflects intensification of mixing and subsequent increased biological productivity in that direction.  相似文献   

12.
A multibeam bathymetric and high- (airgun and sparker) to very high-resolution (Topas) seismic study of the western slope of Hatton Bank (NE Atlantic), located between 600 m and 2,000 m water depth, has revealed a highly variable range of current-controlled morphological features. Two major seabed areas can be distinguished: (1) a non-depositional area corresponding to the top of the bank and (2) a depositional area in which the Hatton Drift has developed. Both areas are characterised by distinct morphologies associated either with rock outcrops and rocky ridges or with smooth surfaces, slides and bedforms controlled mainly by bottom currents interacting with the topography of the bank. The water depth separating the morphological areas probably coincides with the boundary of the Labrador Sea Water and the Lower Deep Water. Morphological features identified in the study area include contourite channels (moats, furrows and scours), fields of sediment waves, edges of contourite deposits, ponded deposits, scarps, gullies, ridges, depressions, slides and slide scars. These morphological features do not necessarily reflect present-day conditions but may have been associated with past current events, consistent with earlier interpretations.  相似文献   

13.
We present four new high-resolution multibeam bathymetry datasets from the shelf edge of the northern Great Barrier Reef (GBR). Analysis of these data, combined with Chirp sub-bottom profiles and existing submersible observation data provides a fresh insight into the detailed morphology and spatial distribution of submerged reefs and terraces at the shelf edge. An extensive and persistent line of drowned shelf edge reefs exist on the GBR margin in about 40 to 70 m. They appear as barrier reefs up to 200 m wide and comprising twin parallel ridges of rounded pinnacles. Subtle yet consistent terrace and step features lie between 78 and 114 m seaward of the shelf edge reefs in the southern study area. Submersible observations confirm that the drowned reefs now provide a favorable hard substrate for live soft corals and algae. They form a consistent and extensive seabed habitat that extends for possibly 900 km along the GBR shelf edge. The submerged reef and terraces features may reflect a complex history of growth and erosion during lower sea-levels, and are now capped by last deglaciation reef material.  相似文献   

14.
Gallo  D. G.  Kidd  W. S. F.  Fox  P. J.  Karson  J. A.  Macdonald  K.  Crane  K.  Choukroune  P.  Seguret  M.  Moody  R.  Kastens  K. 《Marine Geophysical Researches》1984,6(2):159-185
During the Fall of 1979, a manned submersible program, utilizing DSRV ALVIN, was carried out at the intersection of the East Pacific Rise (EPR) with the Tamayo Transform boundary. A total of seven dives were completed in the vicinity of the EPR/Tamayo intersection depression and documented the geologic relationships that characterize the juxtaposition of these types of plate boundaries. The young volcanic terrain of the EPR axis can be traced into and across the Tamayo Transform valley but becomes buried by sedimentary talus that is being shed from sediment scarps along the unstable sediment slope that defines the north side of the intersection depression. Within 4 km of the transform boundary, the dominant trend (000°) of the fissures and faults that disrupt the rise-generated volcanics is markedly oblique to the regional direction of sea floor spreading (120°). Since no evidence was found to suggest that these structures accommodate significant amounts of strike-slip displacement, they are taken to reflect a distortion of the EPR extensional tectonic regime by a transform generated shear couple. The floor of the Tamayo Transform valley in this area is inundated by mass-wasted sediment, and the principal transform displacement zone is characterized at the surface by a narrow (<1.5 km) interval of fault scarps in sediment that trends parallel with the transform valley. Extrapolated to the west, this zone links with zones of transform deformation investigated during earlier submersible studies (CYAMEX and Pastouret, 1981). Evidence of low-level hydrothermal discharge was seen at one locality on the EPR axis and at another 8 km west of the axis at the edge of the zone of transform deformation.  相似文献   

15.
Properties of the dense ice shelf water plume emerging from the Filchner Depression in the southwestern Weddell Sea are described, using available current meter records and CTD stations. A mean hydrography, based on more than 300 CTD stations gathered over 25 yr points to a cold, relatively thin and vertically well-defined plume east of the two ridges cross-cutting the continental slope about 60 km from the Filchner sill, whereas the dense bottom layer is warmer, more stratified and much thicker west of these ridges. The data partly confirm the three major pathways suggested earlier and agree with recent theories on topographic steering by submarine ridges. A surprisingly high mesoscale variability in the overflow region is documented and discussed. The variability is to a large extent due to three distinct oscillations (with periods of about 35 h, 3 and 6 d) seen in both temperature and velocity records on the slope. The oscillations are episodic, barotropic and have a horizontal scale of ∼20–40 km across the slope. They are partly geographically separated, with the longer period being stronger on the lower part of the slope and the shorter on the upper part of the slope. Energy levels are lower west of the ridges, and in the Filchner Depression. The observations are discussed in relation to existing theories on eddies, commonly generated in plumes, and continental shelf waves.  相似文献   

16.
Kveithola Trough, an E–W trending glacial trough in the NW Barents Sea, was surveyed for the first time during the EGLACOM cruise of R/V OGS-Explora in summer 2008. Swath bathymetry shows that the seafloor is characterized by E–W trending mega-scale glacial lineations (MSGL) that record a fast flowing ice stream draining the Svalbard/Barents Sea Ice Sheet (SBIS) during the Last Glacial Maximum (LGM). MSGL are overprinted by transverse sediment ridges about 15 km apart which give rise to a staircase axial profile of the trough. Such transverse ridges are interpreted to be grounding-zone wedges (GZWs) formed by deposition of subglacial till during episodic ice stream retreat. Sub-bottom (CHIRP) and multi-channel reflection seismic data show that the present-day morphology is largely inherited from the palaeo-seafloor topography at the time of deposition of the transverse ridges, overlain by a draping glaciomarine unit which in places is over 15 m thick. Our data allow the reconstruction of depositional processes which accompanied deglaciation of the Spitsbergen Bank area. The sedimentary drape deposited on top of the GZWs is suggested to have accumulated at a very high rate, (on average in the order of 1–1.5 m ka?1) and therefore may potentially preserve a high-resolution palaeoclimatic record of deglaciation and post-glacial conditions in this sector of the Barents Sea.  相似文献   

17.
The narrow shelf and upper slope immediately above the Gonone canyon head off NE Sardinia represent areas of very low sedimentation rates. Along the sides of the canyon head (1,600 m water depth), the sediment deposits are homogeneous but show alternating light-grey intervals rich in carbonate and dark-grey ones rich in organic matter, possibly related to distal turbidite processes. Deposits older than 50,000 years are already encountered at core depths of 2.50 m, the sedimentation rates varying from 6–21 cm/103 years in the lower parts of two cores and from 1.5–3 cm/103 years in the upper parts. At about 35,000 years BP, both cores show a simultaneous drop in sedimentation rate by a factor of 3, probably in response to local mechanisms of channel avulsion. Lithological, mineralogical and geochemical properties reveal the environmental factors which are responsible for the extremely slow sediment accumulation. The southernmost sector of the coast, and partly also of the shelf, consists of Jurassic limestones which supply only small amounts of fine-grained material transported in suspension. During the last sea-level highstand, the accumulation of the Cedrino River pro-delta remained restricted to the coast, the low siliciclastic sediment yields resulting in poor shelf sediment trapping. The present morphology of the canyon head prevented the occurrence of gravity processes in the deeper part of the canyon system, including the coring sites. Accordingly, deposition was mainly fed by hemipelagic material of planktonic origin, together with only moderate terrigenous inputs. On a wider late Pleistocene timescale, seismic data indicate the occurrence of a coarse-grained, layered turbidite facies, implying a very different architecture of the canyon drainage system probably prior to 60,000 years BP.  相似文献   

18.
Two morphological orders of ridge and trough topography can be recognized on a terraced segment (at 37 m) of the central New Jersey shelf: (1) a first-order system with ridges to 14 m high, 2–6 km apart, in a Z-shaped pattern trending to the NNE, and (2) a second-order system with ridges 2–5 m high, 0.5-1.5 km apart and trends to the NE.Side-scan mapping together with submersible observations and bottom samples indicate a third-order system of large-scale current lineations which has been imprinted across the first- and second-order systems. The lineations are low relief forms (to 1.5 m high) which occur as elongate zones of textural contrast arranged in furrows, bands, patches and ribbons and display a uniform directional trend to the ENE.The morphology of the lineations appear to vary in response to the nature of the bottom. The lineations are narrow (10–25 m apart) and have no detectable relief in troughs and wider (to 75 m apart) and higher (to 1.5 m high) on ridges, especially second-order ridges of fine sand. Also revealed are wave ripple patterns and a pattern related to the outcropping of Pleistocene/Holocene units in trough bottoms and lower flanks.It is suggested that the first- and second-order systems developed during earlier stages of the Holocene transgression in response to a hydraulic regime of the inner shelf. The first-order system may have inherited some of its morphology from an older system, but did respond to a Holocene tidal regime adjacent to a major estuary. The second-order system developed in slightly deeper water, subsequent to the resumption of the transgression after the 37-m stillstand.The third-order lineations appear to be a response to the helical-flow structure within the flow field of a major shelf storm. Ridges of the central shelf may be maintained by alternate periods of oblique sweeping during storms, resulting in a net transport of fine sand out of the troughs and up on the ridges. Subsequent wave reworking returns the fine sand to the troughs.  相似文献   

19.
This paper presents the first study of mapping of the Curie point depth (CPD) from magnetic data for the Black Sea and a comparison with a classical thermal modeling from heat flow data. The provided relationship between radially averaged power spectrum of the magnetic anomalies and the depths to the magnetic sources of the Black Sea vary from 22 to 36 km. Deepening of CPDs observed in the western and eastern Black Sea basins correspond with the thickest sediment areas, whereas the shallow CPDs are related to the Mid-Black Sea Ridge and thin sediment areas at the costal side of the Black Sea. For comparison, the temperature field was also modeled from heat flow data from the Black Sea along three approximately north–south directed profiles corresponding to known DSS soundings. The Curie isotherm along the profiles occurs at depths of 22–35 km. A comparison of the results of the two independent methods reveals only 8–10 % discrepancy. This discrepancy is equal to an accuracy of temperature determination from heat flow data.  相似文献   

20.
The southwestern South China Sea represents an area of continental crust frozen immediately before the onset of seafloor spreading. Here we compile a grid of multichannel seismic reflection data to characterize the continent-ocean transition just prior to full break-up. We identify a major continental block separated from the shelf margin by a basin of hyperextended crust. Oligocene-Early Miocene rifting was followed by mild compression and inversion prior to 16 Ma, probably linked to collision between the Dangerous Grounds, a continental block to the east of the study area, and Borneo. The timing of inversion supports models of seafloor spreading continuing until around 16 Ma, rather than becoming inactive at 20 Ma. The off-shelf banks experienced uplift prior to 16 Ma in an area, which had previously been a depocenter. The off-shelf banks continued to extend after this time when the rest of the region is in a phase of thermal subsidence. Post-rift magmatism is seen in the form of scattered seamounts (~5–10 km across) within or on the edge of the deeper basins, and are dated as Late Miocene and Pliocene. They are not clearly linked to any phase of tectonic activity. Further inversion of the off-shelf banks occurred in the Pliocene resulting in a major unconformity despite the lack of brittle faulting of that age. We speculate that this is part of a wider pattern of scattered magmatism throughout the South China Sea at this time. Prograding clinoforms are seen to build out from the shelf edge in the south of the study area during the Pliocene, after 5.3 Ma, and then more towards the north and east during the Pleistocene. At the same time a trough south of the off-shelf banks is filled with >1.35 km of mostly Pleistocene sediment. While we expect the bulk of the sediment to come from the Mekong River, we also suggest additional sediment supply from Borneo and the Malay Peninsula via the Molengraaff River and its predecessors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号