首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
分析研究了南海北部大陆架西南缘的海南岛东南外海海底沉积物声学物理特性,在多个航次中进行了海底沉积层取样、海水CTD测量、浅地层及旁侧声呐扫测等工作.在实验室里对沉积物样品进行声学参数、沉积学基本参数、物理力学参数和14C年龄测试等分析.根据多尔特曼公式求解出弹性模量、体积弹性模量、压缩系数、切变模量、泊松比和拉梅常数等六项沉积物弹性参数.分析结果表明在该海区海底沉积物的压缩波速为1.474~1.700 m/s,在不同的海区内有高低声速两类性质的沉积物分布;沉积物的切变波速为150~600 m/s;沉积物在100 kHz的声衰减为35~260 dB/m;沉积物的密度为1.4~2.0 g/cm3;沉积物的孔隙度为42%~88%.  相似文献   

2.
A Preliminary Study of Shear Wave in Seafloor Surface Sediments   总被引:1,自引:0,他引:1  
This article preliminarily reports and analyses the transmission characteristics and behaviors of shear wave in the offshore seafloor surface sediments in China, discusses the relationships between the physical and mechanical features of the shear wave and the compression wave, and compares the testing results with that of Hamilton and Chen et al. The result shows that the shear wave can be tested if the seafloor surface sediment has tangent modulus. The shear wave velocity ranges from 50-600 m/s and the measuring frequency from 50-200 kHz. The sound velocity rate of shear wave and compression wave can be used to appraise the stress-strain feature of seafloor surface sediments. This study provides a basis for further describing and appraising the seafloor sedimentary acoustic-mechanical feature and building a geological-acoustic model on China's offshore sea area.  相似文献   

3.
The Bering Sea shelf and Chukchi Sea shelf are believed to hold enormous oil and gas reserves which have attracted a lot of geophysical surveys. For the interpretation of acoustic geophysical survey results, sediment sound velocity is one of the main parameters. On seven sediment cores collected from the Bering Sea and Chukchi Sea during the 5th Chinese National Arctic Research Expedition, sound velocity measurements were made at 35, 50, 100, 135, 150, 174, 200, and 250 k Hz using eight separate pairs of ultrasonic transducers. The measured sound velocities range from 1 425.1 m/s to 1 606.4 m/s and are dispersive with the degrees of dispersion from 2.2% to 4.0% over a frequency range of 35–250 k Hz. After the sound velocity measurements, the measurements of selected geotechnical properties and the Scanning Electron Microscopic observation of microstructure were also made on the sediment cores. The results show that the seafloor sediments are composed of silty sand, sandy silt, coarse silt, clayey silt, sand-silt-clay and silty clay. Aggregate and diatom debris is found in the seafloor sediments. Through comparative analysis of microphotographs and geotechnical properties, it is assumed that the large pore spaces between aggregates and the intraparticulate porosity of diatom debris increase the porosity of the seafloor sediments, and affect other geotechnical properties. The correlation analysis of sound velocity and geotechnical properties shows that the correlation of sound velocity with porosity and wet bulk density is extreme significant, while the correlation of sound velocity with clay content, mean grain size and organic content is not significant. The regression equations between porosity, wet bulk density and sound velocity based on best-fit polynomial are given.  相似文献   

4.
Analytical results of sound velocity and spectrum for seafloor sediment ore obtained by VWA (velocity-wave-amplitude) discrimination technique. Based on velocity-wave-amplitude, an understanding is gained of the physical condition and structural characteristics of seafloor sediment, which is combined with other geological information of the sedimentary layer to synthetically discriminate the properties of seafloor sediment. Experimental results show that, by using the relationship between sound velocity, wave form envelope, amplitude shape and size, and such parameters as sedimentary structure, microstructure, bedding, grain composition, mineral composition, and physical-mechanics, etc., the basic properties of the shallow surface seafloor sediment in the experimental sea area can be discriminated and the burial depth of traces of ancient marine transgression and regression events in the borehole cores of seafloor sediment can be divided, thus making an attempt of and contribution to the practice of acoustically remote-sensing and telemetering seafloor sediment.  相似文献   

5.
Analytical results of sound velocity and spectrum for seafloor sediment ore obtained by VWA (velocity-wave-amplitude) discrimination technique. Based on velocity-wave-amplitude, an understanding is gained of the physical condition and structural characteristics of seafloor sediment, which is combined with other geological information of the sedimentary layer to synthetically discriminate the properties of seafloor sediment. Experimental results show that, by using the relationship between sound velocity, wave form envelope, amplitude shape and size, and such parameters as sedimentary structure, microstructure, bedding, grain composition, mineral composition, and physical-mechanics, etc., the basic properties of the shallow surface seafloor sediment in the experimental sea area can be discriminated and the burial depth of traces of ancient marine transgression and regression events in the borehole cores of seafloor sediment can be divided, thus making an attempt of and contribution to the practice of acoustically remote-sensing and telemetering seafloor sediment.  相似文献   

6.
对南海某海域深度100~400 m的海底浅层(约2 m埋深范围)沉积物柱状样在接近海底水压力下进行三轴应变-声学同步测量,结果表明沉积物纵波声速有两个特征:(1)从应变过程开始到结束,沉积物纵波声速不断变化;(2)平均声速随着平均静弹性模量的增加,由大变小又由小变大,存在声速最小值。这些结果与海底浅表层沉积物的物理力学性质、围压、颗粒的结合状态改变有关。此外,沉积物动弹性模量和孔隙度呈良好的负相关性,这与孔隙度增大含水量增大有关;动弹性模量是静弹性模量的10~100倍,这主要与三轴应变试验的应变数量级与声波振动产生的应变数量级的差异大有关。采用本论文实验测量的数据分别建立了双复合参数-声速和孔隙度-声速经验公式,分析结果表明双复合参数-声速公式声速预报误差约是孔隙度-声速公式的1/4,表明双复合参数-声速公式更加有效。  相似文献   

7.
在轴向应力-应变下海底沉积物声速及其变化   总被引:2,自引:0,他引:2  
卢博  李赶先  黄韶健 《海洋学报》2006,28(2):93-100
对南海南部海域海底浅表层沉积物短柱状样进行轴向应力-应变/声学测量,结果表明沉积物纵波声速有三种不同的变化结果:(1)声速从应变过程开始随应力-应变曲线变化,在最大应力时声速同时也是最大值,结束时可能高于或低于开始时的声速;(2)声速从应变过程开始逐渐减小,结束时是最小值;(3)声速从应变过程开始逐渐增大,最大值出现在结束时.这些结果与海底浅表层沉积物的物理力学性质、颗粒接触状态、颗粒的微结构等特征有关.研究结果可为深入认识南海南部各种海底沉积物作为承载界面的可靠性、声遥测遥感海底沉积物的工程力学性质等科学目的提供理论依据.  相似文献   

8.
Sediment waves have been documented around the world for several decades, and their origins are still debated because of their various characteristics in different settings. Based on numerous high-resolution seismic profiles and two boreholes, sediment waves are identified in deepwater areas of the eastern Qiongdongnan Basin, and their distribution and seismic features are illustrated. Combined with the bathymetry, the potential origins of these sediment waves are discussed. Drilling in the central canyon revealed that the channel infill comprises some along-slope fine-grained turbidites, which are good reservoir for gas plays. The sediment waves are distributed on the banks of the central canyon and their seismic features indicate that most of them are caused by turbidity current overflows along the canyon. Although previous researches on these sediment waves suggested that they were of westward-flowing contourite origin, detailed topographic map derived from the seafloor reflector on seismic data shows that there is a N–S trending ridge at the east part of sediment wave zones, which could block and divert the bottom current. According to the geometry of sediment waves, the flow thicknesses across the entire wave field are calculated as 280–560 m, and the current velocity falls in the range of 30–130 cm/s, which would favor a fine-grained composition and could be a good reservoir because of the better sorting of turbidites than contourites or other gravity flow deposits.  相似文献   

9.
本文通过对南海海底沉积物样品的声学物理参数和沉积粒度特征统计分析,发现了高、低含砂量沉积物的声学物理特征存在明显差异,建立了海底沉积物的含砂量与压缩波速度、孔隙度、含水量和密度等经验公式,分析了含砂量变化与沉积物的体积压缩模量和密度变化的关系,从声速理论基础上阐明了含砂量变化引起沉积物压缩波速度变化的内在原因是含砂量变化引起了体积压缩模量和密度发生了变化,说明了含砂量增大引起沉积物压缩波速度增大的内在原因是含砂量增大引起了体积压缩模量变化量大于密度变化量,从而在数据统计和理论分析结合基础上,论证了含砂量是影响海底沉积物压缩波速度的重要因素之一。这一研究对声学方法反演海底沉积物粒度参数和沉积物类型、地声参数转换模型的建立,以及对水声反演海底和海底资源勘探等方面都具有重要理论意义和应用价值。  相似文献   

10.
基于海底表层沉积物声速特征的南海地声模型   总被引:1,自引:1,他引:0  
邹大鹏  阎贫  卢博 《海洋学报》2012,34(3):80-86
在由垂直声速梯度建立的地声模型基础上,通过引入沉积物与海水声速比和沉积物压缩波与切变波声速比两个表征沉积物声学特征参数得到更全面和有实际指导意义的地声模型。在沉积物声波传播FCMCM模型基础上,基于热作用和重力作用下沉积物两相介质的应力应变分析,建立TFCMCM和DFCFCM模型,运用模型校正表层沉积物声速特征来计算和解释地声模型。根据海底表层沉积物存在低声速和高声速两种类型,结合沉积物沿纵深孔隙度不变和变化两种类型,得到南海海底沉积物的两类四种典型地声模型:低声速孔隙度不变型、低声速孔隙度减小型、高声速不变型和高声速孔隙度减小型。运用这四种典型地声模型的组合解释了卢博提出的南海三种典型声速结构。认知声速结构将为南海声学探测海底、划分海底区域提供模型支持。  相似文献   

11.
Abstract

The vast shallow sea off the Pearl River mouth in the northern South China Sea is an important prospecting area for offshore oil development. In recent years, the authors have investigated acoustic and geotechnical characteristics of marine sediments in this area. An intercalated layer of low sound velocity and low compressive strength has been found within the seabed, in which the median diameter of sediment grains is fine and the sound velocity is 100–200 m/s lower than that of the overlying and underlying layers. The minimum unconfined compressive strength of this layer is 0.075 kg/cm2, which is lower than that of the over‐ and underlying layers by an order of magnitude. Such an intercalation often constitutes a threat to the stability of shallow foundation soil. In case of overloading, the layer may be weakened, and seafloor sliding between different sediment layers may occur. The regional distribution of these kinds of weak intercalations of low sound velocity may be traced by a subbottom profiler and by means of sediment acoustical investigations.

Correlation between the gray level of a layer on subbottom profile records and physical properties of the layer (including sound velocity and reflectivity) suggests that the layer of sufficient bearing capacity must be searched by means of sediment acoustics at least to the depth of a high‐velocity substratum of stronger reflection.  相似文献   

12.
In order to study the mechanism of flow-sediment movement, it is essential to obtain measured data of water hydrodynamic and sediment concentration process with high spatial and temporal resolution in the bottom boundary layer (BBL). Field observations were carried out in the northwest Caofeidian sea area in the Bohai Bay. Near 2 m isobath (under the lowest tidal level), a tripod system was installed with AWAC (Acoustic Wave And Current), ADCP (Acoustic Doppler Current Profilers), OBS-3A (Optical Backscatter Point Sensor), ADV (Acoustic Doppler Velocimeters), etc. The accurate measurement of the bottom boundary layer during a single tidal period was carried out, together with a long-term sediment concentration measurement under different hydrological conditions. All the measured data were used to analyze the characteristics of wave-current-sediment movement and the BBL. Analysis was performed on flow structure, shear stress, roughness, eddy viscosity and other parameters of the BBL. Two major findings were made. Firstly, from the measured data, the three-layer distribution model of the velocity profiles and eddy viscosities in the wave-current BBL are proposed in the observed sea area; secondly, the sediment movement is related closely to wind-waves in the muddy coast area where sediment is clayey silt: 1) The observed suspended sediment concentration under light wind conditions is very low, with the peak value generally smaller than 0.1 kg/m^3 and the average value being 0.03 kg/m^3; 2) The sediment concentration increases continuously under the gales over 6-7 in Beaufort scale, under a sustained wind action. The measured peak sediment concentration at 0.4 m above the seabed is 0.15-0.32 kg/m^3, and the average sediment concentration during wind-wave action is 0.08-0.18 kg/m^3, which is about 3-6 times the value under light wind conditions. The critical wave height signaling remarkable changes of sediment concentration is 0.5 m. The results show that the suspended load sediment concentration is mainly influenced by wave-induced sediment suspension.  相似文献   

13.
Laboratory measurements of sound velocity in unconsolidated marine sediment were performed to establish specific correction curves between temperature and sound velocity. Cores from the Hupo Basin and the southern sea of Geumo Island were cooled and sound velocity was measured while gradually increasing temperature (from 3 to 30°C). Sediment textural and physical properties (porosity, water content, and bulk density) were measured at the same depth. Sound velocity increases with temperature for clay, mud, silt, and sand sediment, resulting in values of approximately 2.65, 2.72, 2.78, and 3.10?m/s/°C, respectively. These results are similar to those of previous studies, and differences are likely due to density, porosity, and clay contents of the sediment. Using these results, we present correction curves for sound velocity temperature dependence for each sediment texture, which can be used to correct from laboratory to in situ values to develop accurate geoacoustic model.  相似文献   

14.
南海南部海域岛礁区海底珊瑚砂声速影响因素的初步研究   总被引:3,自引:1,他引:2  
李赶先  龙建军 《海洋学报》2014,36(5):152-160
通过对南海南部海域岛礁区科学考察数据资料的分析研究,得出了岛礁区海底珊瑚砂的纵波声速随孔隙度、含水量增大而减小,以及声速随中值粒径、湿密度增大而增大的统计结果,并在Biot和Wyllie的松散饱和水沉积物声速理论公式与模型基础上,解释了物理力学因素对海底珊瑚砂声速的影响机制,阐明了固相因素和液相因素的强弱变化引起声速增大或减小的理论原因,分析了各种声速经验公式在海底珊瑚砂声速估算上的精度差异,得出了有必要建立包括海底珊瑚砂在内的单一类型声速经验公式的初步结论。  相似文献   

15.
The results of axial stress-strain measurements made from short columnar samples of seafloor shallow surface sediment in the southern South China Sea area indicate that there are three kinds of variations in the longitudinal wave sound velocity, which are related to such characteristics as physical-mechanical properties, grain contact status and grain structure and microstructure of the submarine shallow surface sediment. This study may make theoretical contributions to further understanding the reliability of various submarine sediments in the southern South China Sea as bearing interfaces and such scientific objectives as phonotelemetering and remote sensing of the engineering mechanical properties of seafloor sediment.  相似文献   

16.
The mechanical structure, the function modules, the working principles, and a sea trial of the newly developed ballast in situ sediment acoustic measurement system are reported in this study. The system relies on its own weight to insert transducers into seafloor sediments and can accurately measure the penetration depth using a specially designed mechanism. The system comprises of an underwater position monitoring and working status judgment module and has two operation modes: self-contained measurement and real-time visualization. The designed maximum working water depth of the system is 3,000?m, and the maximum measured depth of seafloor sediment is 0.8?m. The system has one transmitting transducer with the transmitting frequency band of 20–35?kHz and three receiving transducers. The in situ acoustic measurement system was tested at 15 stations in the northern South China Sea, and repeated measurements in seawater demonstrated good working performance. Comparison with predictions from empirical equations indicated that the measured speed of sound and attenuation fell within the predicted range and that the in situ measured data were reliable.  相似文献   

17.
为研究小尺度海底沉积物样品的声衰减特性,作者提出了用声学探针测量海底沉积物声波幅值的新方法,对沉积物样品扰动小,两个测量点的距离可小于波长,为海底沉积物微观声衰减测量提供了新手段。作者用小于波长的间隔逐点测量了沉积物的压缩波幅值,数据分析表明沿沉积物柱状样全长的声衰减满足指数衰减模型。目前主要用同轴差距衰减测量法获得海底沉积物声衰减数据,但该方法不能辨识声衰减模型,因此不同海区的测量结果难以建立联系。对此作者又提出用声吸收系数反演的幅值比与声衰减系数反演的R值(两种幅值比的比值)作评价依据,分析了垂直轴差距衰减测量法获得的南海海底沉积物声衰减测量数据,发现部分沉积物样品声衰减的R值远大于1,其声衰减不满足指数衰减模型。在声衰减满足指数衰减模型的条件下,用Hamilton的声衰减和频率经验公式预报的南海沉积物声衰减比与作者用声学探针测量海底沉积物所得的声衰减比对比,通过对R值分析得出Hamilton的声衰减和频率经验公式可以预报南海沉积物声衰减比的范围。作者提出的声学探针测量海底沉积物声衰减的方法的优点是既能获得声衰减数据又能辨识声衰减模型,不同海区测量的沉积物声衰减比可用R值建立联系。  相似文献   

18.
Seismic imaging of gas hydrates in the northernmost South China sea   总被引:1,自引:1,他引:0  
Horizon velocity analysis and pre-stack depth migration of seismic profiles collected by R/V Maurice Ewing in 1995 across the accretionary prism off SW Taiwan and along the continental slope of the northernmost South China Sea were implemented for identifying gas hydrates. Similarly, a survey of 32 ocean-bottom seismometers (OBS), with a spacing of about 500 m, was conducted for exploring gas hydrates on the accretionary prism off SW Taiwan in April 2006. Travel times of head wave, refraction, reflection and converted shear wave identified from the hydrophone, vertical and horizontal components of these OBS data were applied for imaging P-wave velocity and Poisson’s ratio of hydrate-bearing sediments. In the accretionary prism off SW Taiwan, we found hydrate-bearing sediment, with a thickness of about 100–200 m, a relatively high P-wave velocity of 1.87–2.04 km/s and a relatively low Poisson’s ratio of 0.445–0.455, below anticlinal ridges near imbricate emergent thrusts in the drainage system of the Penghu and Kaoping Canyons. Free-gas layer, with a thickness of about 30–120 m, a relatively low P-wave velocity of 1.4–1.8 km/s and a relatively high Poisson’s ratio (0.47–0.48), was also observed below most of the bottom-simulating reflectors (BSR). Subsequently, based on rock physics of the three-phase effective medium, we evaluated the hydrate saturation of about 12–30% and the free-gas saturation of about 1–4%. The highest saturation (30% and 4%) of gas hydrates is found below anticlines due to N–S trending thrust-bounded folds and NE-SW thrusting and strike-slip ramps in the lower slope of the accretionary prism. We suggest that fluid may have migrated through the relay-fault array due to decollement folding and gas hydrates have been trapped in anticlines formed by the basement rises along the thrust faults. In contrast, in the rifted continental margin of the northernmost South China Sea, P-wave velocities of 1.9–2.2 km/s and 1.3–1.6 km/s, and thicknesses of about 50–200 m and 100–200 m, respectively, for a hydrate layer and a free-gas layer were imaged below the remnant and erosional ridges in the upper continental slope. High P-wave velocity of hydrate-bearing sediment below erosional ridges may also indicate high saturation of hydrates there. Normal faults due to rifting in the South China continental crust may have provided conduits for gas migration below the erosional ridges where P-wave velocity of hydrate-bearing sediment in the passive continental margin of the northernmost South China Sea is greater than that in the active accretionary prism off SW Taiwan.  相似文献   

19.
Abstract

The possibility of seafloor failure under external loadings on a gently sloping continental shelf is controlled, to a large extent, by the geotechnical characters of subbottom sediments (e.g., shear strength, compressibility, and liquefaction potential) and structural factors (e.g., sedimentary stratification). By means of undis‐turbing coring, in‐situ acoustic measurement, and subbottom profiling, the authors conducted an investigation into the seafloor instabilities and possibilities of sediment slope failure within the continental shelf off the Pearl River mouth, which is one of the most important areas for offshore development in the northern South China Sea. Based on in‐situ and laboratory measurements and tests for sediment physical properties, static and dynamic behavior, and acoustic characteristics, the analyses indicate: (1) subbottom sediments that originated from terrigenous clay during the Pleistocene are compact and overconsolidated, and the mean sound velocity in such sediments is relatively high; (2) the maximum vertical bearing capacity of subbottom sediments is efficiently conservative on the safe side for dead loads of light structures, and the trench walls are stable enough while trenching to a depth of about 2 m below the seafloor under still water; and (3) it is quite improbable that the subbottom sediments liquefy under earthquake (M ≤ 6) or storm wave loading.  相似文献   

20.
中国黄渤海沉积物声速与物理性质研究   总被引:1,自引:0,他引:1  
In order to investigate the correlation between a sound velocity and sediment bulk properties and explore the influence of frequency dependence of the sound velocity on the prediction of the sediment properties by the sound velocity,a compressional wave velocity is measured at frequencies of 25–250 k Hz on marine sediment samples collected from the Bohai Sea and the Yellow Sea in laboratory,together with the geotechnical parameters of sediments.The results indicate that the sound velocity ranges from 1.232 to 1.721 km/s for the collected sediment samples with a significant dispersion within the series measuring frequency.Poorly sorted sediments are highly dispersive nearly with a positive linear relationship.The porosity shows a better negative logarithmic correlation with the sound velocity compared with other geotechnical parameters.Generally,the sound velocity increases with the increasing of the average particle size,sand content,wet and dry bulk densities,and decreasing of the clay content,and water content.An important point should be demonstrated that the higher correlation can be obtained when the measuring frequency is low within the frequency ranges from 25 to 250 k Hz since the inhomogeneity of sediment properties has a more remarkably influence on the laboratory sound velocity measurement at the high frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号