首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Atmospheric turbulence measurements made at the U.S. Army Corps of Engineers Field Research Facility (FRF) located on the Atlantic coast near the town of Duck, North Carolina during the CASPER-East Program (October–November 2015) are used to study air–sea/land coupling in the FRF coastal zone. Turbulence and mean meteorological data were collected at multiple levels (up to four) on three towers deployed at different landward distances from the shoreline, with a fourth tower located at the end of a 560-m-long FRF pier. The data enable comparison of turbulent fluxes and other statistics, as well as investigations of surface-layer scaling for different footprints, including relatively smooth sea-surface conditions and aerodynamically rough dry inland areas. Both stable and unstable stratifications were observed. The drag coefficient and diurnal variation of the sensible heat flux are found to be indicators for disparate surface footprints. The drag coefficient over the land footprint is significantly greater, by as much as an order of magnitude, compared with that over the smooth sea-surface footprint. For onshore flow, the internal boundary layer in the coastal zone was either stable or (mostly) unstable, and varied dramatically at the land-surface discontinuity. The offshore flow of generally warm air over the cooler sea surface produced a stable internal boundary layer over the ocean surface downstream from the coast. While the coastal inhomogeneities violate the assumptions underlying Monin–Obukhov similarity theory (MOST), any deviations from MOST are less profound for the scaled standard deviations and the dissipation rate over both water and land, as well as for stable and unstable conditions. Observations, however, show a poor correspondence with MOST for the flux-profile relationships. Suitably-averaged, non-dimensional profiles of wind speed and temperature vary significantly among the different flux towers and observation levels, with high data scatter. Overall, the statistical dependence of the vertical gradients of scaled wind speed and temperature on the Monin–Obukhov stability parameter in the coastal area is weak, if not non-existent.  相似文献   

2.
A simple air–sea coupled model,the atmospheric general circulation model(AGCM) of the National Centers for Environmental Prediction coupled to a mixed-layer slab ocean model,is employed to investigate the impact of air–sea coupling on the signals of the Atlantic Multidecadal Oscillation(AMO). A regional coupling strategy is applied,in which coupling is switched off in the extratropical North Atlantic Ocean but switched on in the open oceans elsewhere. The coupled model is forced with warm-phase AMO SST anomalies,and the modeled responses are compared with those from parallel uncoupled AGCM experiments with the same SST forcing. The results suggest that the regionally coupled responses not only resemble the AGCM simulation,but also have a stronger intensity. In comparison,the coupled responses bear greater similarity to the observational composite anomaly. Thus,air–sea coupling enhances the responses of the East Asian winter climate to the AMO. To determine the mechanism responsible for the coupling amplification,an additional set of AGCM experiments,forced with the AMO-induced tropical SST anomalies,is conducted. The SST anomalies are extracted from the simulated AMO-induced SST response in the regionally coupled model. The results suggest that the SST anomalies contribute to the coupling amplification. Thus,tropical air–sea coupling feedback tends to enhance the responses of the East Asian winter climate to the AMO.  相似文献   

3.
Bulk formulae for wind stress, sensible and latent heat flux are presented that are suitable for strong mesoscale events such as westerly wind bursts that contribute to the El Niño-Southern Oscillation (ENSO). Their exchange coefficients for heat and momentum have a simple polynomial dependence on wind speed and a linear dependence on air–sea temperature difference. The accuracy of these formulae are validated with respect to air–sea fluxes estimated using the standard algorithm adopted by the Tropical Ocean-Global AtmosphereCoupled-Ocean Atmosphere Response Experiment (TOGA COARE). The comparison ismade for observations from 96 Tropical Atmosphere Ocean (TAO) array and National Oceanographic Data Center (NODC) moorings in the equatorial and North Pacific Ocean spanning years 1990–1999. The bulk formulae are shown to have very small median root–mean-square differences with respect to the TOGA COARE estimates: 0.003 N m-2, 1.0 W m-2, and 10.0 W m-2 for the wind stress, sensible heat flux, and latent heat flux, respectively.The variability of air–sea fluxes during the 1997–1998 ENSO is also examined, along with a possible relationship between air–sea fluxes and surface ocean mixed layer depth (MLD). The wind stress and latent heat flux during the 1997 El Niño are found to be greater in the warm pool of the western Pacific than in the central Pacific where the ENSO is most clearly seen. These differences disappear upon the start of La Niña. The MLD in the equatorial Pacific is found to be moderately correlated to air–sea fluxes just before the start of the 1998 La Niña and poorly correlated otherwise.  相似文献   

4.
The lower limit on the drag coefficient under hurricane force winds is determined by the break-up of the air–sea interface due to Kelvin–Helmholtz instability and formation of the two-phase transition layer consisting of sea spray and air bubbles. As a consequence, a regime of marginal stability develops. In this regime, the air–sea drag coefficient is determined by the turbulence characteristics of the two-phase transition layer. The upper limit on the drag coefficient is determined by the Charnock-type wave resistance. Most of the observational estimates of the drag coefficient obtained in hurricane conditions and in laboratory experiments appear to lie between the two extreme regimes: wave resistance and marginal stability.  相似文献   

5.
Because of the combination of smallconcentrations and/or small fluxes, the determinationof air–sea gas fluxes presents unusual measurementdifficulties. Direct measurements (i.e., eddycorrelation) of the fluxes are rarely attempted. Inthe last decade, there has been an intense scientificeffort to improve measurement techniques and to placebulk parameterizations of gas transfer on firmertheoretical grounds. Oceanic tracer experiments,near-surface mean concentration profiles, eddyaccumulation, and direct eddy covariance methods haveall been used. Theoretical efforts have focusedprimarily in the realm of characterizing the transferproperties of the oceanic molecular sublayer. Recentmajor field efforts organized by the U.S.A. (GASEX-98) andthe European Union (ASGAMAGE) have yielded atmospheric-derivedresults much closer to those from oceanographicmethods. In this paper, we review the physical basisof a bulk-to-bulk gas transfer parameterization thatis generalized for solubility and Schmidt number. Wealso discuss various aspects of recent sensor andtechnique developments used for direct measurementsand demonstrate experimental progress with resultsfrom ASGAMAGE and GASEX-98. It is clear that sensornoise, sensitivity, and cross talk with other speciesand even ship motion corrections still need improvement foraccurate measurements of trace gas exchange over theocean. Significant work remains to resolve issuesassociated with the effects of waves, bubbles, andsurface films.  相似文献   

6.
A systematic comparison of wind profiles and momentum exchange at a trade wind site outside Oahu, Hawaii and corresponding data from the Baltic Sea is presented. The trade wind data are to a very high degree swell dominated, whereas the Baltic Sea data include a more varied assortment of wave conditions, ranging from a pure growing sea to swell. In the trade wind region swell waves travel predominantly in the wind direction, while in the Baltic, significant cross-wind swells are also present. Showing the drag coefficient as a function of the 10-m wind speed demonstrates striking differences for unstable conditions with swell for the wind-speed range 2 m s?1 < U 10 < 7 m s?1, where the trade-wind site drag values are significantly larger than the corresponding Baltic Sea values. In striking contrast to this disagreement, other features studied are surprisingly similar between the two sites. Thus, exactly as found previously in Baltic Sea studies during unstable conditions and swell, the wind profile in light winds (3 m s?1) shows a wind maximum at around 7–8 m above the water, with close to constant wind speed above. Also, for slightly higher wind speeds (4 m s?1 < U 10 < 7 m s?1), the similarity between wind profiles is striking, with a strong wind-speed increase below a height of about 7–8 m followed by a layer of virtually constant wind speed above. A consequence of these wind-profile features is that Monin–Obukhov similarity is no longer valid. At the trade-wind site this was observed to be the case even for wind speeds as high as 10 m s?1. The turbulence kinetic energy budget was evaluated for four cases of 8–16 30- min periods at the trade-wind site, giving results that agree very well with corresponding figures from the Baltic Sea.  相似文献   

7.
Aiming at tackling the difficulty in establishing a sea surface temperature (SST) dynamical model, this study develops a non-linear dynamical–statistical model of SST fields and their correlative factors based on Genetic Algorithms (GA) and the dynamical system reconstruction idea, which greatly improves the El Niño–Southern Oscillation (ENSO) forecast model. Using Hadley SST data, sea surface wind (SSW) and sea level pressure (SLP) data from the National Centers for Environmental Prediction-National Center for Environmental Research (NCEP-NCAR), with empirical orthogonal function (EOF) time-space for reconstruction, we carry out numerical integral forecasting experiments for SST, SSW, and SLP fields. By statistical analysis of the forecasting experiments, we find that forecasts for less than 25 months perform better than longer term forecasts. Based on the model, we forecast SST, SSW, and SLP fields in September, October, and November 2014 and predict a weak La Niña event. This study explores a novel method for the complex atmosphere–ocean system.  相似文献   

8.
Surface-layer meteorological observations obtained from oceanic buoys over the Korean Strait and the Yellow Sea are used to estimate surface-layer turbulent fluxes of heat, moisture and momentum over the East-Asian Marginal Seas. Special emphasis is paid towards explanation of the impact of the Tsushima warm current flowing through the Korean Strait on air–sea interface fluxes. During the active phase of the Tsushima warm current, when the difference in sea surface temperature and air temperature becomes as large as 8°C, the sensible heat flux increases to a value of about 135 W m−2, while the latent heat flux is around 200 W m−2. The study attempts to broaden our understanding on the air-sea interaction processes over the Yellow Sea and Korean Strait.  相似文献   

9.
The impact of surface sensible heating over the Tibetan Plateau(SHTP) on the western Pacific subtropical high(WPSH)with and without air–sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually followed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an enhanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly(SSTA) in the equatorial central Pacific via surface warm advection.Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the atmospheric dipole anomalies over the western Pacific. Therefore, the air–sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land–air–sea interaction framework.  相似文献   

10.
A methodology based on Empirical mode decomposition (EMD) was used to filter out non-turbulent motions from measurements of atmospheric turbulence over the sea, aimed at reducing their contribution to eddy-covariance (EC) estimates of turbulent fluxes. The proposed methodology has two main objectives: (1) to provide more robust estimates of the fluxes of momentum, heat and CO\(_2\); and (2) to reduce the number of flux intervals rejected due to non-stationarity criteria when using traditional EC data processing techniques. The method was applied to measurements from a 28-day cruise (HALOCAST 2010) in the Eastern Pacific region. Empirical mode decomposition was applied to 4-h long time series data and used to determine the cospectral gap time scale, \(T_\mathrm{{gap}}\). Intrinsic modes of oscillation with characteristic periods longer than the gap scale due to non-turbulent motions were assumed and filtered out. Turbulent fluxes were then calculated for sub-intervals of length \(T_\mathrm{{gap}}\) from the filtered 4-h time series. In the HALOCAST data, the gap scale was successfully identified in 89% of the 4-h periods and had a mean of 37 s. The EMD approach resulted in the rejection of 11% of the flux intervals, which was much less than the 68% rejected when using standard filtering methods based on data non-stationarity. For momentum and sensible heat fluxes, the averaged difference in flux magnitude between the traditional and EMD approaches was small (3 and 1%, respectively). For the CO\(_2\) flux, the magnitude of EMD flux estimates was on average 16% less than fluxes estimated from linear detrended 10-min time series. These results provide evidence that the EMD method can be used to reduce the effects of non-turbulent correlations from flux estimates.  相似文献   

11.
Statistically different precursory air–sea signals between a super and a regular El Ni no group are investigated, using observed SST and rainfall data, and oceanic and atmospheric reanalysis data. The El Ni no events during 1958–2008 are first separated into two groups: a super El Ni no group(S-group) and a regular El Ni no group(R-group). Composite analysis shows that a significantly larger SST anomaly(SSTA) tendency appears in S-group than in R-group during the onset phase[April–May(0)], when the positive SSTA is very small. A mixed-layer heat budget analysis indicates that the tendency difference arises primarily from the difference in zonal advective feedback and the associated zonal current anomaly(u).This is attributed to the difference in the thermocline depth anomaly(D) over the off-equatorial western Pacific prior to the onset phase, as revealed by three ocean assimilation products. Such a difference in D is caused by the difference in the wind stress curl anomaly in situ, which is mainly regulated by the anomalous SST and precipitation over the Maritime Continent and equatorial Pacific.  相似文献   

12.
State-of-the-art climate models have long-standing intrinsic biases that limit their simulation and projection capabilities.Significantly weak ENSO asymmetry and weakly nonlinear air–sea interaction over the tropical Pacific was found in CMIP5(Coupled Model Intercomparison Project, Phase 5) climate models compared with observation. The results suggest that a weak nonlinear air–sea interaction may play a role in the weak ENSO asymmetry. Moreover, a weak nonlinearity in air–sea interaction in the models may be associated with the biases in the mean climate—the cold biases in the equatorial central Pacific. The excessive cold tongue bias pushes the deep convection far west to the western Pacific warm pool region and suppresses its development in the central equatorial Pacific. The deep convection has difficulties in further moving to the eastern equatorial Pacific, especially during extreme El Ni o events, which confines the westerly wind anomaly to the western Pacific. This weakens the eastern Pacific El Ni o events, especially the extreme El Ni o events, and thus leads to the weakened ENSO asymmetry in climate models. An accurate mean state structure(especially a realistic cold tongue and deep convection) is critical to reproducing ENSO events in climate models. Our evaluation also revealed that ENSO statistics in CMIP5 climate models are slightly improved compared with those of CMIP3. The weak ENSO asymmetry in CMIP5 is closer to the observation. It is more evident in CMIP5 that strong ENSO activities are usually accompanied by strong ENSO asymmetry, and the diversity of ENSO amplitude is reduced.  相似文献   

13.
This study investigates the structure and propagation of intraseasonal sea surface temperature(SST) variability in the South China Sea(SCS) on the 30–60-day timescale during boreal summer(May–September). TRMM-based SST, GODAS oceanic reanalysis and ERA-Interim atmospheric reanalysis datasets from 1998 to 2013 are used to examine quantitatively the atmospheric thermodynamic and oceanic dynamic mechanisms responsible for its formation. Power spectra show that the 30–60-day SST variability is predominant, accounting for 60% of the variance of the 10–90-day variability over most of the SCS. Composite analyses demonstrate that the 30–60-day SST variability is characterized by the alternate occurrence of basin-wide positive and negative SST anomalies in the SCS, with positive(negative) SST anomalies accompanied by anomalous northeasterlies(southwesterlies). The transition and expansion of SST anomalies are driven by the monsoonal trough–ridge seesaw pattern that migrates northward from the equator to the northern SCS. Quantitative diagnosis of the composite mixed-layer heat budgets shows that, within a strong 30–60-day cycle, the atmospheric thermal forcing is indeed a dominant factor, with the mixed-layer net heat flux(MNHF) contributing around 60% of the total SST tendency, while vertical entrainment contributes more than 30%. However, the entrainment-induced SST tendency is sometimes as large as the MNHF-induced component, implying that ocean processes are sometimes as important as surface fluxes in generating the30–60-day SST variability in the SCS.  相似文献   

14.
Eddy-correlation measurements of the oceanic \(\hbox {CO}_2\) flux are useful for the development and validation of air–sea gas exchange models and for analysis of the marine carbon cycle. Results from more than a decade of published work and from two recent field programs illustrate the principal interferences from water vapour and motion, demonstrating experimental approaches for improving measurement precision and accuracy. Water vapour cross-sensitivity is the greatest source of error for \(\hbox {CO}_2\) flux measurements using infrared gas analyzers, often leading to a ten-fold bias in the measured \(\hbox {CO}_2\) flux. Much of this error is not related to optical contamination, as previously supposed. While various correction schemes have been demonstrated, the use of an air dryer and closed-path analyzer is the most effective way to eliminate this interference. This approach also obviates density corrections described by Webb et al. (Q J R Meteorol 106:85–100, 1980). Signal lag and frequency response are a concern with closed-path systems, but periodic gas pulses at the inlet tip provide for precise determination of lag time and frequency attenuation. Flux attenuation corrections are shown to be \(<\) 5 % for a cavity ring-down analyzer (CRDS) and dryer with a 60-m inlet line. The estimated flux detection limit for the CRDS analyzer and dryer is a factor of ten better than for IRGAs sampling moist air. While ship-motion interference is apparent with all analyzers tested in this study, decorrelation or regression methods are effective in removing most of this bias from IRGA measurements and may also be applicable to the CRDS.  相似文献   

15.
Based on a coupled physical-biogeochemical model of the Yellow and East China Seas (YECS), the influence of biological activity on the seasonal variation of the air–sea CO2 flux is evaluated. The solution of a sensitivity experiment that excludes biological activity is compared with that of a reference experiment that includes the full processes. The comparison reveals that biological activity results in a much stronger seasonal variation of surface dissolved inorganic carbon (DIC) and, hence, the ratio of total alkalinity to DIC in the northern parts of the YECS. The increased ratio resulting from biological DIC consumption contributes to the undersaturated partial pressure of CO2 at the sea surface with respect to the atmosphere, causing the central Yellow Sea in summer and autumn to shift from being a CO2 source to a sink; this same shift also occurs over the Changjiang Bank in summer. In the southern YECS, the biological effect is relatively weak. The comparison further reveals that low water temperature, instead of biological activity, is the dominant factor causing the YECS to become a carbon sink in spring. The biological effect on the variation of DIC (both at the surface and in the water column) differs greatly among the three representative regions of the YECS because of differences in primary production and hydrodynamic conditions. Particle-tracking simulations quantify the regional difference in horizontal advection. In the northern region, weaker horizontal advection causes the longer residence time of low DIC water induced by biological consumption. Over the entire YECS, biological activity contributes to about one-third of the total annual absorption of atmospheric CO2.  相似文献   

16.
The influence of wave-associated parameters controlling turbulent \(\hbox {CO}_2\) fluxes through the air–sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air–sea \(\hbox {CO}_2\) fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of \(\hbox {CO}_2\) with a mean flux of \(-1.3\, \upmu \hbox {mol m}^{-2}\hbox {s}^{-1}\) (\(-41.6\hbox { mol m}^{-2}\hbox {yr}^{-1}\)). The results of a quantile-regression analysis computed between the \(\hbox {CO}_2\) flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.  相似文献   

17.
Weather patterns of the cold season in the studied region of the Caspian Sea are quite complicated; ice processes here represent an actual threat for hydrotechnical and other engineering constructions located both on the coast and the Northern Caspian Sea shelf, as well as for the navigation in the ice covered sea. Analysis of the materials obtained from the researches performed in November 2007–March 2008 showed that weather patterns of the 2007–2008 cold season in the Northern Caspian Sea formed under the influence of synoptic processes differed from the multiyear norm. The unusually high frequency of anticyclonic processes (especially, the Siberian anticyclone) defined the low monthly average air temperature in January that was 2–5°C below the climatologic norm over the entire Northern Caspian water area.  相似文献   

18.
Changes of Air–sea Coupling in the North Atlantic over the 20th Century   总被引:1,自引:0,他引:1  
Changes of air–sea coupling in the North Atlantic Ocean over the 20 th century are investigated using reanalysis data,climate model simulations, and observational data. It is found that the ocean-to-atmosphere feedback over the North Atlantic is significantly intensified in the second half of the 20 th century. This coupled feedback is characterized by the association between the summer North Atlantic Horseshoe(NAH) SST anomalies and the following winter North Atlantic Oscillation(NAO). The intensification is likely associated with the enhancement of the North Atlantic storm tracks as well as the NAH SST anomalies. Our study also reveals that most IPCC AR4 climate models fail to capture the observed NAO/NAH coupled feedback.  相似文献   

19.
In this study, we examine the characteristics of the boreal summer monsoon intraseasonal oscillation (BSISO) using the second version of the Climate Forecast System (CFSv2) and revisit the role of air–sea coupling in BSISO simulations. In particular, simulations of the BSISO in two carefully designed model experiments are compared: a fully coupled run and an uncoupled atmospheric general circulation model (AGCM) run with prescribed sea surface temperatures (SSTs). In these experiments an identical AGCM is used, and the daily mean SSTs from the coupled run are prescribed as a boundary condition in the AGCM run. Comparisons indicate that air–sea coupling plays an important role in realistically simulating the BSISO in CFSv2. Compared with the AGCM run, the coupled run not only simulates the spatial distributions of intraseasonal rainfall variations better but also shows more realistic spectral peaks and northward and eastward propagation features of the BSISO over India and the western Pacific. This study indicates that including an air–sea feedback mechanism may have the potential to improve the realism of the mean flow and intraseasonal variability in the Indian and western Pacific monsoon region.  相似文献   

20.
The daily parameters characterizing the field of surface air pressure from 1960 to 2014 are used for assessing the current trends in atmospheric circulation over the Azov–Black Sea region. It was revealed that the decrease in mean air pressure and the weakening of northeastern air trans port which was typical of the atmospheric circulation in this region in the previous period (1960–1990), occurred from 1991–1993 to 2005–2007. In recent 7–8 years, the ongoing air pressure drop is accom panied by the intensification of northeastern air transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号