首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromium-reducible sulfur (CRS) distillations are intended to recover only reduced inorganic sulfur compounds (RIS) including elemental sulfur. However, the quantitative recovery of elemental sulfur is not ensured in common CRS-distillations. The new method presented here was designed to remedy this deficiency. An increase in ethanol concentration assured the quantitative recovery of elemental sulfur in various forms and, in addition, all other RIS-compounds were quantitatively recovered. Furthermore, the selectivity of the procedure was improved by an additional filtration step to eliminate zinc particles from the Cr(II)-solution. Thus, the recovery of sulfates and organic sulfur compounds was significantly decreased by a factor of up to 35, depending on the compound analysed. Exhaustive testing with a variety of pure phases, rock and soil samples demonstrated the precision and accuracy of the new method. The new protocol eliminated the constraints of previous procedures. The improved distillation efficiency for elemental sulfur ensured the quantitative recovery of all RIS-compounds in a single-step distillation.  相似文献   

2.
A HPLC-based protocol has been developed for the determination of zero-valent sulfur (ZVS) speciation, including solid, colloidal elemental sulfur and individual inorganic polysulfides in natural aquatic samples. The protocol includes four experimental procedures: (1) determination of polysulfide speciation by rapid single-phase derivatisation with methyl trifluoromethanesulfonate; (2) determination of the sum of polysulfide and colloidal sulfur by reaction with hydrogen cyanide (cyanolysis); (3) determination of total zero-valent sulfur by treatment with zinc chloride followed by extraction with chloroform; and (4) chromatographic determination of polythionates without sample pre-treatment. With proper sampling and preservation techniques in the field or on board ship, this combination of methods allowed the quantitative determination of: (a) individual polysulfide species; (b) dispersed colloidal sulfur; (c) dispersed solid elemental sulfur; and (d) tetra-, penta- and hexathionates. With minor modification, the method could be expanded to include other polythionates. Sixteen various wet chemical and liquid chromatographic methods were tested on nine synthetic reference samples (including solid elemental sulfur, colloidal elemental sulfur, inorganic polysulfides and polythionates) to establish the optimal protocol. The protocol was further evaluated by analysing the zero-valent sulfur content in microbially-produced sulfur and in sulfur from two natural samples of sulfide-rich seawater from tidal flats pools of the Wadden Sea (Germany).  相似文献   

3.
贵州天柱大河边重晶石矿床硫同位素研究   总被引:4,自引:0,他引:4  
对贵州天柱大河边重晶石矿床硫同位素组成进行了系统研究,该矿床重晶石的硫同位素组成为36.7‰-41.6‰,具有比同期海水硫酸盐高得多的硫同位素组成特征,且在834S分布直方图上呈塔式,表明形成该矿床的硫来源单一,主要来自于海水中硫酸盐并经历了较强的生物细菌分馏作用,且矿床形成环境为半封闭一封闭的台地泻湖环境。  相似文献   

4.
Analyses of the specific products of 35SO42? reduction measurements were made in marine sediments in Denmark. We injected tracer quantities of 35SO42? into cores, incubated the cores, and assayed for 35S-labelled acid volatile sulfides. Additionally, we assayed for 35S-labelled elemental sulfur by extraction with CS2, and for 35S-labelled pyrite by reduction with chromium (II). We separately determined that elemental sulfur which formed in situ and that which formed by oxidation during the acid distillation of acid volatile sulfides.In subtidal sediments in Limfjorden, 35S-labelled elemental sulfur and pyrite make up 14–32% of the reduced sulfur formed in short-term (0–48 hours) 35SO42? reduction experiments, at all depths studied (0–15 cm). Labelled elemental sulfur which formed in situ during the incubations at depths below 1 cm made up a fairly constant 5–11% of the total labelled reduced sulfur, from 0–1 cm, it made up 27%. An additional small amount (1–2% from 1–15 cm and 5% from 0–1 cm) of labelled elemental sulfur was formed during the acid-distillation step in our assay for labelled acid-volatile sulndes. Pyrite contained 4–13% of the total labelled reduced sulfur at all depths. Rates of sulfate reduction in Limfjorden were linear over the period 0–48 hours, and 35S-pyrite made up a nearly constant percentage of the 35S-labelled reduced sulfur formed over this time period.Estimates of sulfate reduction rates for Limfjorden which do not include elemental sulfur and pyrite as products are 19% too low. At Kysing Fjord, estimates of sulfate reduction which do not include elemental sulfur and pyrite are 24% to 32% too low. Thus, while previously published data on sulfate reduction in similar environments are probably low, they are not greatly in error.  相似文献   

5.
建立了碳酸盐岩样品中单质硫的分析方法,此法以正己烷为萃取剂,在180.7 nm和182.0 nm波长下用电感耦合等离子体光谱法(ICP-AES)测定国家标准物质GBW(E)07108和碳酸盐岩样品。正己烷萃取碳酸盐岩中单质硫的回收率在90%~110%之间;每个样品测定7次,相对标准偏差(RSD)<5.0%。结果表明,此法满足实验要求,可用于大批量碳酸盐岩样品中单质硫的测定。   相似文献   

6.
Elemental sulfur is widely dispersed in the hydrocarbon source rocks and its depositional environment is usually thought as a reducing environment. The presence or absence of free oxygen is a key to identify oxidizing or reducing environment. But elemental sulfur is often present as an oxidant in this environment. When elemental sulfur meets with organic matter, redox reaction will occur. In our simulation experiments at 200 -400℃ , the existence of elemental sulfur can sharply increase the amounts of hydrocarbons, hence leading to the production of immature or low-mature oils and natural gases. At the temperature of 300℃ , the addition of elemental sulfur will further enhance the relative yields of hydrocarbons,and the final yield of total extracts and gaseous hydrocarbons of similitude kerogens by more than 463% and 2760% , respectively, while those of oil shales are increased by about 71% and 2044% , respectively. But at the temperature of 450℃, elemental sulfur plays a negative role in liquid hydrocarbon formation. The presence of elemental sulfur is probably a key factor in the gypsolyte environment leading to the formation of immature or low-mature oils, as well as the coexistence of immature or low-mature oils and natural gases.  相似文献   

7.
Seasonal distribution of sulfur fractions in Louisiana salt marsh soils   总被引:2,自引:0,他引:2  
The profile distributions of specific sulfur forms were examined at a site in a Louisiana salt marsh over a 1-yr period. Soil samples were fractionated into acid-volatile sulfides, HCl-soluble sulfur, elemental sulfur, pyrite sulfur, ester-sulfate sulfur, carbon-bonded sulfur, and total sulfur. Inorganic sulfur constituted 16% to 36% of total sulfur, with pyrite sulfur representing <2%. Pyrite sulfur content in marsh soil was relatively high in winter. Pyrite sulfur and elemental sulfur together accounted for 4% to 24% of the inorganic sulfur fraction. Between 74% and 95% of inorganic sulfur was present as the HCl-soluble sulfur form. A significant negative correlation between acid-volatile sulfides and elemental sulfur observed in summer suggested the transformation of fulfides to elemental sulfur. Organic sulfur, in the forms of ester-sulfate sulfur and carbon-bonded sulfur, predominated in all sampling periods, comprising 64% to 84% of total sulfur. The conversion of ester-sulfate sulfur into carbon-bonded sulfur was more likely to occur in winter than in other seasons. Carbon-bonded sulfur accounted for 53% to 89% of the organic sulfur. Organic sulfur was the major contributor to the variation of total sulfur in all seasons studied. Total sulfur concentration showed a statistically significant increase with depth.  相似文献   

8.
Livingstonite is the principal ore mineral in the deposits of the Huitzuco District in the State of Guerrero, Mexico. The ore is found in the lower part of the Morelos Formation, which consists of a thick bed of sedimentary anhydrite containing lenses of dolomite and dolomite breccia. In the unweathered ore practically all the mercury is in the livingstonite, whereas the antimony occurs partly in the livingstonite and partly in stibnite. Native sulfur forms pockets as much as 30 centimeters in diameter in the ore and is also found in gypsum on the surface away from the ore.It appears that the deposition of livingstonite, rather than of the combination of cinnabar and stibnite that is more usual in other districts, was caused by the native sulfur present in considerable quantity scattered through the sedimentary dolomite and anhydrite above, below, and in the ore. Since the formula of livingstonite is actually HgSb4S8 (not HgSb4S7 as was previously supposed), it is not stable in solutions containing only HgS, Sb2S3, Na2S, and H2O. It has been proved by one of us, experimentally, that in order to form livingstonite, the solutions must contain elemental sulfur in addition to HgS, Sb2S3, Na2S, and H2O. In such solutions the solubility of mercuric sulfide is extremely low. However, the problem of transport is overcome if the elemental sulfur is already present in the wall rock. In that case, the reaction of the elemental sulfur with a solution containing mercuric sulfide and antimony sulfide, but not saturated with either, would precipitate livingstonite, as was proved by our experimental work.  相似文献   

9.
The elemental accumulation and recycling in the metamorphosed Keketale VMS-type Pb-Zn deposit of the Altai Mountains are presented in this study. Based on detailed fieldwork and microscopic observation, the formation of the deposit involved syngenetic massive sulfide mineralization and epigenetic superimposed mineralization. Different generations of iron sulfides (i.e., pyrite and pyrrhotite) with contrasting textural, elemental, and sulfur isotopic features were generated in primary mineralization (including hydrothermal iron sulfides, colloform pyrite) and secondary modification (including annealed iron sulfides, oriented iron sulfides, and vein-pyrite). It is revealed that the spatial variation in textures and elements of hydrothermal iron sulfides depends on the inhomogeneous fluid compositions and varied environment in VMS hydrothermal system. Both leached sulfur from the footwall volcanic rocks and reduced sulfur by the TSR process are regarded as important sulfur sources. Furthermore, large sulfur isotopic fractionation and negative δ34S values were mainly caused by varied oxygen fugacity, and to a lesser extent, temperature fluctuation. The epigenetic polymetallic veins that contain sulfides and sulfosalts (e.g., jordanite-geocronite, bournonite-seligmannite, boulangerite) were considered as the products of metamorphic fluid scavenged the metal-rich strata. All things considered, it is indicated that two episodes of fluid with distinct origins were essential for the formation of the deposit. The predominant evolved seawater along with subordinate magmatic fluid mobilized metals from volcanic rocks and precipitated massive sulfides near the seafloor are vital for primary mineralization. The metamorphic fluid remobilized metals (i.e., FMEs: fluid mobile elements, e.g., Pb, As, Sb) from neighboring volcanic and pyroclastic rocks and destabilized them within the fractured zone are responsible for secondary mineralization, which enhances the economic value of the deposit. Accordingly, metal-rich Devonian strata had been successively swept by different origins of fluid, leading to progressively elemental enrichment and the formation of a large deposit. Furthermore, the current study enlightens that FME-bearing veins with economic benefits can be discovered near the metamorphosed VMS deposits.  相似文献   

10.
Zerovalent sulfur and inorganic polysulfides were determined in nine sulfide-rich water wells in central and southern Israel. Although the two locations belong to the same aquifer, they are characterized by different pH and hydrogen sulfide levels. Hydrogen sulfide in the central Israel wells ranged between 19 and 32 μM, and the pH was 7.26 ± 0.07. The southern basin is characterized by lower water circulation, lower pH (around 6.8), and higher hydrogen sulfide levels (>470 μM). Polysulfides were determined by a rapid single-phase methylation using methyl trifluoromethanesulfonate (methyl triflate) reagent. The summary polysulfide concentration for S42−–S72− species was found to be around 0.14–0.75 μM in the central region of Israel and substantially higher, 2.3–4.6 μM in the southern region. The sum of polysulfide zerovalent sulfur and colloidal sulfur was quantitatively detected by cyanide derivatization and compared to polysulfide sulfur determined by methyl triflate derivatization and to the chloroform extraction of zerovalent sulfur. A method for the determination of sulfur undersaturation level—the ratio between dissolved elemental sulfur and its equilibrium concentration in the presence of solid sulfur—based on the observed levels of the major polysulfide species is described. The observed polysulfide speciation was compared with the predicted speciation under sulfur saturation conditions taking into account the water temperature, its ionic strength, and pH. Criteria for sulfur saturation versus unsaturated conditions were established based on (1) the chain length dependence of the ratio between the observed polysulfide concentrations and their predicted value under sulfur saturated conditions, and (2) the difference between the concentration of zerovalent sulfur, as determined by cyanolysis, and the total polysulfide sulfur. According to this dual criterion five of the water wells were classified as being undersaturated with respect to sulfur, though for all the examined water wells the majority of the zerovalent sulfur was in the form of polysulfide sulfur.  相似文献   

11.
12.
The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The δ34S-values of pyrite down to −38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the bottom water composition due to intracellular isotope exchange reactions during microbial sulfur transformations.  相似文献   

13.
Rates of sulfate reduction, oxygen uptake and carbon dioxide production in sediments from a short Spartina alterniflora zone of Great Sippewissett Marsh were measured simultaneously during late summer. Surface sediments (0–2 cm) were dominated by aerobic metabolism which accounted for about 45% of the total carbon dioxide production over 0–15 cm. Rates of sulfate reduction agreed well with rates of total carbon dioxide production below 2 cm depth indicating that sulfate reduction was the primary pathway for sub-surface carbon metabolism. Sulfate reduction rates were determined using a radiotracer technique coupled with a chromous chloride digestion and carbon disulfide extraction of the sediment to determine the extent of formation of radiolabelled elemental sulfur and pyrite during shortterm (48 hr) incubations. In the surface 10 cm of the marsh sediments investigated, about 50% of the reduced radiosulfur was recovered as dissolved or acid volatile sulfides, 37% as carbon disulfide extractable sulfur, and only about 13% was recovered in a fraction operationally defined as pyrite. Correlations between the extent of sulfate depletion in the marsh sediments and the concentrations of dissolved and acid volatile sulfides supported the results of the radiotracer work. Our data suggest that sulfides and elemental sulfur may be major short-term end-products of sulfate reduction in salt marshes.  相似文献   

14.
This study investigated the organic carbon, reduced inorganic sulfur, and heavy metal distribution in superficial sediments at an estuary, a wastewater discharge area, and a mariculture area, as compared with an unpolluted distal site, in the north Yellow Sea, China. Sediment grain size, acid volatile sulfur (AVS), chromium (II)-reducible sulfur, elemental sulfur, total sulfur, total organic carbon (TOC), total nitrogen and trace metal content were determined for each site. These results indicate that pollution leads to increased TOC at all affected sites, which in turn leads to elevated AVS. The resultant change in diagenetic environment leads to changes in the mineralogical fate of Mn. Pb, Zn, Cu, and Cd: all are present at elevated concentrations, and with more metal in the non-residual fractions. Cd shows by far the most elevated concentrations and most significant increase in non-residual fractions and consequently poses the most significant pollution risk.  相似文献   

15.
山门银矿的成矿热液体系中总硫同位素组成近于陨硫值与岩浆硫值相近,具深源硫特点。金属矿物硫同位素组成在同位素交换平衡条件下属中低温环境沉淀。同位素变异时间、空间上都有较明显的演化规律。  相似文献   

16.
The biogeochemistry of iron sulfide minerals in the water column of the Cariaco Basin was investigated in November 2007 (non-upwelling season) and May 2008 (upwelling season) as part of the on-going CARIACO (CArbon Retention In A Colored Ocean) time series project. The concentrations of particulate sulfur species, specifically acid volatile sulfur (AVS), greigite, pyrite, and particulate elemental sulfur, were determined at high resolution near the O2/H2S interface. In November 2007, AVS was low throughout the water column, with the highest concentration at the depth where sulfide was first detected (260 m) and with a second peak at 500 m. Greigite, pyrite, and particulate elemental sulfur showed distinct concentration maxima near the interface. In May 2008, AVS was not detected in the water column. Maxima for greigite, pyrite, and particulate elemental sulfur were again observed near the interface. We also studied the iron sulfide flux using sediment trap materials collected at the Cariaco station. Pyrite comprised 0.2-0.4% of the total particulate flux in the anoxic water column, with a flux of 0.5-1.6 mg S m−2 d−1.Consistent with the water column concentration profiles for iron sulfide minerals, the sulfur isotope composition of particulate sulfur found in deep anoxic traps was similar to that of dissolved sulfide near the O2/H2S interface. We conclude that pyrite is formed mainly within the redoxcline where sulfur cycling imparts a distinct isotopic signature compared to dissolved sulfide in the deep anoxic water. This conclusion is consistent with our previous study of sulfur species and chemoautotrophic production, which suggests that reaction of sulfide with reactive iron is an important pathway for sulfide oxidation and sulfur intermediate formation near the interface. Pyrite and elemental sulfur distributions favor a pathway of pyrite formation via the reaction of FeS with polysulfides or particulate elemental sulfur near the interface. A comparison of thermodynamic predictions with actual concentration profiles for iron sulfides leads us to argue that microbes may mediate this precipitation.  相似文献   

17.
The effects of soil minerals on chromate (CrVIO4 2-, noted as Cr(VI)) reduction by sulfide were investigated in the pH range of 7.67 to 9.07 under the anoxic condition. The examined minerals included montmorillonite (Swy-2), illite (IMt-2), kaolinite (KGa-2), aluminum oxide (γ-Al2O3), titanium oxide (TiO2, P-25, primarily anatase), and silica (SiO2). Based on their effects on Cr(VI) reduction, these minerals were categorized into three groups: (i) minerals catalyzing Cr(VI) reduction – illite; (ii) minerals with no effect – Al2O3; and (iii) minerals inhibiting Cr(VI) reduction- kaolinite, montmorillonite, SiO2 and TiO2 . The catalysis of illite was attributed primarily to the low concentration of iron solubilized from the mineral, which could accelerate Cr(VI) reduction by shuttling electrons from sulfide to Cr(VI). Additionally, elemental sulfur produced as the primary product of sulfide oxidation could further catalyze Cr(VI) reduction in the heterogeneous system. Previous studies have shown that adsorption of sulfide onto elemental sulfur nanoparticles could greatly increase sulfide reactivity towards Cr(VI) reduction. Consequently, the observed rate constant, k obs, increased with increasing amounts of both iron solubilized from illite and elemental sulfur produced during the reaction. The catalysis of iron, however, was found to be blocked by phenanthroline, a strong complexing agent for ferrous iron. In this case, the overall reaction rate at the initial stage of reaction was pseudo first order with respect to Cr(VI), i.e., the reaction kinetics was similar to that in the homogeneous system, because elemental sulfur exerted no effect at the initial stage prior to accumulation of elemental sulfur nanoparticles. In the suspension of kaolinite, which belonged to group (iii), an inhibitive effect to Cr(VI) reduction was observed and subsequently examined in more details. The inhibition was due to the sorption of elemental sulfur onto kaolinite, which reduced or completely eliminated the catalytic effect of elemental sulfur, depending on kaolinite concentration. This was consistent with the observation that the catalysis of externally added elemental sulfur (50 μM) on Cr(VI) reduction would disappear with a kaolinite concentration of more than 5.0 g/L. In kaolinite suspension, the overall reaction rate law was:
  相似文献   

18.
This article describes a series of methods developed for the determination of total carbon (CTotal), organic carbon (Corg), hydrogen, nitrogen and sulfur. The following elemental analysers were used: LECO model RC‐412 for the determination of organic carbon, total carbon and hydrogen; LECO model CS‐200 for the determination of total carbon and sulfur; LECO model TN‐400 for the determination of nitrogen; and LECO model TruSpec CHNS for the determination of organic carbon, total carbon, hydrogen, nitrogen and sulfur. Uncertainty and limits of detection and quantification were calculated for each method, as well as the running costs to define the most effective instrument for each material and each analyte. Accuracy was checked by the application of the Sutarno–Steger test. Finally, a compilation of the results obtained in the determination of CTotal, Corg, H, N and S in forty‐nine reference materials is presented.  相似文献   

19.
崔明月 《地质与勘探》2021,57(5):1173-1181
元素硫从含硫天然气中析出沉降会影响流体流动,常规的水平井产量预测模型无法用于高含硫气藏水平井非稳态产量预测。本文基于非稳态椭圆流理论,耦合基质内的椭圆流动和裂缝内的非达西流动,考虑元素硫沉积及缝间干扰效应的影响,建立了适用于酸化水平井与酸压水平井的非稳态产量预测模型。分析了硫沉积对渗透率、孔隙度的影响,计算了不同裂缝参数对产能的影响,该模型适用于变井底流压生产条件。计算结果表明:科学准确的元素硫溶解度模型能较好地预测高含硫气藏水平井产量。酸压改造后缝间干扰现象会降低气井产能,且随着时间逐渐增强。硫沉积会降低储层渗透率和孔隙度,使得产量下降。增大裂缝导流能力,增加裂缝半长或者裂缝数量都能有效提高水平井产量,与裂缝导流能力相比,裂缝半长和裂缝数量对产量的影响更大。  相似文献   

20.
台湾东北部的龟山岛浅海热液体系产生大量的热液自然硫.为了理解微量元素在自然硫中的富集规律和机制,采用激光剥蚀等离子体质谱仪(LA-ICPMS)对龟山岛自然硫进行了元素含量分析.结果显示,硫磺基底仅含有As、Se和Te等岩浆脱气产生的挥发性亲铜元素.Fe、Mn、Co、Ni等亲铁元素主要来自于安山岩基岩,富集于富铁或含硅包体中.Al、Zn、Ba、Pb、La、Ce、Au、Ag等元素显著富集于含硅包体中,表明这些元素受硅酸盐矿物控制.富铜包体具有最高的Hg、Pb、Zn等亲铜元素的单位富集程度.首次对龟山岛热液自然硫中的微量元素分布进行了原位微区分析,有助于理解微量元素在热液活动中的来源、分布和分配等地球化学行为.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号