首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
High molecular weight DOM (apparent mol wt. ≥1500) was isolated from lake water, both in summer and in winter. Sephadex G-15 gel permeation chromatography with 0.02 M phosphate buffer yielded one peak. Elution with distilled water gave rise to distinct smaller sized subfractions. It was concluded that these compounds are weakly bound subunits of the macromolecules, which are liberated on elution with distilled water. The macromolecules were not stable in the dark. Exposing them to daylight in the laboratory and to sunlight, in quartz bottles enhanced conversion. During 6 weeks' exposure to weakly photolytic conditions (daylight >300 nm), organic carbon of the high molecular bulk substances decreased by 15% (winter) and by 25% (summer), while the concentrations of the apparent low molecular weight substances increased accordingly. Such a slow but continuous transformation may reduce also the <in situ> persistence of the macromolecules gradually.  相似文献   

2.
In order to better understand the compositional and structural complexity of dissolved organic matter(DOM) macromolecules and provide mechanistic information on the binding of hydrophobic organic contaminants(HOCs) to DOM, we fractionated large amounts of lake water into three hydrophobic DOM-fractions. The variation of the partitioning coef?cients(K_(DOC)) of pyrene at different p H levels was examined by ?orescence quenching titration. Results show that, relative to the more polar acidic DOM-fractions, the hydrophobic neutral fraction exhibits a higher sorption ability to pyrene. Generally, the sorption of pyrene to the three hydrophobic fractions is strongly pH-dependent. The K_(DOC) values of pyrene generally increase with decreasing p H levels, which is especially obvious in the sorption of pyrene to the fulvic acid fractions, suggesting that the binding is controlled by hydrophobic interactions. The mechanisms underlying the binding of pyrene to the hydrophobic fractions were also discussed. Our data are bene?cial to further understanding the binding of HOCs to DOM and how it has been affected,which may result in more accurate predictions of K_(DOC).  相似文献   

3.
4.
The degradation of dissolved organic matter (DOM) was studied in alkaline solution. The products were characterised using UV/vis spectroscopy, size‐exclusion chromatography (SEC), and by the analysis of low‐molecular‐weight organic acids (LMWOA). The degradation experiments were performed with water from a brown water lake or its isolated fulvic acid fraction and sodium hydroxide at different reaction times and temperatures. Depending on the wavelength and the reaction time, the UV/vis absorbance between 230 nm and 600 nm increased or decreased. The behaviour of model compounds during reactions in alkaline media was compared to the UV/vis spectroscopic behaviour of DOM. The release of LMWOA was described by kinetic data and compared to the data of model reactions. Evidence was given for the carboxylic esters playing a significant role in the release of LMWOA only during the beginning of the alkaline degradation. The results gained by SEC with on‐line UV and DOC detection showed that the average size of DOM was decreasing, and that a major part of the degradation products consisted of low‐molecular‐weight mono‐ and dicarboxylic acids.  相似文献   

5.
6.
The bioavailability of predegraded dissolved organic matter (DOM) from a humic-rich, boreal river to estuarine bacteria from the Baltic Sea was studied in 39-day bioassays. The river waters had been exposed to various degrees of bacterial degradation by storing them between 0 and 465 days in dark prior to the bioassay. The resulting predegraded DOM was inoculated with estuarine bacteria and the subsequent changes in DOM quantity and quality measured. During the incubations, dissolved organic carbon (DOC) and oxygen concentrations decreased, indicating heterotrophic activity. Coloured DOM was degraded less than DOC, indicating a selective utilization of DOM, and humic-like fluorescence components increased during the incubations. The amount of DOC degraded was not affected by the length of DOM predegradation. The percentage of bioavailable DOC (%BDOC) was higher in experiment units with added inorganic nitrogen and phosphorus than without addition (on average 13.5 % and 9.0, respectively), but had no effect on the degradation of fresh, non-predegraded, DOC (%BDOC 12.0 %). Bacterial growth efficiency (BGE) was highest (65 ± 2 %) in the units with fresh DOM, and lowest in units with predegraded DOM and no added inorganic nutrients (11 ± 4 %). The addition of inorganic nutrients increased the BGE of predegraded DOM units by an average of 28 ± 4 %. There was no significant effect on BGE by length of predegradation after the initial drop (<3 months). This study suggests that both the length of predegradation and the inorganic nutrient status in the receiving estuary has consequences to carbon cycling and will determine the amount of terrestrial-derived DOC being ultimately assimilated into marine food webs.  相似文献   

7.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   

8.
Frequent heavy rainfalls during the East Asian summer monsoon drastically increase water flow and chemical loadings to surface waters. A solid understanding of hydroclimatic controls on watershed biogeochemical processes is crucial for water quality control during the monsoon period. We investigated spatio‐temporal variations in the concentrations and spectroscopic properties of dissolved organic matter (DOM) and the concentrations of trace metals in Hwangryong River, Korea, during a summer period from the relatively dry month of June through the following months with heavy rainfall. DOM and its spectroscopic properties differed spatially along the river, and also depended on storm and flow characteristics around each sampling time. At a headwater stream draining a forested watershed, the concentrations (measured as dissolved organic carbon (DOC)), aromaticity (measured as specific UV absorbance at 254 nm), and fulvic acid‐ and protein‐like fluorescence of DOM were higher in stormflow than in baseflow waters. DOC concentrations and fluorescence intensities increased along the downstream rural and urban sites, in which DOC and fluorescence were not higher in stormflow waters, except for the ‘first flush’ at the urban site. The response of DOM in reservoir waters to monsoon rainfalls differed from that of stream and river waters, as illustrated by storm‐induced increases in DOM aromaticity and fulvic‐like fluorescence, and no significant changes in protein‐like fluorescence. The results suggest that surface water DOM and its spectroscopic properties differentially respond to changes in hydroclimatic conditions, depending on watershed characteristics and the influence of anthropogenic organic matter loadings. DOC concentrations and intensities of spectroscopic parameters were positively correlated with some of the measured trace metals (As, Co, and Fe). Further research will be needed to obtain a better understanding of climate effects on the interaction between DOM and trace metals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The spatial and temporal distributions of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) was studied in the East-Frisian Wadden Sea (Southern North Sea) during several cruises between 2002 and 2005. The spatial distribution of CDOM in the German Bight shows a strong gradient towards the coast. Tidal and seasonal variations of dissolved organic matter (DOM) identify freshwater discharge via flood-gates at the coastline and pore water efflux from tidal flat sediments as the most important CDOM sources within the backbarrier area of the Island of Spiekeroog. However, the amount and pattern of CDOM and DOC is strongly affected by various parameters, e.g. changes in the amount of terrestrial run-off, precipitation, evaporation, biological activity and photooxidation. A decoupling of CDOM and DOC, especially during periods of pronounced biological activity (algae blooms and microbial activity), is observed in spring and especially in summer. Mixing of the endmembers freshwater, pore water, and open sea water results in the formation of a coastal transition zone. Whilst an almost conservative behaviour during mixing is observed in winter, summer data point towards non-conservative mixing.  相似文献   

10.
Changes in the concentration of iron and dissolved organic matter (DOM), and in the colour and fluorescence properties in the River Kiiminkijoki were investigated as functions of the seasonal flow regime over a two-year period. The iron concentration in filtrates and the ratio of Fe to DOC in the river increased under low flow conditions and decreased during the flood periods. The colour of the dissolved organic matter increased with increasing iron content, the effect being more pronounced during the warm period of the year than in winter. The ratio of fluorescence to DOC increased during the warm period of the year but not in winter, and decreased rapidly with discharge at the beginning of the flood period in autumn. The results give indications of the origin, formation, nature, and fate of the DOM in the river water. Temperature-dependent microbiological processes in the formation and sedimentation of iron-organic colloids seem to be important. Estimates are given for the amounts and transport rates of iron discharged into the Gulf of Bothnia by the river.  相似文献   

11.
Spectroscopic techniques and extracellular enzyme activity measurements were combined with assessments of bacterial secondary production (BSP) to elucidate flood-pulse-linked differences in carbon (C) sources and related microbial processes in a river-floodplain system near Vienna (Austria). Surface connection with the main channel significantly influenced the quantity and quality of dissolved organic matter (DOM) in floodplain backwaters. The highest values of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) were observed during the peak of the flood, when DOC increased from 1.36 to 4.37 mg l?1 and CDOM from 2.94 to 14.32 m?1. The flood introduced DOC which consisted of more allochthonously-derived, aromatic compounds. Bacterial enzymatic activity, as a proxy to track the response to changes in DOM, indicated elevated utilization of imported allochthonous material. Based on the enzyme measurements, new parameters were calculated: metabolic effort and enzymatic indices (EEA 1 and EEA 2). During connection, bacterial glucosidase and protease activity were dominant, whereas during disconnected phases a switch to lignin degradation (phenol oxidase) occurred. The enzymatic activity analysis revealed that flooding mobilized reactive DOM, which then supported bacterial metabolism. No significant differences in overall BSP between the two phases were detected, indicating that heterogeneous sources of C sufficiently support BSP. The study demonstrates that floods are important for delivering DOM, which, despite its allochthonous origin, is reactive and can be effectively utilized by aquatic bacteria in this river-floodplain systems. The presence of active floodplains, characterized by hydrological connectivity with the main channel, creates the opportunity to process allochthonous DOC. This has potential consequences for carbon flux, enhancing C sequestration and mineralization processes in this river-floodplain system.  相似文献   

12.
The influence of dissolved organic matter (DOM) on mineral extraction from salt lake brines depend on DOM quality. This study contributes to our knowledge of DOM’s metal binding behavior in hypersaline environments by characterization of DOM from lakes in the Qaidam Basin, i.e., Qarhan Lake (LQDOM), Da Qaidam (DQDOM) and West Ginair Salt Lake (WGDOM). The DOM was fractionated based on solid phase extraction (SPE) and ultrafiltration (UF), and the spectral and metal binding behavior of these fractions were studied by absorption spectroscopy, Pb(II) titration techniques and fluorescence parallel factor (PARAFAC) analysis. The results showed that bulk DOM generally contained more dissolved organic carbon (DOC), lower specific UV absorbance (SUVA254), higher fluorescence and biological indices, comparable humification index, and lower condition stability constants compared to the other nature waters. Compared with UF, SPE-derived DOM exhibited higher DOC recovery and aromaticity and lower carbohydrate yield. It appeared that the SPE procedure used affects the spectral composition of bulk DOM to a larger extent than UF. Source and molecular weight (MW)-dependent differences in abundance and quality of brine DOM was indicated by higher SUVA254 in high MW DOM, for LQDOM and DQDOM, and humic-like fluorophores were mainly in high MW-DOM in each lake. Moreover, the high MW humic-like component exhibited higher metal binding potential than the bulk and low MW counterparts for LQDOM and DQDOM, while the inverse was observed for WGDOM. This study revealed the effects of isolation techniques on interpretation of DOM characteristics, and meanwhile highlighted the importance of origin- and MW-dependent DOM in manipulating the behavior, fate, and bioavailability of heavy metals in salt lake brine.  相似文献   

13.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
15.
To establish the influence of the cyanobacterial bloom collapse on the characteristics of dissolved organic carbon (DOC) in Lake Taihu, high-molecular-weight dissolved organic matter (HMW-DOM), with sizes between 1 kDa and 0.5 μm, were collected using cross-flow ultrafiltration, from three different eutrophic regions. Isolated HMW-DOM was further characterized by atomic carbon to nitrogen ratio and neutral sugars composition by gas chromatography and mass spectrometry. The results indicated that the cyanobacterial cell lysis induced by nitrate depletion is the likely mechanism for DOC release. The relatively high DOC level was associated with the high chlorophyll a concentration in Meiliang Bay, one of the most eutrophic bays in the northern part of the lake. However, no significant correlations were observed between chlorophyll a concentration and HMW-DOC concentration during the demise of the cyanobacterial bloom in Lake Taihu. No significant differences were found in the HMW-DOC concentration among the three sampling sites, which were selected to represent different eutrophic status. However, a significant difference in the HMW-DOC concentration was found between October 2009 and January 2010 in all three sampling sites (p = 0.02). The HMW-DOC release may be attributed to the cyanobacterial cell lysis after the peak of summer bloom. The similarity in neutral sugar composition between the HMW-DOM and cyanobacterial exopolysaccharides suggests that the cyanobacterial bloom is the source of HMW-DOM. However, the significant correlation between the carbon to nitrogen ratio in HMW-DOM and chlorophyll a concentration was only observed in Meiliang Bay, which implies that apart from the cyanobacteria-derived DOC, a fraction of DOC was from riverine input. The decline of the cyanobacterial bloom also changed the overall DOM pool, leading to a shift in the component of HMW-DOM from a C-enriched material to an N-enriched material, as revealed by the variation in the carbon to nitrogen ratios. Overall, these results demonstrate that the quantitative and qualitative DOM is affected by the post-cyanobacterial bloom in Lake Taihu.  相似文献   

16.
17.
在博斯腾湖选取了13个点位,于2012年5、8、10月测定表层和底层水体中的颗粒有机碳、溶解有机碳、颗粒有机氮和叶绿素a含量.结果显示颗粒和溶解有机碳在表层水体中的浓度与底层相近.博斯腾湖水体中颗粒有机碳的季节变化十分明显,其平均浓度从春季(0.64 mg/L)到夏季(0.71 mg/L)变化不大,但在秋季变化十分显著(浓度达1.58 mg/L).其中西北湖区和湖心区颗粒有机碳的季节变化最明显,东部湖区颗粒有机碳的季节变化相对较小.博斯腾湖水体的颗粒有机碳在春、秋两季主要来自外源输入,在夏季受水体中浮游生物的影响较大.博斯腾湖水体中溶解有机碳也具有一定的季节变化,夏季浓度(平均为9.3 mg/L)略低于春、秋两季(平均为10.3 mg/L).溶解有机碳在河口区的季节变化最强,其夏季浓度明显偏低,主要是由于开都河河水的稀释作用.总体上,博斯腾湖水体中溶解有机碳浓度的变化主要受外部因素的影响.  相似文献   

18.
The sandy littoral zone of Lake Tegel (Berlin, Germany) was investigated during 2004–2006 down to sediment depths ≥26 cm to derive a scheme of seasonal carbon turnover under induced bank filtration conditions. Carbon turnover processes were quantified regarding external and internal sources of dissolved and particulate organic matter (DOM and POM), primary production, community respiration, redox potential as well as specific loads of soluble chemical compounds such as nitrogen, iron, manganese and DOC.Over the course of the year, infiltrating DOC decreased by about 13–20% within the upper 26 cm sediment of the infiltration stretch. Gradients of all observed soluble compounds that are highly cross-linked to biological activities were highest in the topmost centimetre. In this depth mass balances (output–input) were negative concerning NO3-N (−1 mg dm−2 d−1, summer mean) and DOC (−2 mg dm−2 d−1, winter mean), respectively, while specific loads of cations such as manganese reached up to 0.2 mg dm−2 d−1 during summer. Carbon mineralization ranged between 3 and 7 mg C dm−2 d−1 and was nearly twice as high in summer as in winter. The turnover of the infiltrating DOC contributed maximally 25% in summer to 50% in winter to the entire organic carbon mineralization. Gross and net primary production differed up to a factor of >10, indicating very fast turnover reactions and the predominance of community respiration and mineralization, respectively. The POC in the upper sediment layer (10 cm) temporally varied around 1% sediment d.w.; benthic algae, organic seston input and autumnal leaf fall contributed similar percentages to the POC pool.  相似文献   

19.
为深入理解纳木错湖水及入湖河流中溶解有机碳(DOC)和总氮(TN)浓度的季节变化特征及其影响因素,于2012-2013年不同季节对纳木错2个站点及流域内21条主要入湖河流进行采样及分析,采用统计学方法初步探讨纳木错水体和21条河流DOC和TN浓度季节变化特征.结果表明,河流DOC平均浓度范围为0.763~1.537 mg/L,TN平均浓度范围为0.179~0.387 mg/L.21条入湖河流DOC浓度在春末夏初和夏季达到高值,冬季为低值,TN浓度季节变化趋势大体上与DOC浓度相反.湖泊水体DOC和TN浓度范围分别为2.42~8.08和0.237~0.517 mg/L,明显分别高于河水中的浓度.湖泊DOC浓度季节变化趋势与河流一致,而TN浓度无明显的季节性变化.河水DOC浓度的季节变化和空间差异受控于河流的补给方式,湖水DOC浓度受湖泊内部藻类等水生植物活动和河流外源输入的影响.DOC等有机质的分解是影响纳木错流域湖水和河水TN浓度的重要原因.  相似文献   

20.
Temporal patterns in specific runoff, dissolved organic carbon concentrations [DOC] and fluxes were examined during two periods: 1994–1997 (period 1) and 2007–2009 (period 2) in five adjacent tributary catchments of Lake Simcoe, the largest lake in southern Ontario, Canada. The catchments displayed similar patterns of land use change with increases in urbanization (5–16%) and forest cover (0.2–4%) and declines in agriculture (4–8%) between 1994 and 2008. Climate in the catchments was similar; temperature increased slightly, but no significant change in precipitation was observed. Despite similar pattern of climate and land use, runoff responses and tributary [DOC] were different across the catchments. Following a very dry year (i.e. 1999), runoff increased steadily until the end of record. We observed increased variability in tributary [DOC] and higher DOC exports in period 2. This led to ~10% increase in [DOC] and a 13% increase in flux between the two study periods. Between the two periods, [DOC] increased by 15% in spring and 25% in summer, whereas flux increased by 17% in spring and 48% in summer. [DOC] was consistently higher in the growing (summer + autumn) than the dormant (winter + spring, minus spring melt months) seasons, but no unique pattern or simple linear flow/concentrations relationships existed. This suggests complex spatial and temporal pattern to runoff controls on DOC and flow dynamics in adjacent catchments. We therefore caution against extrapolating from monitored to unmonitored catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号