首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The continued urbanization of coastal watersheds can influence the quality of water that enters rivers and estuaries. Intelligent management of aquatic resources will require the capability to quantitatively assess and evaluate the impacts of alterations in surface waters that result from changes in patterns of land use. An aquatic ecosystem model was developed and linked to an empirical landscape model to estimate ecological risks posed by nutrients and potentially toxic trace elements (copper [Cu], cadmium [Cd], arsenic [As]) in the Patuxent River, Maryland. The empirical landscape model translated reductions in croplands within the Patuxent River watershed into corresponding changes in nitrate estimated to enter the river. Trace element concentrations were increased in relation to urbanization associated with the loss of agricultural lands in the watershed. The aquatic ecosystem model used the altered inputs of nutrients and trace elements to estimate changes in the annual production dynamics of selected producer and consumer populations within the Patuxent River. The models were implemented for four mainstem locations that defined a transect from the upper freshwater portion of the river to downstream estuarine locations. Ecological impacts were estimated for 4 hypothetical changes in land use that consisted of 10%, 7.5%, 5%, and 2.5% watershed coverage by cropland. Impacts were estimated as the probability (risk) of different magnitudes of increases or decreases in total annual production of populations representative of freshwater and estuarine food webs in the Patuxent River.  相似文献   

2.
This paper reports on the aquatic chemistry of trace elements in terms of spatial and temporal distribution, but also pollution sources in the transboundary watershed of the Seversky Donets River (Ukraine/Russia). Bed sediments and filtered water were collected from the Udy and Lopan Rivers at sites from the river source in the Belgorod region (Russia) to rural and urban areas in the Kharkiv region (Ukraine) in May and August 2009. Priority trace elements (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn), an urban tracer (Ag) and additional metals (Co, Mo, V) and Th were measured in stream water and sediments. The low levels and variability of Th-normalized concentrations indicated the absence of geochemical anomalies in the upstream part of the rivers and suggested that these data represent a regional baseline for trace elements in bed sediments. In contrast, water and sediments within the city of Kharkiv were contaminated by Ag, Pb, Cd, Cu, Cr and Zn, which are mainly attributed to municipal wastewater inputs and urban run-off. Results of the environmental quality assessment showed that element concentrations in the sediments can be considered as potentially toxic to aquatic organisms in sites downstream of the wastewater discharges.  相似文献   

3.
Based on high spatial resolution monitoring, the first spatial distribution maps for the eight trace elements identified as priority contaminants in aquatic systems (i.e. As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in surface sediments of the Gironde Estuary (SW France) are presented. This large European fluvial–estuarine system is known for important historical multi-element (mainly Cd, Zn, Cu and Pb) pollution by former mining and mineral processing activation in the Riou-Mort watershed located 350 km upstream the estuary. As a consequence, oyster production in the estuary is prohibited, and Cd concentrations in oysters from the Marennes-Oléron area are close to consumption thresholds. Surface sediment samples were analysed for grain size, particulate organic C and trace element concentrations. Determination of trace elements was carried out by ICP-MS for As, Cd, Cr, Cu, Ni, Pb, Th and Zn, and by CV-AAS for Hg. Total and potentially released trace element stocks in the surface sediment were evaluated by using concentrations in the estuary and in selected sediment core. Assuming that sediment resuspension affects mainly the uppermost sediment layer, the total trace element stocks in the studied 0–10 cm depth range may represent the equivalent of one (Cd) to eight (As, Cr) times the annual fluvial trace element inputs into the estuary. Comparing total trace element concentrations in surface sediment with: (i) data on the regional geochemical baseline to evaluate the potentially remobilised fraction and (ii) the potentially bioavailable fraction aimed at establishing a first spatially resolved risk assessment of the trace element “cocktail” present in these sediments at the estuary scale. After correction for grain size effects by Th normalisation, potentially highly toxic metals such as Cd and Hg showed the highest enrichment factors. From ecotoxicological indices, areas were identified and quantified where trace element levels and mobility may bear a risk to benthic organisms. The GIS-based spatial distribution of ecotoxicological indices for the trace element “cocktail” suggests that ∼95% of the surface sediment are ‘Low–Medium’-priority zones, highlighting the need for further impact studies. The produced maps of trace element distributions and associated risk potentials are likely to be a useful tool to authorities in charge of sustainable estuarine management, e.g. for the optimisation of dredging activities or development of the estuarine infrastructure.  相似文献   

4.
《Applied Geochemistry》2002,17(4):475-492
Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input.  相似文献   

5.
Biogeochemical interactions between a suite of trace elements and nutrients were examined in a series of experimental mesocosm experiments to understand how multiple stressors affect estuarine environments and how these effects are modified by the complexity of the system used to examine them. Experimental treatment included additions of nutrients and trace elements separately and combined, along with a gradient in experimental system complexity. Eight mesocosm experiments were carried out from 1996 through 1998. Increased nutrients generally decreased dissolved trace element concentrations, in large part through an increase in phytoplankton biomass, but also by increasing the concentration of metals in the particles. Trace element additions increased dissolved nutrients by decreasing phytoplankton biomass. The presence of sediments reduced both dissolved trace element and nutrient concentrations. Other complexity treatments had weaker effects on both dissolved nutrients and trace elements. Many of the observed effects appeared to be seasonal, occurring only in spring, or their magnitude was greater in spring. This may be linked to a change from phosphorus to nitrogen limitation that often occurs in the Patuxent River estuary in the late spring or early summer period.  相似文献   

6.
In order to assess the source of trace elements and to compare uptake between different bivalve species, oysters and mussels were transplanted to five sites in the upper Patuxent River estuary during 1988. Transplant sites were located above and below the discharge of Chalk Point Steam Electric Station (CPSES)—a historic point source for copper. Organisms were sampled approximately monthly for 1 yr and analyzed for copper and silver. During spring and summer, concentrations of silver and copper increased in oysters at the upstream stations. There was very little change in silver and copper concentrations in the mussels with either time or among stations. Copper concentrations accumulated by oysters approached those found during previous periods when CPSES used Cu?Ni alloy condenser tubes (1966–1987), suggesting that corrosion from the Cu?Ni condenser tubes was only a minor contributor to the copper burdens of oysters in the river nearby. The lack of accumulation by mussels at the same sites suggests that part of the reason for the accumulation by oysters may be a taxonomically specific physiological effect caused by the salinity regime in the upper Patuxent.  相似文献   

7.
Concentrations of copper (Cu), silver (Ag), and cadmium (Cd) in eastern oysters (Crassostrea virginica) from the upper Patuxent River estuary analyzed since 1986 (Cd since 1991) were high relative to concentrations in other sites in the United States analyzed by the National Oceanic and Atmospheric Administration National Status and Trends program. Patuxent River oysters had above average concentrations of Ag and Cu, and unusually high concentrations of Cd. Metal concentrations were highest in summer, a period in which oyster meat condition index was relatively low. Copper values were highest in 1986–1987, likely elevated by erosion from Cu-Ni alloy condensers at a local power plant. Silver and Cd values exhibited more year-to-year variation. A number of factors were examined as candidates to explain the interannual differences, including river flow, salinity, and oyster condition, but none was able to explain the high and low years. Samples collected in spring and late summer of 1996 at a number of oyster bars located along the length of the Patuxent River showed that concentrations of all three metals increased with distance up-river. For Cd, the upstream increase was linear with distance, while for Ag and Cu, there was a secondary maximum near river km 16. A close correlation was observed between Ag and Cu for individuals at each site, with a poorer correlation between Cd and either Ag or Cu.  相似文献   

8.
Sources of nutrient inputs to the Patuxent River estuary   总被引:1,自引:0,他引:1  
We quantified annual nutrient inputs to the Patuxent River estuary from point and nonpoint sources and from direct atmospheric deposition. We also compared nonpoint source (NPS) discharges from Piedmont and Coastal Plain regions and from agricultural and developed lands. Using continuous automated-sampling, we measured discharges of water, nitrogen, phosphorus, organic carbon (C), and suspended solids from a total of 23 watersheds selected to represent various proportions of developed land and cropland in the Patuxent River basin and the neighboring Rhode River basin. The sampling period spanned two years that differed in annual precipitation by a factor of 1.7. Water discharge from the watershed to the Patuxent River estuary was 3.4 times higher in the wet year than in the dry year. Annual water discharges from the study watersheds increased as the proportion of developed land increased. As the proportion of cropland increased, there were increases in the annual flow-weighted mean concentrations of nitrate (NO3 ?), total nitrogen (TN), dissolved silicate (Si), total phosphate (TPO4 3?), total organic phosphorus (TOP), total P (TP), and total suspended solids (TSS) in NPS discharges. The effect of cropland on the concentrations of NO3 ? and TN was stronger for Piedmont watersheds than for Coastal Plain watersheds. As the proportion of developed land increased, there were increases in annual mean concentrations of NO3 ?, total ammonium (TNH4 +), total organic N (TON), TN, total organic C (TOC), TPO4 3?, TOP, TP, and TSS and decreases in concentrations of Si. Annual mean concentrations of TON, TOC, forms of P, and TSS were highest in the wet year. Annual mean concentrations of NO3 ?, TNH4 +, TN, and Si did not differ significantly between years. We directly measured NPS discharges from about half of the Patuxent River basin and estimated discharges from the other half of the basin using statistical models that related annual water flow and material concentrations to land cover and physiographic province. We compared NPS discharges to public data on point source (PS) discharges. We estimated direct atmospheric deposition of forms of N, P, and organic C to the Patuxent River estuary based on analysis of bulk deposition near the Rhode River. During the wet year, most of the total terrestrial and atmospheric inputs of forms of N and P came from NPS discharges. During the dry year, 53% of the TNH4 + input was from atmospheric deposition and 58% of the NO3 ? input was from PS discharges; NPS and PS discharges were about equally important in the total inputs of TN and TPO4 3?. During the entire 2-yr period, the Coastal Plain portion of the Patuxent basin delivered about 80% of the NPS water discharges to the estuary and delivered similar proportions of the NPS TNH4 +, TN, TOP, and TSS. The Coastal Plain delivered greater proportions of the NPS TON, TOC, Si, and TP (89%, 90%, 93%, and 95%, respectively) than of water, and supplied nearly all of the NPS TPO4 3? (99%). The Piedmont delivered 33% of the NPS NO3 ? while delivering only 20% of the NPS water to the stuary. We used statistical models to infer the percentages of NPS discharges supplied by croplands, developed lands, and other lands. Although cropland covers only 10% of the Patuxent River basin, it was the most important source of most materials in NPS discharge, supplying about 84% of the total NPS discharge of NO3 ?; about three quarters of the TPO4 3?, TOP, TP, and TSS; and about half of the TNH4 + and TN. Compared to developed land, cropland supplied a significantly higher percentage of the NPS discharges of NO3 ?, TN, TPO4 3?, TOP, TP, and TSS, despite the fact development land covered 12% of the basin.  相似文献   

9.
The Patuxent River, Maryland, is a nutrient-overenriched tributary of the Chesapeake Bay. Nutrient inputs from sewage outfalls and nonpoint sources (NPS) have grown substantially during the last four decades, and chlorophylla levels have increased markedly with concomitant reductions in water quality and dissolved oxygen concentrations. The Patuxent has gained national attention because it was one of the first river basins in the U.S. for which basin-wide nutrient control standards were developed. These included a reduction in NPS inputs and a limit on both nitrogen (N) and phosphorus (P) loadings in sewage discharges intended to return the river to 1950s conditions. Full implementation of point source controls occurred by 1994, but population growth and land-use changes continue to increase total nutrient loadings to the river. The present paper provides the perspectives of scientists who participated in studies of the Patuxent River and its estuary over the last three decades, and who interacted with policy makers as decisions were made to develop a dual nutrient control strategy. Although nutrient control measures have not yet resulted in dramatic increases in water quality, we believe that without them, more extensive declines in water quality would have occurred. Future reductions will have to come from more effective NPS controls since future point source loading will be difficult to further reduce with present technology. Changing land use will present a challenge to policy makers faced with sprawling population growth and accelerated deforestation.  相似文献   

10.
Waters of the northern watershed of Lake Kineret, sampled during the period 1978–1983, were analyzed for their major and trace element contents. The trace element concentrations of the major water sources of the watershed (the Dan and Banias springs) represent background values. After emergence, the waters are subjected to human activity. In crossing the populated and cultivated Hula Basin in man-made canals, the major and trace element contents increase. In comparison to the trace element concentrations, those of the major elements have narrow ranges and small temporal fluctuations. Trace element concentrations varied by 3 orders of magnitude, and temporal variations were large but not neccessarily seasonal. Point sources of trace elements were urban effluents, fish pond wastes, and peat soil drainage. The trace element concentrations decrease in the waters of the last segment of the Jordan River. All measured trace elements were below the criteria levels established by regulatory agencies. Several, however, were of the same order of magnitude. Addition of wastes from enhanced recycling, and morphologic modification of the final course of the Jordan River could result in increase in the trace element concentrations in the water.  相似文献   

11.
The St. Lawrence River upper estuary is a very large and efficient mixing zone for contaminated industrial discharges originating upstream, yet elevated levels of various toxic contaminants have persistently been reported in local biota, such as eels and Beluga whales. As part of an initial assessment of the role of bottom sediments in the fate and pathways of contaminants through the estuary ecosystem, we examine the spatial distributions of particle-reactive trace and major elements in shallow-water accumulation zones. Concentrations of more than 30 elements were determined by ICP atomic emission spectrography. A number of these (Ce, Cr, Fe, La, Ni, and Zn) proved to be useful as fine sediment tracers, despite the complicating effects of intense sediment mixing and varying grain size and salinity. Prior normalization of the concentration values with reference to aluminum was necessary in most cases to minimize bias caused by grain-size variation between samples; however, there was no means of compensating for the effect of variable salinity on trace element concentrations. Through the use of a combination of two statistical approaches, linear regression and cluster analysis (ratio-matching), two distinct depositional zones for modern sediments were resolved, each associated with a different source. The largest zone covered the western end and along the south shore of the upper estuary, while the other was confined to the northeastern shore. The western zone is characterized by high-metal-content brought in by the St. Lawrence River. The northeastern zone is distinguished by the presence of lanthanide and rare earth elements (Ce, Y), indicating that its sediment source is probably the watersheds draining the monazite-bearing Grenville Province of the Canadian Shield to the north. The statistical separation of these two sediment groupings supports the conclusion that the St. Lawrence River sediment plume follows the southern shore of the estuary. The more sparsely distributed modern sediment deposits along the north shore tend to be derived from local sources.  相似文献   

12.
Colloidal-sized material from the Patuxent River estuary, Maryland, was analyzed for more than 30 elements by instrumental neutron activation analysis. Sample data from stations ranging in salinity from 0.04 g/kg to 12 g/kg indicate that the winter colloidal material is dominated upstream by poorly crystallized clay minerals and iron oxide, but above a salinity of 10 g/kg, it consists primarily of carbonaceous material. Winter colloidal material decreases non-conservatively seaward from 29 to 0.6 mg/l. The summer colloidal material, however, is carbon-rich throughout the estuary and the amount of colloidal material in the upper water column does not change appreciably with increasing salinity. Many trace elements (Cs, Hf, Rb, Se, Th, V and the REE) covary with Al and probably are associated with the clay component. Other elements (As, Ba, Sb, Se, U and Zn) are considerably enriched relative to Al and may covary with the organic component. The results suggest that the freshwater winter colloidal system is a product of continental weathering processes, whereas the summer colloidal material is derived primarily from estuarine biological processes.  相似文献   

13.
Dissolved major and trace element concentrations were determined from November 2000 to December 2003 in the lower Rhône River (France). Subsurface water samples were collected about twice a month and more regularly during flood events. An unusual trend was observed for As, Sb, Ni and Ba concentrations which increased with river discharge at the beginning of the floods, in contrast with other elements. Variations of Sb/Na and As/Na molar ratios show that it is related to higher contributions of waters from western tributaries of the Rhône River enriched in As, Sb, Ni and Ba due to ancient mining activities. These unusual variations of dissolved element concentrations are thus interpreted as mark of a water mass origin within the watershed.  相似文献   

14.
Sixty-eight samples of sediment collected on a variably-spaced grid pattern from Pamlico River Estuary of North Carolina were analyzed for As, Cd, Co, Cr, Cu, F, Ni, Pb, U, Zn, clay, and organic matter. The major objectives of the study were to determine background and anomalous levels of trace elements in the sediments, and the effects of human activities on concentration and distribution of trace elements in the sediments. Clay and organic matter are more concentrated near the center of the estuary. This causes the highest concentration of trace elements in the sediments to be located there also owing to their preferential uptake of these elements. Highest trace element concentrations were observed in clay and organic matter near industrial sites, housing developments, and tributary mouths that drain areas of human activity. The apparent increase in trace element contents of fine sediments in Pamlico River Estuary owing to human activities is 4 to 1,750 times normal background levels.  相似文献   

15.
We conducted a quantitative assessment of estuarine ecosystem responses to reduced phosphorus and nitrogen loading from sewage treatment facilities and to variability in freshwater flow and nonpoint nutrient inputs to the Patuxent River estuary. We analyzed a 19-year dataset of water quality conditions, nutrient loading, and climatic forcing for three estuarine regions and also computed monthly rates of net production of dissolved O2 and physical transport of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) using a salt- and water-balance model. Point-source loading of DIN and DIP to the estuary declined by 40–60% following upgrades to sewage treatment plants and correlated with parallel decreases in DIN and DIP concentrations throughout the Patuxent. Reduced point-source nutrient loading and concentration resulted in declines in phytoplankton chlorophyll-a (chl-a) and light-saturated carbon fixation, as well as in bottom-layer O2 consumption for upper regions of the estuary. Despite significant reductions in seaward N transport from the middle to lower estuary, chl-a, turbidity, and surface-layer net O2 production increased in the lower estuary, especially during summer. This degradation of water quality in the lower estuary appears to be linked to a trend of increasing net inputs of DIN into the estuary from Chesapeake Bay and to above-average river flow during the mid-1990s. In addition, increased abundance of Mnemiopsis leidyi significantly reduced copepod abundance during summer from 1990 to 2002, which favored increases in chl-a and allowed a shift in total N partitioning from DIN to particulate organic nitrogen. These analyses illustrate (1) the value of long-term monitoring data, (2) the need for regional scale nutrient management that includes integrated estuarine systems, and (3) the potential water quality impacts of altered coastal food webs.  相似文献   

16.
珠江三角洲经济区河水中微量元素的空间分布   总被引:6,自引:0,他引:6  
在珠江三角洲经济区采集了29个河水样品,利用高分辨率仪器ICP MS测量了河水中微量元素的含量。结果表明,河水中稀土元素的平均含量按西江、北江、珠三角河、深圳河、东江的顺序呈增加趋势;珠三角河及深圳河具有较高重金属含量,西江和北江中重金属含量相对较低,东江居中。经分析发现,珠江三角洲经济区河水中微量元素的空间分布特征是自然条件和人类活动共同作用的结果;自然环境对稀土元素的空间分布起主要作用;人类活动是影响重金属分布特征不可忽视的重要因素。  相似文献   

17.
Water discharge from the Patuxent River into its estuary was near-average (95%) during the water year 1968–1969 although precipitation was only 79% of the average. Suspended-sediment discharge into the estuary, however, was more then double the normal yield (344 metric tons/km2 compared to 143 metric tons/km2). These increases in runoff and suspended-sediment yields, despite decreased precipitation, must be attributed to urbanization of the drainage basin.The maximum measured suspended-sediment concentrations in the rural Middle Patuxent basin (Piedmont Province) increased only 40-fold during an increase from “average” to high water runoff (15 mg/l to 600 mg/l). In the portion of the Little Patuxent River basin undergoing urbanization (Piedmont portion), stream concentrations increased by over two orders of magnitude (20 mg/l to 2400 mg/l) as a result of heavy rainfall. The area undergoing urbanization of the Little Patuxent yielded more than twice as much suspended sediment per unit area as the rural Middle Patuxent (620 metric tons/km2 versus 290 metric tons/km2). This increase also is interpreted to be the direct result of erosion of soils denuded or disturbed during urban construction.Using the Middle Patuxent as a “standard” for normal erosion rates in rural areas, construction sites contributed about 82% of the suspended sediment discharged by the Patuxent River into its estuary even though such sites represented only 23% of the drainage basin.  相似文献   

18.
The Delaware River and Bay Estuary is one of the major urbanized estuaries of the world. The 100-km long tidal river portion of the estuary suffered from major summer hypoxia in the past due to municipal and industrial inputs in the urban region; the estuary has seen remarkable water quality improvements from recent municipal sewage treatment upgrades. However, the estuary still has extremely high nutrient loading, which appears to not have much adverse impact. Since the biogeochemistry of the estuary has been relatively similar for the past two decades, our multiple year research database is used in this review paper to address broad spatial and seasonal patterns of conditions in the tidal river and 120 km long saline bay. Dissolved oxygen concentrations show impact from allochthonous urban inputs and meteorological forcing as well as biological influences. Nutrient concentrations, although high, do not stimulate excessive algal biomass due to light and multiple nutrient element limitations. Since the bay does not have strong persistent summer stratification, there is little potential for bottom water hypoxia. Elevated chlorophyll concentrations do not exert much influence on light attenuation since resuspended bottom inorganic sediments dominate the turbidity. Dissolved inorganic carbon and dissolved and particulate organic carbon distributions show significant variability from watershed inputs and lesser impact from urban inputs and biological processes. Ratios of dissolved and particulate carbon, nitrogen, and phosphorus help to understand watershed and urban inputs as well as autochthonous biological influences. Owing to the relatively simple geometry of the system and localized anthropogenic inputs as well as a broad spatial and seasonal database, it is possible to develop these biogeochemical trends and correlations for the Delaware Estuary. We suggest that this biogeochemical perspective allows a revised evaluation of estuarine eutrophication that should have generic value for understanding other estuarine and coastal waters.  相似文献   

19.
Increased nutrient loadings have resulted in low dissolved oxygen (DO) concentrations in bottom waters of the Patuxent River, a tributary of Chesapeake Bay. We synthesize existing and newly collected data to examine spatial and temporal variation in bottom DO, the prevalence of hypoxia-induced mortality of fishes, the tolerance of Patuxent River biota to low DO, and the influence of bottom DO on the vertical distributions and spatial overlap of larval fish and fish eggs with their gelatinous predators and zooplankton prey. We use this information, as well as output from watershed-quality and water-quality models, to configure a spatially-explicit individual-based model to predict how changing land use within the Patuxent watershed may affect survival of early life stages of summer breeding fishes through its effect on DO. Bottom waters in much of the mesohaline Patuxent River are below 50% DO saturation during summer. The system is characterized by high spatial and temporal variation in DO concentrations, and the current severity and extent of hypoxia are sufficient to alter distributions of organisms and trophic interactions in the river. Gelatinous zooplankton are among the most tolerant species of hypoxia, while several of the ecologically and economically important finfish are among the most sensitive. This variation in DO tolerances may make the Patuxent River, and similar estuaries, particularly susceptible to hypoxia-induced alterations in food web dynamics. Model simulations consistently predict high mortality of planktonic bay anchovy eggs (Anchoa mitchilli) under current DO, and increasing survival of fish eggs with increasing DO. Changes in land use that reduce nutrient loadings may either increase or decrease predation mortality of larval fish depending on the baseline DO conditions at any point in space and time. A precautionary approach towards fisheries and ecosystem management would recommend reducing nutrients to levels at which low oxygen effects on estuarine habitat are reduced and, where possible, eliminated.  相似文献   

20.
《Applied Geochemistry》2005,20(7):1391-1408
Surface water samples from the St. Lawrence River were collected in order to study the processes controlling minor and trace elements concentrations (Al, Fe, Mn, Cd, Co, Cu, Ni and Zn), and to construct mass balances allowing estimates of the relative importance of their natural and anthropogenic sources. The two major water inputs, the upper St. Lawrence River, which drains waters originating from the Lake Ontario, and the Ottawa River were collected fortnightly over 18 months. In addition, other tributaries were sampled during the spring floods. The output was monitored near Quebec City at the river mouth weekly between 1995 and 1999. Dissolved metal concentrations in the upper St. Lawrence River carbonated waters were lower than in the acidic waters of the tributaries draining the crystalline rocks of the Canadian shield and the forest cover. Biogeochemical and hydrodynamic processes occurring in Lake Ontario drive the seasonal variations observed in the upper St. Lawrence River. Biogeochemical processes relate to biological uptake, regeneration of organic matter (for Cd and Zn) and oxyhydroxide formation (for Mn and Fe), while hydrodynamic processes mainly concern the seasonal change in vertical stratification (for Cd, Mn, and Zn). In the Ottawa River, the main tributary, oxyhydroxide formation in summer governs seasonal patterns of Al, Fe, Mn, Cd, Co and Zn. The downstream section of the St. Lawrence River is a transit zone in which seasonal variations are mainly driven by the mixing of the different water masses and the large input of suspended particulate matter from erosion. The budget of all dissolved elements, except Fe and Zn, was balanced, as the budget of particulate elements (except Cd and Zn). The main sources of metals to the St. Lawrence River are erosion and inputs from tributaries and Lake Ontario. Direct anthropogenic discharges into the river accounted for less than 5% of the load, except for Cd (10%) and Zn (21%). The fluxes in transfer of dissolved Cd, Co, Cu and Zn species from the river to the lower St. Lawrence estuary were equal to corresponding fluxes calculated for Quebec City since the distributions of dissolved concentrations of these metals versus salinity were conservative. For Fe, the curvature of the dilution line obtained suggests that dissolved species were removed during early mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号