首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Trace element distributions, partitioning, and speciation were examined at 15 sites in the Patuxent River watershed from May 1995 through October 1997 to determine possible sources of trace elements to the river and estuary, to examine the relationship of the trace element discharges to freshwater discharges as well as to land use and geographic region, to validate previous estimates of loadings to the river, and to provide baseline data for trace elements in the Patuxent River watershed and estuary. Six freshwater sites were examined, representing different basins and geographic provinces, and nine sites along the estuarine salinity gradient. Subregions within the watershed varied considerably in concentrations and areal yields for some elements. Concentrations of As, Cd, Ni, Pb, and Zn were elevated in the Coastal Plain sites compared to the Piedmont sites, while Cu and Hg were more evenly distributed. Cadmium, Cu, Hg, Ni, Pb, and Zn showed overall positive correlations with river flow while As and methylHg (meHg) showed negative correlations with river flow. Concentrations of trace elements in the estuarine portion of the river were generally low, and consistent with mixing between Patuxent River water with elevated concentrations and the lower concentrations of the Chesapeake Bay. Interesting features included a local Cd maximum in the low salinity region of the estuary, probably caused by desorption from suspended sediments, and a significant input of water containing high As concentrations from the Chesapeake Bay and from As being released from bottom sediments in summer. Comparisons between the estimated annual flux of trace elements and the estimates of suspected source terms (atmospheric deposition, urban runoff, and known point sources) suggest that, except for Hg, direct atmospheric deposition is small compared to fluvial loads. Current estimates of trace element inputs from point sources or from urban runoff are inadequate for comparison with other sources, because of inappropriate techniques and/or unacceptably high detection limits. A complete examination of trace element dynamics in the Patuxent River (and in other coastal systems) will require better data for these potential sources.  相似文献   

2.
Increased nutrient loadings have resulted in low dissolved oxygen (DO) concentrations in bottom waters of the Patuxent River, a tributary of Chesapeake Bay. We synthesize existing and newly collected data to examine spatial and temporal variation in bottom DO, the prevalence of hypoxia-induced mortality of fishes, the tolerance of Patuxent River biota to low DO, and the influence of bottom DO on the vertical distributions and spatial overlap of larval fish and fish eggs with their gelatinous predators and zooplankton prey. We use this information, as well as output from watershed-quality and water-quality models, to configure a spatially-explicit individual-based model to predict how changing land use within the Patuxent watershed may affect survival of early life stages of summer breeding fishes through its effect on DO. Bottom waters in much of the mesohaline Patuxent River are below 50% DO saturation during summer. The system is characterized by high spatial and temporal variation in DO concentrations, and the current severity and extent of hypoxia are sufficient to alter distributions of organisms and trophic interactions in the river. Gelatinous zooplankton are among the most tolerant species of hypoxia, while several of the ecologically and economically important finfish are among the most sensitive. This variation in DO tolerances may make the Patuxent River, and similar estuaries, particularly susceptible to hypoxia-induced alterations in food web dynamics. Model simulations consistently predict high mortality of planktonic bay anchovy eggs (Anchoa mitchilli) under current DO, and increasing survival of fish eggs with increasing DO. Changes in land use that reduce nutrient loadings may either increase or decrease predation mortality of larval fish depending on the baseline DO conditions at any point in space and time. A precautionary approach towards fisheries and ecosystem management would recommend reducing nutrients to levels at which low oxygen effects on estuarine habitat are reduced and, where possible, eliminated.  相似文献   

3.
A box model based on salinity distributions and freshwater inflow measurements was developed and used to estimate net non-tidal physical circulation and hydraulic residence times for Patuxent River estuary, Maryland, a tributary estuary of Chesapeake Bay. The box model relaxes the usual assumption that salinity is at steady-state, an important improvement over previous box model studies, yet it remains simple enough to have broad appeal. Average monthly 2-dimensional net non-tidal circulation and residence times for 1986–1995 are estimated and related to river flow and salt water inflow as estimated by the box model. An important result is that advective exchange at the estuary mouth was not correlated with Patuxent River flow, most likely due to effects of offshore salinity changes in Chesapeake Bay. The median residence time for freshwater entering at the head of the estuary was 68 d and decreased hyperbolically with increasing river flow to 30 d during high flow. Estimates of residence times for down-estuary points of origin showed that, from the head of the estuary to its mouth, control of flushing changed from primarily river flow to other factors regulating the intensity of gravitational circulation.  相似文献   

4.
Geochemical (total nitrogen, total organic carbon, total phosphorus, total sulfur, and carbon and nitrogen stable isotopes) and selected biotic (diatom, foraminifera, polychaete) indicators preserved in two estuarine sediment cores from the mesohaline Chesapeake Bay provide a history of alterations in the food web associated with land-use change. One core from the mouth of the Chester River (CR) (collected in 2000) represents a 1,000-year record. The second core (collected in 1999), from the Chesapeake Bay’s main stem opposite the Choptank River (MD), represents a 500-year record. As European settlers converted a primarily forested landscape to agriculture, sedimentation rates increased, water clarity decreased, salinity decreased in some areas, and the estuarine food web changed into a predominantly planktonic system. Representatives of the benthic macrofaunal community (foraminifera and the polychaetes Nereis spp.) were affected by local changes before there were widespread landscape alterations. Nitrogen stable isotope records indicated that land-use changes affected nitrogen cycling beginning in the early 1700s. Extreme changes were evident in the mid-nineteenth century following widespread deforestation and since the mid-twentieth century reflecting heightened eutrophication as development increased in the Chesapeake Bay watershed. Results also demonstrate how paleoecological records vary due to the degree of terrestrial inputs of freshwater runoff and nutrients at core locations within the Chesapeake Bay.  相似文献   

5.
筑坝对河流生态系统影响研究进展   总被引:36,自引:1,他引:36       下载免费PDF全文
河流是陆地生态系统和水生态系统间物质循环的通道,筑坝人为改变河流物理、化学、生物地球化学循环模式,影响河流生态系统的结构、功能.分析了筑坝对河流水文水力特性、生源要素(氮、磷、硅等)、水生态系统结构和功能的影响以及河流生态系统恢复等研究的进展.随着水库成为陆地水分循环的一个主要组成部分,对流域生态系统健康的影响日益显著,进而对大坝的生态效应、河流生态恢复等需要进行深入的研究,减轻大坝的负面效应.  相似文献   

6.
Worldwide estuaries have been subject to multiple and escalating anthropogenic impacts which have resulted in the loss of many ecosystem goods and services including: commercial activities, navigation and marine transportation, recreational and landscape values, and flood control and biodiversity support. An example of these losses is provided in an urban-industrial region of an estuary in northern Tasmania, Australia, where excessive silt deposition has resulted in almost complete loss of the channel at low tide. The causes of siltation have long been attributed to poor watershed management and high concentrations of flocculated and suspended sediments transported upstream by asymmetrical tides. However, historical analysis of anthropogenic changes in estuarine and riverine processes revealed different stressors. These included the decrease in the tidal prism and hence regime equilibrium, brought about by channel infilling and draining of tidal wetlands to create dry land for urban and agricultural uses, and the reduction and redirection of freshwater inflows for the generation of hydroelectricity. Watershed sediment loads exerted a relatively minor role in the estuarine equilibrium, which is solely dependent on tidal flows and river discharges for maintenance of stable cross-sectional areas. Sustainable remediation measures include increasing the tidal prism through the restoration of dynamic river flows and reconnection and restoration of tidal wetlands. However, the former will not be achievable without changes in major provisioning services, particularly the use of water to generate hydroelectricity. This study emphasises the importance of identifying stressors as the basis for examining the potential to reduce the trade-offs between the multiple ecosystem services provided by an estuary and its tributaries, particularly between provisioning and cultural ecosystem services, within a rehabilitation context.  相似文献   

7.
We used a sequential extraction technique and 210Pb dating to determine the chemical form and amount of particulate phosphorus (PP) that is retained during burial in 1-m-long sediment cores collected along a salinity gradient from tidal freshwater to the mesohaline waters of the Patuxent River, a subestuary of the Chesapeake Bay. PP buried in the study sites with salinity values ≤3 was similar in concentration and form to PP entering the Patuxent from the watershed, suggesting efficient sequestration by the sediments at these low-salinity sites. PP extracted with citrate–dithionite–bicarbonate was the dominant form of PP at all salinities and all depths, and organic-P was the second most abundant fraction. We estimated that 81% of PP entering from the watershed is trapped in the sediments of the upper Patuxent subestuary and that the subtidal sediments retain three times as much PP as the marshes adjacent to the study sites.  相似文献   

8.
Degraded water quality due to water column availability of nitrogen and phosphorus to algal species has been identified as the primary cause of the decline of submersed aquatic vegetation in Chesapeake Bay and its subestuaries. Determining the relative impacts of various nutrient delivery pathways on estuarine water quality is critical for developing effective strategies for reducing anthropogenic nutrient inputs to estuarine waters. This study investigated temporal and spatial patterns of nutrient inputs along an 80-km transect in the Choptank River, a coastal plain tributary and subestuary of Chesapeake Bay, from 1986 through 1991. The study period encompassed a wide range in freshwater discharge conditions that resulted in major changes in estuarine water quality. Watershed nitrogen loads to the Choptank River estuary are dominated by diffuse-source inputs, and are highly correlated to freshwater discharge volume. in years of below-average freshwater discharge, reduced nitrogen availability results in improved water quality throughout most of the Choptank River. Diffuse-source inputs are highly enriched in nitrogen relative to phosphorus, but point-source inputs of phosphorus from sewage treatment plants in the upper estuary reduce this imbalance, particularly during summer periods of low freshwater discharge. Diffuse-source nitrogen inputs result primarily from the discharge of groundwater contaminated by nitrate. Contamination is attributable to agricultural practices in the drainage basin where agricultural land use predominates. Groundwater discharge provides base flow to perennial streams in the upper regions of the watershed and seeps directly into tidal waters. Diffuse-source phosphorus inputs are highly episodic, occurring primarily via overland flow during storm events. Major reductions in diffuse-source nitrogen inputs under current landuse conditions will require modification of agricultural practices in the drainage basin to reduce entry rates of nitrate into shallow groundwater. Rates of subsurface nitrate delivery to tidal waters are generally lower from poorly-drained versus well-drained regions of the watershed, suggesting greater potential reductions of diffuse-source nitrogen loads per unit effort in the well-drained region of the watershed. Reductions in diffuse-source phosphorus loads will require long-term management of phosphorus levels in upper soil horizons. *** DIRECT SUPPORT *** A01BY074 00021  相似文献   

9.
Biogeochemical interactions between a suite of trace elements and nutrients were examined in a series of experimental mesocosm experiments to understand how multiple stressors affect estuarine environments and how these effects are modified by the complexity of the system used to examine them. Experimental treatment included additions of nutrients and trace elements separately and combined, along with a gradient in experimental system complexity. Eight mesocosm experiments were carried out from 1996 through 1998. Increased nutrients generally decreased dissolved trace element concentrations, in large part through an increase in phytoplankton biomass, but also by increasing the concentration of metals in the particles. Trace element additions increased dissolved nutrients by decreasing phytoplankton biomass. The presence of sediments reduced both dissolved trace element and nutrient concentrations. Other complexity treatments had weaker effects on both dissolved nutrients and trace elements. Many of the observed effects appeared to be seasonal, occurring only in spring, or their magnitude was greater in spring. This may be linked to a change from phosphorus to nitrogen limitation that often occurs in the Patuxent River estuary in the late spring or early summer period.  相似文献   

10.
The National Water Act (Act 36 of 1998) in South Africa recognizes basic human water requirements as well as the need to sustain the country's freshwater and estuarine ecosystems in a healthy condition for present as well as future generations. In this Act, provision is made for a water reserve to be estimated prior to the authorization of water use (e.g., for agriculture, large volume residential and industrial uses) through licensing. This reserve is the water required to satisfy basic human needs (i.e., 25 1 person?1 d?1) and to protect aquatic ecosystems to ensure present and future sustainable use of the resource. This led the Departments of Water Affairs and Forestry and estuarine scientists throughout South Africa to develop a method to determine the freshwater inflow requirements of estuaries. The method includes documenting the geographical boundaries of the estuary and determining estuarine health by comparing the present state of the estuary with a predicted reference condition with the use of an Estuarine Health Index. The importance of the estuary as an ecosystem is taken from a national rating system and together with the present health is used to set an Ecological Reserve Category for the estuary. This category represents the level of protections afforded to an estuary. Freshwater is then reserved to maintain the estuary in that Ecological Reserve Category. The Reserve, the quantity and quality of freshwater required for the estuary, is determined using an approach where realistic future river runoff scenarios are assessed, together with data for present state and reference conditions, to evaluate the extent to which abiotic and biotic conditions within an estuary are likely to vary with changes in river inflow. Results from these evaluations are used to select an acceptable river flow scenario that represents the highest reduction in freshwater inflow that will still protect the aquatic ecosystem of the estuary and keep it in the desired Ecological Reserve Category. The application of the Reserve methodology to the Mtata estuary is described.  相似文献   

11.
We conducted a quantitative assessment of estuarine ecosystem responses to reduced phosphorus and nitrogen loading from sewage treatment facilities and to variability in freshwater flow and nonpoint nutrient inputs to the Patuxent River estuary. We analyzed a 19-year dataset of water quality conditions, nutrient loading, and climatic forcing for three estuarine regions and also computed monthly rates of net production of dissolved O2 and physical transport of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) using a salt- and water-balance model. Point-source loading of DIN and DIP to the estuary declined by 40–60% following upgrades to sewage treatment plants and correlated with parallel decreases in DIN and DIP concentrations throughout the Patuxent. Reduced point-source nutrient loading and concentration resulted in declines in phytoplankton chlorophyll-a (chl-a) and light-saturated carbon fixation, as well as in bottom-layer O2 consumption for upper regions of the estuary. Despite significant reductions in seaward N transport from the middle to lower estuary, chl-a, turbidity, and surface-layer net O2 production increased in the lower estuary, especially during summer. This degradation of water quality in the lower estuary appears to be linked to a trend of increasing net inputs of DIN into the estuary from Chesapeake Bay and to above-average river flow during the mid-1990s. In addition, increased abundance of Mnemiopsis leidyi significantly reduced copepod abundance during summer from 1990 to 2002, which favored increases in chl-a and allowed a shift in total N partitioning from DIN to particulate organic nitrogen. These analyses illustrate (1) the value of long-term monitoring data, (2) the need for regional scale nutrient management that includes integrated estuarine systems, and (3) the potential water quality impacts of altered coastal food webs.  相似文献   

12.
We summarize rates of metabolism and major sources and sinks of organic carbon in the 148-k long, tidally influenced, freshwater Hudson River. The river is strongly heterotrophic, with respiration exceeding gross primary production (GPP). The P:R ration averages 0.57 (defined as the ratio of GPP to total ecosystem respiration) if only the aquatic portion of the ecosystem is considered and 0.70 if the emergent marshes are also included. Gross primary production (GPP) by photoplankton averages approximately 300 g C m?2 yr?1 and is an order of magnitude greater than that by submersed macrophytes. However, the river is deep, well mixed, and turbid, and phytoplankton spend a majority of their time in the dark. As a result, respiration by living phytoplankton is extremely high and net primary production (NPP) by phytoplankton is estimated to be only some 6% of GPP. NPP by phytoplankton and submersed macrophytes are roughly equal (approximately 20 g C m?2 yr?1 each) when averaged over the river. Emergent marshes are quite productive, but probably less than 16 g C m?2 yr?1 enters the aquatic portion of the ecosystem from these marshes. Heterotrophic respiration and secondary production in the river are driven primarily by allochthonous inputs of organic matter from terrestrial sources. Rates of metabolism vary along the river, with depth being a critical controlling factor. The P:R ratio for the aquatic portion of the ecosystem varies from 1 in the mid-river to 0.2 in the deeper waters. NPP is actually negative in the downstream waters where average depths are greater since phytoplankton respiration exceeds GPP there; the positive rates of NPP occurring upriver support a downstream advection of phytoplankton to the deeper waters where this C is largely respired away by the algae themselves. This autotrophic respiration contributes significantly to oxygen depletion in the deeper waters of the Hudson. The tidally influenced freshwater Hudson largely fits the patterns predicted by the river continuum model for larger rivers. However, we suggest that the continuum model needs to more clearly distinguish between GPP and NPP and should include the importance of autotrophic respiration by phytoplankton that are advected along a river. The organic carbon budget for the tidally influenced freshwater Hudson is balanced to within a few percent. Respiration (54%) and downstream advection into the saline estuary (41%) are the major losses of organic carbon from the ecosystem. Allochthonous inputs from nonpoint sources on land (61%) and GPP by phytoplankton (28%) are the major sources to the system. Agricultural erosion is the major source of allochthonous inputs. Since agricultural land use increased dramatically in the last century, and has fallen in this century, the carbon cycle of the tidally influenced freshwater Hudson River has probably changed markedly over time. Before human disturbance, the Hudson was probably a less heterotrophic system and may even have been autotrophic, with gross primary production exceeding ecosystem respiration.  相似文献   

13.
The amount of pollution from non-point sources flowing in the streams of the Wujiang River watershed in Guizhou Province, SW China, is estimated by a GIS-based method using rainfall, surface runoff and land use data. A grid of cells, 100 m in size, is laid over the landscape. For each cell, mean annual surface runoff is estimated from rainfall and percent land use, and expected pollutant concentration is estimated from land use. The product of surface runoff and concentration gives expected pollutant loading from that cell. These loadings are accumulated going downstream to give expected annual pollutant loadings in streams and rivers. By dividing these accumulated loadings by the similarly accumulated mean annual surface runoff, the expected pollutant concentration from non-point sources is determined for each location in a stream or river. Observed pollutant concentrations in the watershed are averaged at each sample point and compared to the expected concentrations at the same locations determined from the grid cell model. In general, annual non-point source nutrient loadings in the Wujiang River watershed are seen to be predominantly from the agricultural and meadow areas.  相似文献   

14.
Using high-resolution measures of aquatic ecosystem metabolism and water quality, we investigated the importance of hydrological inputs of phosphorus (P) on ecosystem dynamics in the oligotrophic, P-limited coastal Everglades. Due to low nutrient status and relatively large inputs of terrestrial organic matter, we hypothesized that the ponds in this region would be strongly net heterotrophic and that pond gross primary production (GPP) and respiration (R) would be the greatest during the “dry,” euhaline estuarine season that coincides with increased P availability. Results indicated that metabolism rates were consistently associated with elevated upstream total phosphorus and salinity concentrations. Pulses in aquatic metabolism rates were coupled to the timing of P supply from groundwater upwelling as well as a potential suite of hydrobiogeochemical interactions. We provide evidence that freshwater discharge has observable impacts on aquatic ecosystem function in the oligotrophic estuaries of the Florida Everglades by controlling the availability of P to the ecosystem. Future water management decisions in South Florida must include the impact of changes in water delivery on downstream estuaries.  相似文献   

15.
A comparative study of the standing crop of marsh vegetation was made of the Patuxent River and Parker Creek, two tributaries of Chesapeake Bay. The biomass of marsh vegetation in the tidal freshwater and brackish regions of the Patuxent was relatively uniform with regard to salinity, seasonally high concentrations of dissolved nitrogen, and phosphorus and nutrient gradient. Maximum values of biomass occurred in the tidal freshwater and slightly brackish water region of Parker Creek, a system whose nutrient concentrations approximated 20% of those of Patuxent River. Biomass values for the Patuxent River and Parker Creek averaged about 1417 and 895 g m?2 dry weight, respectively. Estimates of total annual marsh production based on the maximum standing crop was 27×103 and 519 metric tons, respectively, for the Patuxent River and Parker Creek.  相似文献   

16.
Strong changes in stable isotope tracers commonly occur across estuarine salinity gradients from freshwater to the sea. The tracer gradients reflect the different geochemistries and mixing of freshwater and seawater, and these bottom-up geochemical influences are recorded in estuarine food webs in the isotopic compositions of animals. Conservative mixing calculations suggest that watershed-level inputs of freshwater and nutrients should exert strong influences on isotopic values of estuarine consumers, especially consumers such as bivalves that largely depend on phytoplankton production. Deviations from conservative isotope mixing also occur, and the magnitude of these deviations measures the strength of within-estuary organic matter cycling for estuarine food webs, especially inputs of non-phytoplankton foods such as macrophyte detritus and benthic algae. Measuring consumer isotopes across salinity gradients should be a relatively simple way to monitor effects of watershed nutrient loading and hydrologic flushing in supporting estuarine fisheries production.  相似文献   

17.
Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales.  相似文献   

18.
Freshwater delivery is an important factor determining estuarine character and health and may be influenced by large-scale climate oscillations. Variability in freshwater delivery (precipitation and discharge) to the Altamaha River estuary (GA, USA) was examined in relation to indices for several climate signals: the Bermuda High Index (BHI), the Southern Oscillation Index (SOI), the Improved El Niño Modoki Index (IEMI), the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific Decadal Oscillation (PDO), and the Pacific/North American Pattern (PNA). Discharge to this estuary has been linked to key ecosystem properties (e.g., salinity regime, water residence time, nutrient inputs, and marsh processes), so understanding how climate patterns affect precipitation and river discharge will help elucidate how the estuarine ecosystem may respond to climate changes. Precipitation patterns in the Altamaha River watershed were described using empirical orthogonal functions (EOFs) of the combined multidecadal time series of precipitation at 14 stations. The first EOF (67 % of the variance) was spatially uniform, the second EOF (11 %) showed a spatial gradient along the long axis of the watershed (NW–SE), and the third EOF (6 %) showed a NE–SW pattern. We compared the principal components (PCs) associated with these EOFs, monthly standardized anomalies of Altamaha River discharge at the gauge closest to the estuary, and the climate indices. Complex, seasonally alternating patterns emerged. The BHI was correlated with June–January discharge and precipitation PC 1. The SOI was correlated with January–April discharge and precipitation PC 2, and also weakly correlated with PC 1 in November–December. The AMO was correlated with river discharge and precipitation PC 3 mainly in December–February and June. The correlation patterns of precipitation PCs with PDO and PNA were similar to those with SOI, but weaker. There were no consistent relationships with two NAO indices or IEMI. Connections between climate signals and estimates of nutrient loading were consistent with the connections to discharge. The occurrence of tropical storms in the region was strongly related to the BHI but not to the other climate indices, possibly representing the influence of storm tracking more than the rate of storm formation. Comparison with the literature suggests that the patterns found may be typical of southeastern USA estuaries but are likely to be different from those outside the region.  相似文献   

19.
The nearshore land-water interface is an important ecological zone that faces anthropogenic pressure from development in coastal regions throughout the world. Coastal waters and estuaries like Chesapeake Bay receive and process land discharges loaded with anthropogenic nutrients and other pollutants that cause eutrophication, hypoxia, and other damage to shallow-water ecosystems. In addition, shorelines are increasingly armored with bulkhead (seawall), riprap, and other structures to protect human infrastructure against the threats of sea-level rise, storm surge, and erosion. Armoring can further influence estuarine and nearshore marine ecosystem functions by degrading water quality, spreading invasive species, and destroying ecologically valuable habitat. These detrimental effects on ecosystem function have ramifications for ecologically and economically important flora and fauna. This special issue of Estuaries and Coasts explores the interacting effects of coastal land use and shoreline armoring on estuarine and coastal marine ecosystems. The majority of papers focus on the Chesapeake Bay region, USA, where 50 major tributaries and an extensive watershed (~ 167,000 km2), provide an ideal model to examine the impacts of human activities at scales ranging from the local shoreline to the entire watershed. The papers consider the influence of watershed land use and natural versus armored shorelines on ecosystem properties and processes as well as on key natural resources.  相似文献   

20.
Water discharge from the Patuxent River into its estuary was near-average (95%) during the water year 1968–1969 although precipitation was only 79% of the average. Suspended-sediment discharge into the estuary, however, was more then double the normal yield (344 metric tons/km2 compared to 143 metric tons/km2). These increases in runoff and suspended-sediment yields, despite decreased precipitation, must be attributed to urbanization of the drainage basin.The maximum measured suspended-sediment concentrations in the rural Middle Patuxent basin (Piedmont Province) increased only 40-fold during an increase from “average” to high water runoff (15 mg/l to 600 mg/l). In the portion of the Little Patuxent River basin undergoing urbanization (Piedmont portion), stream concentrations increased by over two orders of magnitude (20 mg/l to 2400 mg/l) as a result of heavy rainfall. The area undergoing urbanization of the Little Patuxent yielded more than twice as much suspended sediment per unit area as the rural Middle Patuxent (620 metric tons/km2 versus 290 metric tons/km2). This increase also is interpreted to be the direct result of erosion of soils denuded or disturbed during urban construction.Using the Middle Patuxent as a “standard” for normal erosion rates in rural areas, construction sites contributed about 82% of the suspended sediment discharged by the Patuxent River into its estuary even though such sites represented only 23% of the drainage basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号