首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geodinamica Acta》2001,14(1-3):133-145
A large sinistral intracontinental transcurrent structure, the Central Anatolian Fault Zone (CAFZ), is located between Erzincan in the northeast and offshore of Anamur county in the southwest of Turkey. Northeastern and southwestern segments of the fault zone are linked to each other by an intervening and approximately N–S-trending transtensional structure, the Erciyes pull-apart basin (EPB). The Kızılırmak–Erkilet and Dökmetaş segments of the CAFZ bend southwards at about 45°–50° near Kayseri and result in a releasing double bend, which has nucleated both the EPB and its main feature, the Erciyes stratovolcano complex (ESVC) since Middle Pliocene time. The EPB is a ∼35-km-wide, 120-km-long, 1.2-km-deep, lazy S-shaped and actively-growing depression with the ESVC forming a high-standing central barrier between the northern and southern parts of the basin. Hence, the EPB appears as two separate basins, namely the ‘Sultansazlığı and Kayseri–Sarımsaklı depressions’. However, this is not correct, because development of the EPB and ESVC has been coeval with the volcanic activity producing the ESVC continuing into prehistoric times. Development of the EPB is continuing as indicated by faulted, uplifted and terraced Pleistocene–Early Holocene palaeolake beach deposits, and historical to recent earthquakes. Accumulative throws on the eastern and western margin-bounding faults of the EPB are 1225 m and 720 m respectively and show that basin development has been asymmetrical.  相似文献   

2.
The Ericiyes Basin is a trans‐tensional basin situated 20 km north of the regional Ecemi? Fault Zone. Recently it has been hypothesized that faulting within the Erciyes Basin links with the Ecemi? Fault Zone further south as part of a regional Central Anatolian Fault Zone. New 40Ar/39Ar dating of volcanic and volcaniclastic rocks adjacent to faults, both along the margins and in the centre of the Erciyes Basin, constrains the timing of basin inception and later faulting. Extensional faulting occurred along the eastern and western margins of the basin during the Early Messinian (latest Miocene). Sinistral and minor normal faulting were active along the axis of the basin during the early Pleistocene. These fault timings are similar to those inferred for the Ecemi? Fault Zone further south, and support the hypothesis that faulting within the Erciyes Basin and the Ecemi? Fault Zone are indeed linked.  相似文献   

3.
Kadir Dirik 《Geodinamica Acta》2013,26(1-3):147-158
Abstract

Central Anatolia has undergone complex Neotectonic deformation since Late Miocene-Pliocene times. Many faults and intracontinental basins in this region were either formed, or have been reactivated, during this period. The eastern part of central Anatolia is dominated by a NE-SW-trending, left lateral transcurrent structure named the Central Anatolian fault zone located between Sivas in the northeast and west of Mersin in the southwest. Around the central part, it is characterized by transtensional depressions formed by left stepping and southward bending of the fault zone. Pre-Upper Miocene basement rocks of the region consist of the central Anatolian crystalline complex and a sedimentary cover of Tertiary age. These rock units were strongly deformed by N-S con- vergence. The entire area emerged to become the site of erosion and formed a vast plateau before the Late Miocene. A NE-SW- trending extensional basin developed on this plateau in Late Miocene-Early Pliocene times. Rock units of this basin are characterized by a thick succession of pyroclastic rocks intercalated with calcalkaline-alkaline volcanics. The volcanic sequence is uncon- formably overlain by Pliocene lacustrine-fluviatile deposits interrelated with ignimbrites and tuffs. Thick, coarse grained alluvial/colluvial fan deposits of marginal facies and fine grained elastics and carbonates of central facies display characteristic synsedimentary structures with volcanic intercalations. These are the main lines of evidence for development of a new transtensional H?rka— k?zd?rmak basin in Pliocene times. Reactivation of the main segment of the Central Anatolian fault zone has triggered development of depressions around the left stepping and southward bending of the central part of this sinistral fault zone in the ignimbritic plateau during Late Pliocene-Quaternary time. These transtensional basins are named the Tuzla Gölü and Sultansazl??? pull-apart basins. The Sultansazl??? basin has a lazy S to rhomboidal shape and displays characteristic morphologic features including a steep and stepped western margin, large alluvial and colluvial fans, and a huge composite volcano (the Erciyes Da??).

The geometry of faulting and formation of pull-apart basins can be explained within the framework of tectonic escape of the wedgelike Anatolian block, bounded by sinistral East Anatolian fault zone and dextral North Anatolian transform fault zone. This escape may have been accomplished as lateral continental extrusion of the Anatolian Plate caused by final collision of the Arabian Plate with the Eurasian Plate. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

4.
GIS and Remote Sensing have proved to be an indispensible tool in morphometric analysis. The identification of morphometric properties based on a geographic information system (GIS) was carried out in two watersheds in the Thrissur district of Kerala, India. These watersheds are parts of Western Ghats, which is an ecologically sensitive area. Quantitative geomorphometric analysis was carried out for the Chimmini and Mupily watersheds independently by estimating their (a) linear aspects like stream number, stream order, stream length, mean stream length, stream length ratio, bifurcation ratio, length of overland flow, drainage pattern (b) aerial aspects like circulatory ratio, elongation ratio, drainage density and (c) relief aspects like basin relief, relief ratio, relative relief and ruggedness number. The drainage areas of Chimmini and Mupily watersheds are 140 and 122 km2 respectively and show patterns of dendritic to sub-dendritic drainage. The Chimmini watershed was classified as a sixth order drainage basin, whereas Mupily watershed was classified as a fifth order basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in the stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds. The slope of both watersheds varied from 0° to 50° and 0° to 42° respectively and the slope variation is chiefly controlled by the local geology and erosion cycles. Moreover, these studies are useful for planning rain water harvesting and watershed management.  相似文献   

5.
A geomorphic unit Usri drainage basin (latitude: 24° 04′00″ N to 24° 34′00″ N and longitude 86°05′00″E to 86°25′00″E) lies in north-eastern parts of Chhotanagpur Plateau, India, has been selected for morphometric analysis. Digital elevation model (DEM) has been generated by Cartosat stereo pair data at 10-m resolution. The morphometric parameters considered for the analysis includes the linear, areal, and relief aspects of the basin. Morphometric analysis of the river network and the basin revealed that the Usri Basin has sixth-order river network with a dendritic drainage pattern. The dendritic drainage pattern indicates that the basin has homogeneous lithology, gentle regional slope, and lack of structural control. The bifurcation ratio between different successive orders varies but the mean ratio is low that suggests the higher permeability and lesser structural control. The low drainage density, poor stream frequency, and moderately coarse drainage texture values of the basin indicate that the terrain has gentle slope, is made up of loose material, and hence has good permeability of sub-surface material and significant recharge of ground water. The shape parameters indicate that the basin is elongated in shape with low relief, high infiltration capacity, and less water flow for shorter duration in basin. The 50 % of the basin has altitude below 300 m and gently sloping towards the southeast direction. All the morphometric parameters and existing erosional landforms indicated mature to early old stage topography.  相似文献   

6.
A morphometric analysis was carried out to describe the topography and drainage characteristics of Papanasam and Manimuthar watersheds. These watersheds are part of Western Ghats, which is an ecologically sensitive region. The drainage areas of Papanasam and Manimuthar watersheds are 163 and 211 km2, respectively and they show patterns of dendritic to sub-dendritic drainage. The slope of both watersheds varied from 0° to 59° and 0° to 55°, respectively. Moreover, the slope variation is chiefly controlled by the local geology and erosion cycles. Each watershed was classified as a fifth-order drainage basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds.  相似文献   

7.
A.S.Meriaux    P.Tapponnier    F.J.Ryerson    Xu Xiwei    Wang Feng    J.Vanderwoerd   《地学前缘》2000,(Z1)
LARGE-SCALE STRAIN PATTERNS,GREAT EARTHQUAKE BREAKS,AND LATE PLEISTOCENE SLIP-RATE ALONG THE ALTYN TAGH FAULT (CHINA)  相似文献   

8.
A morphostructural analysis of a Pliocene flood basalt formation in the southern Neuquén basin (40°S) shows evidence of contractional deformation less than 3.5 Ma ago. This formation exhibits a general dip towards the south‐east, with relict outcrops located 100 m higher than the main source volcano, which suggests a local tilting of the lava flow. This tilt has been brought about by Plio‐Quaternary reactivation of the eastern border of the Sañico Massif along two thrusts that offset the lava flow. Another long‐wavelength bulge in the southern part of the lava flow unit indicates a possible Pliocene uplift of the North Patagonian Massif. These results provide new evidence of continuing shortening in the Neuquén basin during the Plio‐Quaternary, challenging the hypothesis that an extensional regime has existed since the end of the Miocene in this basin.  相似文献   

9.
Abstract

To the east of the Sea of Marmara, the North Anatolian fault (NAF) branches into two strands, namely the northern and the southern strands. The Adapazan pull-apart basin is located in the overlapping zone of the Dokurcun and the ?zmit-Adapazan segments of the northern strand. The combined temporal ranges of the arvicolids from the Karapürçek formation (the first unit of the basin fill), deposited in the primary morphology of the Adapazan pull-apart basin, cover the latest Villanyian (latest Pliocene) and the Biharian (Early Pleistocene) time interval. The De?irmendere fauna collected from the lowermost sediments of this formation suggests that the Adapazan pull-apart basin started to form in the latest Pliocene. This, in turn, suggests that the dextral movement along the northern strand of the NAF commenced during the latest Pliocene. A new species, Tibericola sakaryaensis is also described. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

10.
Lake George contains the longest continuous sedimentary record of any Australian lake basin, but previous age models are equivocal, particularly for the oldest (pre-Quaternary) part of the record. We have applied a combination of cosmogenic nuclide burial dating, magnetostratigraphy and biostratigraphy to determine the age of the basal (fluvial) unit in the basin, the Gearys Gap Formation. Within the differing resolutions achievable by the three dating techniques, our results show that (i) the Gearys Gap Formation, began accumulating at ca 4 Ma, in the early Pliocene (Zanclean), and (ii) deposition had ceased by ca 3 Ma, in the mid late Pliocene (Piacenzian). Whether the same age control provides an early Pliocene (Zanclean) age for the formation of the lake basin is uncertain. During the Piacenzian, the vegetation at the core site was a wetland community dominated by members of the coral fern family Gleicheniaceae, while the surrounding dryland vegetation was a mix of sclerophyll and temperate rainforest communities, with the latter including trees and shrubs now endemic to New Guinea–New Caledonia and Tasmania. Mean annual rainfall and temperatures are inferred to have been ~2000–3000 mm, although probably not uniformly distributed throughout the year, and within the mesotherm range (>14°C <20°C), respectively. Unresolved issues are: (1) Does the basal gravel unit predate uplift of the Lake George Range and therefore provide evidence that one of the proposed paleo-spillways of Lake George, that above Geary's Gap, has been elevated up to 100–200 m by neotectonic activity over the past 4 million years? (2) Did a shallow to deepwater lake exist elsewhere in the lake basin during the Pliocene?  相似文献   

11.
Abstract

Pliocene-Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the K?z?l?rmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of ?ark??la (Sivas-central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region. © 2001 Éditions scientifiques et médicales Elsevier SAS.  相似文献   

12.
The thermal history of the central part of the Paris basin is reconstructed using C31 hopane S/R isomerisation ratios and organic matter transformation ratios measured on Lower Toarcian and Callovo-Oxfordian samples. Maximum burial palaeotemperatures range between 90 and 115?°C for the Toarcian shales, and between 75 and 95?°C for the Callovo-Oxfordian samples, from the East to the centre of the basin, respectively. The amount of Late Cretaceous erosion was evaluated to be between ca. 400 to 600 m in the eastern part of the studied area and 100 to 300 m in the centre of the basin. To cite this article: C. Ménétrier et al., C. R. Geoscience 337 (2005).  相似文献   

13.
Abstract

The Karasu Rift (Antakya province, SE Turkey) has developed between east-dipping, NNE-striking faults of the Karasu fault zone, which define the western margin of the rift and westdipping, N-S to N20°-30°E-striking faults of Dead Sea Transform fault zone (DST) in the central part and eastern margin of the rift. The strand of the Karasu fault zone that bounds the basin from west forms a linkage zone between the DST and the East Anatolian fault zone (EAFZ). The greater vertical offset on the western margin faults relative to the eastern ones indicates asymmetrical evolution of the rift as implied by the higher escarpments and accumulation of extensive, thick alluvial fans on the western margins of the rift. The thickness of the Quaternary sedimentary fill is more than 465 m, with clastic sediments intercalated with basaltic lavas. The Quaternary alkali basaltic volcanism accompanied fluvial to lacustrine sedimentation between 1.57 ± 0.08 and 0.05 ± 0.03 Ma. The faults are left-lateral oblique-slip faults as indicated by left-stepping faulting patterns, slip-lineation data and left-laterally offset lava flows and stream channels along the Karasu fault zone. At Hacilar village, an offset lava flow, dated to 0.08 ± 0.06 Ma, indicates a rate of leftlateral oblique slip of approximately 4.1 mm?year?1. Overall, the Karasu Rift is an asymmetrical transtensional basin, which has developed between seismically active splays of the left-lateral DST and the left-lateral oblique-slip Karasu fault zone during the neotectonic period. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

14.
15.
Annual abstraction of 2.6?×?109 m3 of groundwater in the 53,000 km2 Konya Closed Basin of central Turkey has caused a head decline of 1 m/year over the last few decades. Therefore, understanding the hydrogeology of this large endorheic basin, in a semi-arid climate, is important to sustainable resource management. For this purpose, the groundwater’s radiocarbon age distribution has been investigated along a 150-km transect parallel to regional flow. Results show that the groundwater ranges in age from Recent at the main recharge area of the Taurus Mountains in the south, to about 40,000 years around the terminal Salt Lake located in the north. In this predominantly confined flow system, radiocarbon ages increase linearly by distance from the main recharge area and are in agreement with the hydraulic ages. The mean velocity of regional groundwater flow (3 m/year) is determined by the rate of regional groundwater discharge into the Salt Lake. Calcite dissolution, dedolomitization and geogenic carbon dioxide influx appear to be the dominant geochemical processes that determine the carbon isotope composition along the regional flow path. The groundwater’s oxygen-18 content indicates more humid and cooler paleorecharge. A maximum drop of 5°C is inferred for the past recharge temperature.  相似文献   

16.
Abstract

Four oroclinal structures have been identified from structural, magnetic and gravity trends across a Carboniferous continental arc, forearc basin [Tamworth Belt (TB)] and conjugate accretionary complex in the southern New England Orogen (SNEO) of eastern Australia. None of the structures has yet been confirmed conclusively by paleomagnetism as oroclinal. Ignimbrites are common within the forearc basin and have been demonstrated to retain primary magnetisations despite prevalent overprinting. They are well exposed across six major tectono-stratigraphic blocks with partly interlinked stratigraphies, making the forearc basin highly prospective to oroclinal testing by comparing pole path segments for individual blocks across curved structures. Paleomagnetic studies have shown no noticeable rotation across the western/southwestern TB (Rocky Creek, Werrie and Rouchel blocks), but documented herein is a minor counter-clockwise rotation of the Gresford Block of the southern TB. This study details paleomagnetic, rock magnetic and magnetic fabric results for 87 sites (969 samples) across the southern Gresford Block. Predominantly thermal, also alternating field and liquid nitrogen, demagnetisations show a widely present low-temperature overprint, attributed to regional late Oligocene weathering, and high-temperature primary and overprint components residing in both mainly magnetite and mainly hematite carriers. Subtle, but systematic, directional differences between magnetite and hematite subcomponents show the latter as the better cleaned, better-defined, preferred results, detailing nine primary poles of middle and late Carboniferous ages and Permian and Permo-Triassic overprints as observed elsewhere in the western/southwestern TB. The primary poles update a poorly defined mid-Carboniferous section of the SNEO pole path and demonstrate counter-clockwise rotation, quantified at about 15° ± 13° from comparison of mid-Carboniferous Martins Creek Ignimbrite Member poles for the Rouchel and Gresford blocks, that may not necessarily have been completed prior to the Hunter–Bowen phase of the Gondwanide Orogeny. This minor counter-clockwise rotation of the Gresford Block accentuates a primary curvature of the southwestern/southern TB and heralds further, more complex, rotations of the Myall Block of the southeastern TB.  相似文献   

17.
Bends that locally violate plate-motion-parallel geometry are common structural elements of continental transform faults. We relate the vertical component of crustal motion in the western Marmara Sea region to the NNW-pointing 18° bend on the northern branch of the North Anatolian Fault (NAF-N) between the Ganos segment, which ruptured in 1912, and the central Marmara segment, a seismic gap. Crustal shortening and uplift on the transpressive west side of the bend results in the Ganos Mountain; crustal extension and subsidence on the transtensional east side produce the Tekirdağ Basin. We propose that this vertical component of deformation is controlled by oblique slip on the non-vertical north-dipping Ganos and Tekirdağ segments of the North Anatolian Fault. We compare Holocene with Quaternary structure across the bend using new and recently published data and conclude the following. First, bend-related vertical motion is occurring primarily north of the NAF-N. This suggests that this bend is fixed to the Anatolian side of the fault. Second, current deformation is consistent with an antisymmetric pattern centered at the bend, up on the west and down on the east. Accumulated deformation is shifted to the east along the right-lateral NAF-N, however, leading to locally opposite vertical components of long- and short-term motion. Uplift has started as far west as the landward extension of the Saros trough. Current subsidence is most intense close to the bend and to the Ganos Mountain, while the basin deepens gradually from the bend eastward for 28 km along the fault. The pattern of deformation is time-transgressive if referenced to the material, but is stable if referenced to the bend. The lag between motion and structure implies a 1.1–1.4 Ma age for the basin at current dextral slip rate (2.0–2.5 cm/year). Third, the Tekirdağ is an asymmetric basin progressively tilted down toward the NAF-N, which serves as the border fault. Progressive tilt suggests that the steep northward dip of the fault decreases with depth in a listric geometry at the scale of the upper crust and is consistent with reactivation of Paleogene suture-related thrust faults. Fourth, similar thrust-fault geometry west of the bend can account for the Ganos Mountain anticline/monocline as hanging-wall-block folding and back tilting. Oblique slip on a non-vertical master fault may accommodate transtension and transpression associated with other bends along the NAF and other continental transforms.  相似文献   

18.
19.
The aquifer system in the Thon Buri sedimentary basin below the deltaic flood plain of the Chao Phraya River, central Thailand, has been exploited for public water supply for the capital Bangkok since the early 1920s. Groundwater withdrawal, currently 1.4 million m3/d, has resulted in a maximum decline in hydraulic head of up to 40 m. This has induced land subsidence of as much as 1.7 m (1940–1992) in the eastern suburbs of the metropolis. Artificial injection of purified water within an area-wide network of recharge wells could constitute a remedy to slow the water level depression within the sedimentary basin, and thus the subsidence. This requires a prior shutdown of water withdrawal. The flow paths of the injected water can be traced by changes in the 87Sr/86Sr ratio of the groundwater and injected water mixture within the three main aquifers in the basin that are used for public supply. The ratios, monitored at five monitoring stations within the cone of depression, have been constant over 3 years. Injection of the calculated cone volume of 5.2?×?109 m3 would take at least 10 years, depending on the injection pressure and the number and position of wells.  相似文献   

20.
The Laguna Lagunillas basin in the arid Andes of northern Chile exhibits a shallow aquifer and is exposed to extreme air temperature variations from 20 to ?25 °C. Between 1991 and 2012, groundwater levels in the Pampa Lagunillas aquifer fell from near-surface to ~15 m below ground level (bgl) due to severe overexploitation. In the same period, local mean monthly minimum temperatures started a declining trend, dropping by 3–8 °C relative to a nearby reference station. Meanwhile, mean monthly maximum summer temperatures shifted abruptly upwards by 2.7 °C on average in around 1996. The observed air temperature downturns and upturns are in accordance with detected anomalies in land-surface temperature imagery. Two major factors may be causing the local climate change. One is related to a water-table decline below the evaporative energy potential extinction depth of ~2 m bgl, which causes an up-heating of the bare soil surface and, in turn, influences the lower atmosphere. At the same time, the removal of near-surface groundwater reduces the thermal conductivity of the upper sedimentary layer, which consequently diminishes the heat exchange between the aquifer (constant heat source of ~10 °C) and the lower atmosphere during nights, leading to a severe dropping of minimum air temperatures. The observed critical water-level drawdown was 2–3 m bgl. Future and existing water-production projects in arid high Andean basins with shallow groundwater should avoid a decline of near-surface groundwater below 2 m bgl and take groundwater-climate interactions into account when identifying and monitoring potential environmental impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号