首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical deforestation through logging activities poses a direct threat to biodiversity. However, the detection of logging has remained a challenge. Based on study sites in Zimbabwe and Zambia, we tested whether the Normalized Difference Vegetation Index (NDVI) and the Coefficient of Variation in NDVI (CVNDVI) derived from high and medium spatial resolution satellite data could be used to detect logging in dry and wet miombo woodlands. Separately, we integrated NDVI and CVNDVI in logistic regression to test whether each can be used to successfully predict logging in the study sites. We tested whether the spatial resolution of satellite data has an effect in detection of logging using NDVI and CVNDVI derived from Landsat 8 and Worldview-2. Based on the ROC curves, we concluded that remotely sensed data could provide an effective predictive tool for detecting logging. However, in wet miombo woodlands the predictive power of remotely sensed data is weak.  相似文献   

2.
Site productivity is essential information for sustainable forest management and site index (SI) is the most common quantitative measure of it. The SI is usually determined for individual tree species based on tree height and the age of the 100 largest trees per hectare according to stem diameter. The present study aimed to demonstrate and validate a methodology for the determination of SI using remotely sensed data, in particular fused airborne laser scanning (ALS) and airborne hyperspectral data in a forest site in Norway. The applied approach was based on individual tree crown (ITC) delineation: tree species, tree height, diameter at breast height (DBH), and age were modelled and predicted at ITC level using 10-fold cross validation. Four dominant ITCs per 400 m2 plot were selected as input to predict SI at plot level for Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). We applied an experimental setup with different subsets of dominant ITCs with different combinations of attributes (predicted or field-derived) for SI predictions. The results revealed that the selection of the dominant ITCs based on the largest DBH independent of tree species, predicted the SI with similar accuracy as ITCs matched with field-derived dominant trees (RMSE: 27.6% vs 23.3%). The SI accuracies were at the same level when dominant species were determined from the remotely sensed or field data (RMSE: 27.6% vs 27.8%). However, when the predicted tree age was used the SI accuracy decreased compared to field-derived age (RMSE: 27.6% vs 7.6%). In general, SI was overpredicted for both tree species in the mature forest, while there was an underprediction in the young forest. In conclusion, the proposed approach for SI determination based on ITC delineation and a combination of ALS and hyperspectral data is an efficient and stable procedure, which has the potential to predict SI in forest areas at various spatial scales and additionally to improve existing SI maps in Norway.  相似文献   

3.
In this study, we tested whether the inclusion of the red-edge band as a covariate to vegetation indices improves the predictive accuracy in forest carbon estimation and mapping in savanna dry forests of Zimbabwe. Initially, we tested whether and to what extent vegetation indices (simple ratio SR, soil-adjusted vegetation index and normalized difference vegetation index) derived from high spatial resolution satellite imagery (WorldView-2) predict forest carbon stocks. Next, we tested whether inclusion of reflectance in the red-edge band as a covariate to vegetation indices improve the model's accuracy in forest carbon prediction. We used simple regression analysis to determine the nature and the strength of the relationship between forest carbon stocks and remotely sensed vegetation indices. We then used multiple regression analysis to determine whether integrating vegetation indices and reflection in the red-edge band improve forest carbon prediction. Next, we mapped the spatial variation in forest carbon stocks using the best regression model relating forest carbon stocks to remotely sensed vegetation indices and reflection in the red-edge band. Our results showed that vegetation indices alone as an explanatory variable significantly (p < 0.05) predicted forest carbon stocks with R2 ranging between 45 and 63% and RMSE ranging from 10.3 to 12.9%. However, when the reflectance in the red-edge band was included in the regression models the explained variance increased to between 68 and 70% with the RMSE ranging between 9.56 and 10.1%. A combination of SR and reflectance in the red edge produced the best predictor of forest carbon stocks. We concluded that integrating vegetation indices and reflectance in the red-edge band derived from high spatial resolution can be successfully used to estimate forest carbon in dry forests with minimal error.  相似文献   

4.
本文探讨了一种在卫星遥感数据地面辐射改正的基础上,利用少量离散分布的观测数据逐点的计算研究区域卫星像片像元地面反射率的方法。该项研究在遥感应用基础和山地辐射状况的研究中有重要意义。  相似文献   

5.
Sal (Shorea robusta) is an important forest tree species in north and north-eastern India. Large-scale plantations of this species have been raised there under taungya and coppice system of management. The conventional volume table prepared for high sal forest is referred to infer the volume of production of this species. Earlier workers have used aerial remote sensing data to develop volume tables of this species. In the present study a volume table for sal is developed based on remotely sensed satellite data using a regression technique. A two-step method was developed to estimate mean tree volume from satellite data. In step 1, mean crown diameter — an intermediate variable - was estimated from satellite data. In step 2, the estimated mean crown diameter was used to estimate the mean tree volume. Addition of age of the crop as an independent variable improved the predictive ability of the regression equation.  相似文献   

6.
利用景观生态学格局分析方法,将东坡区景观分成耕地、林地、草地、水体、建筑用地和裸地景观六大类。通过遥感影像判读解译,得到上述六类景观基本形状数据。通过计算得到各景观的斑块总面积指数、景观类型所占景观面积的比例指数、斑块数指数、最大斑块指数、平均斑块面积指数、景观破碎化指数、景观优势度指数和多样性指数等景观格局数,初步分析2000年和2007年该区景观格局变化,为经济开发和环境保护提供科学依据和决策支持。  相似文献   

7.
Abstract

This paper investigates the combination of metric aerial photography and near‐infrared (NIR) videography data to improve the design of field‐survey sampling frameworks. Spatial data collection can contribute up to 80% of the cost of deploying a Geographic Information System (GIS) based Decision Support System (DSS). The use of remotely sensed information, field survey using differential Global Positioning System (dGPS) and geostatistical interpolation methods maximises data quality for a given rate of sampling.

Medium‐format colour aerial photography and NIR videography were orthorectified to the national map base and mosaiced using ERDAS Imagine. The green and red layers of the aerial photography were combined with the NIR videography to form a false‐colour composite image. Two sampling strategies were tested. The first stratified sampling on a per field basis, creating four points per hectare, randomly located within each field. The second strategy used the remotely sensed information to identify within‐field variability classes for each field, using red‐green difference or normalised difference vegetation index (NDVI) models. These variability classes were used as a sub‐stratification framework with each class sampled at the same rate of 4 per hectare. For both strategies the sample points were generated within ESRI ArcView and were located in the field using dGPS. Maps of stone content were created using geostatistical methods and validated against samples collected on a 100 metre grid. It was concluded that combining the two image sources to create a within‐field stratification framework improved the precision of the results obtained from field‐survey.  相似文献   

8.
Although increased woody plant abundance has been reported in tropical savannas worldwide, techniques for detecting the direction and magnitude of change are mostly based on visual interpretation of historical aerial photography or textural analysis of multi-temporal satellite images. These techniques are prone to human error and do not permit integration of remotely sensed data from diverse sources. Here, we integrate aerial photographs with high spatial resolution satellite imagery and use a discrete wavelet transform to objectively detect the dynamics in bush encroachment at two protected Zimbabwean savanna sites. Based on the recently introduced intensity-dominant scale approach, we test the hypotheses that: (1) the encroachment of woody patches into the surrounding grassland matrix causes a shift in the dominant scale. This shift in the dominant scale can be detected using a discrete wavelet transform regardless of whether aerial photography and satellite data are used; and (2) as the woody patch size stabilises, woody cover tends to increase thereby triggering changes in intensity. The results show that at the first site where tree patches were already established (Lake Chivero Game Reserve), between 1972 and 1984 the dominant scale of woody patches initially increased from 8 m before stabilising at 16 m and 32 m between 1984 and 2012 while the intensity fluctuated during the same period. In contrast, at the second site, which was formely grass-dominated site (Kyle Game Reserve), we observed an unclear dominant scale (1972) which later becomes distinct in 1985, 1996 and 2012. Over the same period, the intensity increased. Our results imply that using our approach we can detect and quantify woody/bush patch dynamics in savanna landscapes.  相似文献   

9.
黑河流域叶面积指数的遥感估算   总被引:7,自引:2,他引:7  
研究利用Landsat7ETM+遥感数据获取黑河流域植被叶面积指数(LAI)空间分布的可行性。该研究是基于黑河流域分布式水文模型的一个重要输入项———LAI空间分布数据的需要而产生的。文章在详尽的野外观测数据基础上,分别探究实测LAI与同时相ETM+3、4、5、7波段反射率及相关植被指数(SR、NDVI、ARVI、RSR、SAV I、PVI、GESAVI)的相关关系,率定最佳的LAI遥感反演及其空间分布方案。研究发现,针对特定的自然条件,将研究区分为植被覆盖度小的稀疏立地和覆盖度大的密集立地,分别采用土壤调节植被指数(SAVI)和大气阻抗植被指数(ARVI)进行2种林地的LAI估算最为可靠,在此基础上,提出黑河地区LAI估算及其空间分布的遥感制图方案。  相似文献   

10.
数据与数据库的爆炸式增长导致了一个十分突出的问题,即如何高效、智能地从巨量的、有噪音的、随机的数据中提取有效的、潜在有用的信息和知识.近几年来,空间数据挖掘技术的广泛研究正是基于此目的.本文初步探讨了空间数据挖掘技术在遥感图像处理中的应用,其重点阐述了关联规则,以及数据挖掘技术在遥感图像数据处理中的基本方法以及如何对遥感图像数据进行离散化处理.文章最后简要介绍了遥感图像处理的决策树和人工神经网络数据挖掘技术方法.  相似文献   

11.
Estimating tropical biomass is critical for establishment of conservation inventories and landscape monitoring. However, monitoring biomass in a complex and dynamic environment using traditional methods is challenging. Recently, biomass estimates based on remotely sensed data and ecological variables have shown great potential. The present study explored the utility of remotely sensed data and topo-edaphic factors to improve biomass estimation in the Eastern Arc Mountains of Tanzania. Twenty-nine vegetation indices were calculated from RapidEye data, while topo-edaphic factors were taken from field measurements. Results showed that using topo-edaphic variables or vegetation indices, biomass could be predicted with an R2 of 0.4. A combination of topo-edaphic variables and vegetation indices improved the prediction accuracy to an R2 of 0.6. Results further showed a decrease in biomass estimates from 1162 ton ha?1 in 1980 to 285.38 ton ha?1 in 2012. This study demonstrates the value of combining remotely sensed data with topo-edaphic variables in biomass estimation.  相似文献   

12.
Obtaining reliable measures of tree canopy height across large areas is a central element of forest inventory and carbon accounting. Recent years have seen an increased emphasis on the use of active sensors like Radar and airborne LiDAR (light detection and scanning) systems to estimate various 3D characteristics of canopy and crown structure that can be used as predictors of biomass. However, airborne LiDAR data are expensive to acquire, and not often readily available across large remote landscapes. In this study, we evaluated the potential of stereo imagery from commercially available Very High Resolution (VHR) satellites as an alternative for estimating canopy height variables in Australian tropical savannas, using a semi-global dense matching (SGM) image-based technique. We assessed and compared the completeness and vertical accuracy of extracted canopy height models (CHMs) from GeoEye 1 and WorldView 1 VHR satellite stereo pairs and summarised the factors influencing image matching effectiveness and quality.Our results showed that stereo dense matching using the SGM technique severely underestimates tree presence and canopy height. The highest tree detection rates were achieved by using the near-infrared (NIR) band of GE1 (8–9%). WV1-GE1 cross-satellite (mixed) models did not improve the quality of extracted canopy heights. We consider these poor detection rates and height retrievals to result from: i) the clumping crown structure of the dominant Eucalyptus spp.; ii) their vertically oriented leaves (affecting the bidirectional reflectance distribution function); iii) image band radiometry and iv) wind induced crown movement affecting stereo-pair point matching. Our detailed analyses suggest that current commercially available VHR satellite data (0.5 m resolution) are not well suited to estimating canopy height variables, and therefore above ground biomass (AGB), in Eucalyptus dominated north Australian tropical savanna woodlands.  相似文献   

13.
结合多分类器的遥感数据专题分类方法研究   总被引:19,自引:1,他引:19  
柏延臣  王劲峰 《遥感学报》2005,9(5):555-563
采用标准的多分类器结合方法进行遥感图像的分类研究。首先介绍了标准的多分类器结合的算法,然后以Landsat-TM多光谱遥感数据的土地覆被分类为例,分别给出了抽象级上相同训练特征的多分类器结合、抽象级上不同训练特征的多分类器结合和测量级上的多分类器结合进行土地覆被分类的方法,并进行了实例研究。参与分类器结合的单个分类器包括最大似然分类器,最小距离分类器,马氏距离分类器,K-NN分类器,多层感知器神经网络分类器。分类器的分类精度用总体精度、用户精度、生产者精度、kappa系数和条件kappa系数评价。结果表明,每一种多分类器结合的分类方法都能够比较显著地提高总体分类精度。文章最后对不同多分类器结合方式的优缺点进行了分析。  相似文献   

14.
Object-oriented remotely sensed images processing method has been accepted by more and more experts of remote sensing. To advance the efficiency of data processing, parallel image computing is a good choice since large volumes of data need be analyzed efficiently and rapidly. This paper presents the information extraction method based on per-parcel extraction of high-resolution remotely sensed image; to extract efficiently different information from remotely sensed image, this paper gives the research idea of image rough-classification based on large-scale and subtle-segmentation based on small-scale; to improve the efficiency of image processing, we adapt parallel computing method to solve this problem by presenting an new data-partition method. At last this paper gives the implementation of the research idea based on Message Passing Interface (MPI) and analyzes our experimental system efficiency, and the results show that the new methods can improve the efficiency of high-resolution remotely sensed image data processing efficiently and have a good application.  相似文献   

15.
The multiscale Kalman smoother (MKS) is a globally optimal estimator for fusing remotely sensed data. The MKS algorithm can be readily parallelized because it operates on a Markov tree data structure. However, such an implementation requires a large amount of memory to store the parameters and estimates at each scale in the tree. This becomes particularly problematic in applications where the observations have very different resolutions and the finest scale data are sparse or aggregated. Such cases commonly arise when fusing data to capture both regional and local structure. In this work, we develop a reduced-complexity MKS algorithm and apply it to the fusion of topographic and bathymetric elevations on the Florida coast.  相似文献   

16.
主要讨论了遥感图像变化检测的图像几何配准和阈值选取理论,利用MATLAB强大的数值计算功能实现了遥感图像变化检测.在拓展数学符号计算软件包MATLAB应用领域的同时,探索了一种遥感图像处理软件的快速开发方式.  相似文献   

17.
In this study, we tested whether terrain-based visibility modelled from a remotely sensed ASTER Digital Elevation Model (DEM) explains sable flight initiation distance (FID) better than vegetation-based visibility measured in the field. We also tested whether the effect of hunting on sable FID varies with spatial scale. We first performed a linear regression analysis relating FID to standardized coefficients of both vegetation- and terrain-based visibility where the variable with the larger coefficient was the better predictor of FID. We latter performed an analysis of covariance (ANCOVA) comparing the slopes relating FID to both measures of visibility, first at the large scale and later at the small scale within the hunting area. Our results suggest that remotely sensed terrain-based visibility predicts the FID of sable better than vegetation-based visibility. We also found that the effect of hunting on sable FID varies with spatial scale.  相似文献   

18.
This study aims to illustrate how remotely sensed oceanic variables and fishing operations data can be used to predict suitable habitat of fishery resources in Geographic Information System. We used sea surface height anomaly (SSHa), sea surface temperature (SST), chlorophyll concentration (CC), photosynthetically active radiation (PAR) and fishing depth as predictor variables. Fishery data of Indian squid (Loligo spp.) and catfish (Tachysurus spp.) for study period (1998–2004) were segregated randomly to create training and validation. Catch was normalized into Catch per unit Effort (kg h?1). Generalized additive modelling was performed on training data and then tested on validation data. Suitable ranges of SST, CC, SSHa and PAR for different species distributions were derived and integrated to predict their spatial distributions. Results indicated good match between predicted and actual catch. Monthly probability maps of predicted habitat areas coincide with high catch of the particular month for the study period.  相似文献   

19.
From remotely sensed woody cover, we tested whether sables under hunting pressure preferred closed woodland habitats and whether those not under hunting preferred more open woodland habitats. We applied a two factorial logistic regression analysis to model the probability of occurrence of sable antelope in hunted and non-hunted areas of northwest Zimbabwe as a function of vegetation cover density (estimated by a normalized difference vegetation index (NDVI)). We validated the results by high-spatial resolution imagery derived tree canopy area. We subsequently compared the predictions from the two models in order to compare sable cover selection between hunted and non-hunted areas. Our results suggest that hunted sables are likely to select closed woodland, while non-hunted ones would prefer more open woodland habitats. We also established a significant positive relationship between NDVI and tree canopy cover, thus emphasizing the importance of remote sensing in studies that measure the impact of hunting on habitat selection of targeted species.  相似文献   

20.
Abstract

In recent years, the rough set (RS) method has been in common use for remote-sensing classification, which provides one of the techniques of information extraction for Digital Earth. The discretization of remotely sensed data is an important data preprocessing approach in classical RS-based remote-sensing classification. Appropriate discretization methods can improve the adaptability of the classification rules and increase the accuracy of the remote-sensing classification. To assess the performance of discretization methods this article adopts three indicators, which are the compression capability indicator (CCI), consistency indicator (CI), and number of the cut points (NCP). An appropriate discretization method for the RS-based classification of a given remotely sensed image can be found by comparing the values of the three indicators and the classification accuracies of the discretized remotely sensed images obtained with the different discretization methods. To investigate the effectiveness of our method, this article applies three discretization methods of the Entropy/MDL, Naive, and SemiNaive to a TM image and three indicators for these discretization methods are then calculated. After comparing the three indicators and the classification accuracies of the discretized remotely sensed images, it has been found that the SemiNaive method significantly reduces large quantities of data and also keeps satisfactory classification accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号