首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对单一应用遥感影像难以进行城市内部用地结构分类以及高精度城市内部用地多期空间数据叠置分析中位置误差问题建立了基于"分层分类"与"对象分割"的城市内部用地空间信息数字重建方法。实现对特大城市产业用地(住宅、商业、工业等)以及交通、水系、生态绿地等不同功能结构用地的高精度监测以及历史演变过程的重建。综合集成SPOT5,1︰1万地形图、历史地图及城市规划图等辅助信息对长春城市1905年以来城市用地信息进行分类。研究表明,在专家知识参与下人—机交互解译,集成多源空间信息对实现高精度城市用地空间信息重建具有较高的应用价值,该方法不仅能提高城市用地分类精度而且能提高城市用地空间信息提取效率以及多期空间数据叠置分析的定位精度。  相似文献   

2.
Abstract

In this paper we process diachronic SPOT satellite images acquired with different viewing angles in order to assess the aerosol optical thickness (AOT) spatial distribution over Brescia.

This urban area, located in Northern Italy, is subject to frequent visibility‐reducing smog episodes. AOT was calculated by using the Differential Textural Analysis (DTA) code on a satellite data series consisting by one pollution‐free and various pollution‐loaded SPOT images. The resulting maps showed the horizontal distribution of AOT with a resolution of 500 metres. These maps can be readily integrated with the results obtained by mesoscale modelling, ground measurements, and respond to local scale application requirements. Satellite AOT retrieval compared successfully with available AOT ground‐based measurements and with pollution measurements in the ambient air. In this study the use of diachronic multiangle SPOT imagery allowed us to analyse the effect of the viewing angle variation on AOT retrieval accuracy based on the contrast reduction method.  相似文献   

3.
Abstract

Riparian vegetation has a fundamental influence on the biological, chemical and physical nature of rivers. The quantification of riparian landcover is now recognised as being essential to the holistic study of the ecosystem characteristics of rivers. Medium resolution satellite imagery is now commonly used as an efficient and cost effective method for mapping vegetation cover; however such data often lack the resolution to provide accurate information about vegetation cover within riparian corridors. To assess this, we measure the accuracy of SPOT multispectral satellite imagery for classification of riparian vegetation along the Taieri River in New Zealand. In this paper, we discuss different sampling strategies for the classification of riparian zones. We conclude that SPOT multispectral imagery requires considerable interpretative analysis before being adequate to produce sufficiently detailed maps of riparian vegetation required for use in stream ecological research.  相似文献   

4.
Abstract

Developing countries like India are an urbanization hotspot with many upcoming towns and cities. Growth in small and medium sized towns and cities have been unnoticed and growing without appropriate urban planning. Utilizing the available medium resolution satellite data and geospatial platforms, the growth dynamics of Kurukshetra city was analysed over a period of 24 years. The study employed a combination of change detection technique and spatial metrics (six each of class and landscape levels) analysis to delineate the growth track of the city and its environs. A significant increase in urban built up (dense 237%; open 1038%) is seen majorly at the cost of open area (70%) and tree clad (58%). Phases of city’s aggregation and diffusion are observed using class and landscape level spatial metrics. Understanding and monitoring of land use changes in and around city limits using integrated spatial tools provide better decision making capability.  相似文献   

5.
Large area tree maps, important for environmental monitoring and natural resource management, are often based on medium resolution satellite imagery. These data have difficulty in detecting trees in fragmented woodlands, and have significant omission errors in modified agricultural areas. High resolution imagery can better detect these trees, however, as most high resolution imagery is not normalised it is difficult to automate a tree classification method over large areas. The method developed here used an existing medium resolution map derived from either Landsat or SPOT5 satellite imagery to guide the classification of the high resolution imagery. It selected a spatially-variable threshold on the green band, calculated based on the spatially-variable percentage of trees in the existing map of tree cover. The green band proved more consistent at classifying trees across different images than several common band combinations. The method was tested on 0.5 m resolution imagery from airborne digital sensor (ADS) imagery across New South Wales (NSW), Australia using both Landsat and SPOT5 derived tree maps to guide the threshold selection. Accuracy was assessed across 6 large image mosaics revealing a more accurate result when the more accurate tree map from SPOT5 imagery was used. The resulting maps achieved an overall accuracy with 95% confidence intervals of 93% (90–95%), while the overall accuracy of the previous SPOT5 tree map was 87% (86–89%). The method reduced omission errors by mapping more scattered trees, although it did increase commission errors caused by dark pixels from water, building shadows, topographic shadows, and some soils and crops. The method allows trees to be automatically mapped at 5 m resolution from high resolution imagery, provided a medium resolution tree map already exists.  相似文献   

6.
The objective of this paper is to map urban expansion in Hong Kong from 1979 to 1987 with a Landsat MSS and a SPOT HRV data. The data were radiometrically calibrated and geometrically registered. Three change detection techniques were applied. First, image overlay was used to enhance change areas visually. Second, a standardized principal components analysis was performed to yield minor components which were change related vectors. A thresholding technique was employed to separate the areas of changes from those of no-change. A binary change mask was created. Third, a post-classification comparison was merged with the change mask to identify the nature of specific land use and land cover changes. Major land development in the city can be easily detected and mapped with these techniques.  相似文献   

7.
An empirical study was performed assessing the accuracy of land use change detection when using satellite image data acquired ten years apart by sensors with differing spatial resolutions. Landsat/Multi‐spectral Scanner (MSS) with Landsat/Thematic Mapper (TM) or SPOT/High Resolution Visible (HRV) multi‐spectral (XS) data were used as a multi‐data pair for detecting land use change. The primary objectives of the study were to: (1) compare standard change detection methods (e.g. multi‐date ratioing and principal components analysis) applied to image data of varying spatial resolution; (2) assess whether to transform the raster grid of the higher resolution image data to that of the lower resolution raster grid or vice‐versa in the registration process: and (3) determine if Landsat/TM or SPOT/ HRV(XS) data provides more accurate detection of land use changes when registered to historical Landsat/MSS data.

Ratioing multi‐sensor, multi‐date satellite image data produced higher change detection accuracies than did principal components analysis and is useful as a land use change enhancement technique. Ratioing red and near infrared bands of a Landsat/MSS‐SPOT/HRV(XS) multi‐date pair produced substantially higher change detection accuracies (~10%) than ratioing similar bands of a Landsat/MSS ‐ Landsat/TM multi‐data pair. Using a higher‐resolution raster grid of 20 meters when registering Landsat/MSS and SPOTZHRV(XS) images produced a slightly higher change detection accuracy than when both images were registered to an 80 meter raster grid. Applying a “majority”; moving window filter whose size approximated a minimum mapping unit of 1 hectare increased change detection accuracies by 1–3% and reduced commission errors by 10–25%.  相似文献   

8.
Recent research involving photogrammetry applied to digital image processing at the Royal Institute of Technology, Stockholm is described. Three particular aspects have been investigated. These concern ground control points for satellite imagery; digital matching of simulated SPOT images; and digital matching of images which have different perspectives. Future prospects of research and development in related topics are outlined.  相似文献   

9.
Abstract

Landsat MSS, TM and SPOT XS imageries were used in conjunction with unsupervised, supervised and hybrid classilication techniques to classify land cover types in semi‐arid savannas of Mathison Pastoral Station in the Katherine region of northern Australia. Accuracy assessment was based on field data from 246 ground survey sites over a 745‐km2 study area. Of 14 land cover classes identified by traditional mapping means, all combinations of imageries and classification techniques differentiated at least seven land cover types. The overall accuracy for these classifications ranged between 43% and 67%. SPOT XS image delivered the best accuracy followed by TM and MSS; unsupervised classification performed better than supervised and hybrid methods. User's and producer's accuracy of individual land units ranged from 0% to 100%. Riparian woodlands, woodland on limestone slopes, shrubland on clay plains, woodland on limestone plains and shadows were the best‐mapped classes. The land units that were associated with undulating hills were not mapped accurately. However, incorporation of a digital elevation model (DEM) in a GIS improved the overall accuracy. The user's and producer's accuracy of dominant land cover types were also enhanced. The classification results and the efficacy of the techniques at Mathison were similar to those found for a nearby semi‐arid area (Kidman Springs) about 200 km from Mathison. However, the overall accuracy was lower at Mathison than at Kidman Springs. Spectral classification masks were developed from the SPOT XS and TM imageries at Kidman Springs, and were applied to classify SPOT XS and TM imageries at Mathison. Initial results showed that the classification mask could be successfully extrapolated to map dominant land cover types but only with moderate accuracy (50%).  相似文献   

10.
Conventional multispectral classification methods show poor performance with respect to detection of urban object classes, such as buildings, in high spatial resolution satellite images. This is because objects in urban areas are very complicated with respect to both their spectral and spatial characteristics. Multispectral classification detects object classes only according to the spectral information of the individual pixels, while a large amount of spatial information is neglected. In this study, a technique is described which attempts to detect urban buildings in two stages. The first stage is a conventional multispectral classification. In the second stage, the classification of buildings is improved by means of their spatial information through a modified co-occurrence matrix based filtering. The direction dependence of the co-occurrence matrix is utilised in the filtering process. The method has been tested by using TM and SPOT Pan merged data for the whole area of the city of Shanghai, China. After the co-occurrence matrix based filtering, the average user accuracy increased by about 46% and the average Kappa statistic by about 57%. This result is about 26% better than the accuracy improvement through normal texture filtering. The method presented in this study is very useful for a rapid estimation of urban building and city development, especially in metropolitan areas of developing countries.  相似文献   

11.
城市绿地信息提取遥感影像尺度效应分析   总被引:2,自引:0,他引:2  
绿地信息提取精度与影像的空间尺度有关,又与提取目标的特点有关。目前用于绿地信息提取的高分辨率遥感影像主要有QUICKBIRD、IKONOS和SPOT5,不同尺度影像对绿地信息提取精度的影响还缺少相关的研究。本文利用目视解译方法,研究三种尺度遥感影像提取绿地信息的精度。结果表明,三种影像中,由于QUICK-BIRD影像有更详细的空间结构,更适合于城市绿地零星分布特点,在以7层建筑物以下为主的研究区,绿地信息提取精度最高。  相似文献   

12.
A knowledge‐based strategy is utilized to develop a model for performing automated mapping of twenty vegetation cover types occurring within Big Bend National P ark, Texas. Many of the cover types found within this desert region cannot be reliably identified solely on a spectral basis, even on large‐scale, aircraft‐borne color imagery. Positive identification may be improved, however, by incorporating additional spatial information that may distinguish given cover types on a non‐spectral basis. In this study, digital soils and digital terrain data are utilized with spectral imagery from Landsat Thematic Mapper.

This knowledge‐based strategy is comprised of three primary elements: knowledge acquisition, rules development, and model structuring. Knowledge acquisition identifies the vegetation composition and non‐vegetative site characteristics associated with the occurrence of each cover type. Rules development compares and contrasts these characteristics among pairs of cover types and their subsets Model structuring places the presumed digital analogs of these characteristics within a multi‐layered classification.

After implementing the automated mapping model, its quality was evaluated with an accuracy assessment. Based upon the cover types field‐truthed at 142 sites within the park, the model performed at an 72% level of accuracy. For comparative purposes, a traditional supervised (spectral, statistical) classification yielded a 42% accuracy. The superiority of the model is attributed to its incorporation of knowledge‐based information; in essence, identification by considering only those cover types likely to occur over given spectral and physiographic conditions.  相似文献   

13.
Abstract

Image mapping using data from visible and infrared sensors has, as a major drawback, the frequent cloud cover experienced in many countries. This is one of the main reasons why topographic maps at 1:100,000 scale and larger are often outdated. The results of a study which investigated the possibilities of fusing up‐to‐date spaceborne microwave data with existing images from optical sensors for topographic map updating at a scale of 1:100, 000 are presented in this paper. A key issue researched was the influence of geometric distortions and corrections of remote sensing data on the results of pixel based digital image fusion. After having terrain‐geocoded and radiometrically enhanced imagery from the Landsat, SPOT, ERS‐1 and JERS‐1 satellites, the data were fused applying a variety of colour transformation techniques as well as statistical or arithmetic methods. Initially, the image fusion was implemented using images covering a test site in the north of The Netherlands in order to calibrate specified combinations and techniques in a rather flat area. With the experience gained, the remote sensing data acquired over the research site were processed. The research test site is located in a typical Developing Country in the humid Tropics, on the mountainous south‐west coast of Sumatra in Indonesia. The results of the various applied techniques and image combinations were evaluated with reference to their capability to overcome the cloud cover problem. New combinations of techniques and images were developed as result of an optimisation process. The research produced two prototypes of annotated 1:100,000 scale image maps containing fused, cloud‐free optical/microwave imagery.  相似文献   

14.
本文论述了利用SPOT影像制作立体正射影像图的基本原理。阐述了利用数字微分纠正方法制作正射影像图和视差匹配影像图的基本方法。最后利用我国西南高山地区1AP级SPOT影像制作了一幅1:100 000比例尺的立体正射影像图。  相似文献   

15.
通过利用SPOT5遥感影像对湿地资源调查方法的实验研究,探讨了遥感影像的融合方法,选取适合湿地资源调查的数据融合和重采样方法,并解译融合后的遥感数据。从而获取湿地研究区的分类数据。  相似文献   

16.
杨凯文 《现代测绘》2012,35(3):11-14
由于人口快速增长和农村人口向城市迁移,城市不透水面积也在持续快速增长。加速的城市扩张和无监控的城市开发会导致诸多生态环境问题。本文利用Landsat影像,采用附有限制条件的线性光谱混合分解、植被覆盖度与不透水面负相关模型、监督分类三种方法对南京城区的不透水表面分布进行空间分析。通过评估这三种方法提取的不透水面的精度和分析和种方法受其主要人为因素的影响大小以及不透水面的提取过程,表明了线性光谱混合分解方法较优。  相似文献   

17.
Abstract

The objective of this study was to explore the utility of multi‐temporal, multi‐spectral image data acquired by the IKONOS satellite system for monitoring detailed land cover changes within shrubland habitat reserves. Sub‐pixel accuracy in date‐to‐date registration was achieved, in spite of the irregular relief of the study area and the high spatial resolution of the imagery. Change vector classification enabled features ranging in size from tens of square meters to several hectares to be detected and six general land cover change classes to be identified. Interpretation of the change vector classification product in conjunction with visual inspection of the multi‐temporal imagery enabled identification of specific change types such as: vegetation disturbance and associated increase in soil exposure, shrub removal, urban edge vegetation clearing and fire maintenance, increase in vegetation cover, spread of invasive plant species, fire scars and subsequent recovery, erosional scouring, trail and road development, and expansion of bicycle disturbances.  相似文献   

18.
廊坊是京津冀城市群的地理中心,位于京津两个国际都市之间。本文选取廊坊市中心为研究对象,利用高分一号卫星数据和航空影像,分析廊坊市2010~2016年的城市扩张变化情况,为京津冀协同发展制定政策并为城市制订规划提供依据。首先对遥感影像进行预处理,对高分一号卫星影像,按用地类型分别采用监督分类、面向对象和植被指数法提取城市2016年地表现状信息,并进行精度评价;对2010年的航空影像进行数字化,两类数据结合进行基于分类的变化检测和精度评价,分析城市空间变化特征。结果表明,厂房、建筑和未建成区分别采用监督分类、建筑阈值分类和面向对象法分类效果较好;廊坊市城市扩张的驱动力主要为经济发展、政策因素、历史条件、地形等。  相似文献   

19.
利用雷达干涉数据进行城市不透水层百分比估算   总被引:2,自引:0,他引:2  
人工不透水层是城市地区的重要特征.作为城市生态环境的关键指数,不透水层百分比(Impervious Surfaces Percentage, ISP)常用于城市水文过程模拟、水质面源污染及城市专题制图等研究中.本文利用ERS-1/2 重复轨道雷达干涉数据,采用分类与回归树(CART)算法探究了雷达遥感在城市ISP估算中的可行性和潜力,并与SPOT5 HRG光学遥感图像的估算结果进行了分析比较.香港九龙港岛实验区的初步研究结果表明,雷达干涉数据在城市不透水层研究中具有一定的应用潜力,特别是裸土和稀疏植被的ISP估算结果要好于光学遥感,这主要得益于雷达干涉数据(特别是长时间相干图像)在人工建筑物和裸土或稀疏植被之间具有很强的区分能力,另外,雷达干涉数据和光学遥感数据间的融合能够提高ISP估算精度.  相似文献   

20.
Abstract

This study advocates the use of GIS and remote sensing technologies to establish urban evolution maps and assess the impact of urbanization on agricultural areas over the last three decades. The target area is the city of Béni‐Mellal, located in central Morocco. The methodology adopted makes use of panchromatic SPOT images to survey the urban areas during the 1980s and 1990s. Available topographic maps provided the information for the 1970s. Maps and statistics of land use and urban growth for Béni Mellal were established after manually classifying images on a per-polygon basis and digitizing topographic maps using GIS capabilities. The results show an increase in dense urban area by 980.7 ha from the 1970s to the 1990s. This increase occurred at the expense of forests (24.7 ha), plantations (752.3 ha), rangeland (113.4 ha), non‐irrigated land (69.7 ha), and irrigated land (20.6 ha). During this period, scattered urban areas, predominantly suburbs, increased by 755.9 ha to the detriment of forests (14.9 ha), plantations (109.8 ha), rangeland (138.9 ha), non‐irrigated land(400.5 ha), and irrigated land (91.9 ha). These cartographic and statistic results are efficient decision‐making tools for protecting agricultural land and planning urban and suburban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号