首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ahar area is located in East Azarbaijan province, and covers an area of about 2,500 km2. Spectral mapping techniques were applied on VNIR and SWIR of ASTER data for discriminating between hydrothermal alteration zones and the identification of high potential mineralized lithological unit associated with hydrothermal porphyry copper mineralization in the Ahar. In this research to remove atmospheric and topographic effects from ASTER data, the log-residual method (LRM) was used. Four methods, Relative Band Depth Ratios (RBD), Principal Component Analysis (PCA), Minimum Noise Fraction (MNF) and matched filtering (MF), were used to processing and interpretation of remote sensing data in the study area. Results show that ASTER images provide preliminary mineralogy information and geo-referenced alteration maps at low cost and with high accuracy for reconnaissance porphyry copper mineralizations.  相似文献   

2.
In spite of the dominance of traditional mineral exploration methods that demand physical characterization of rocks and intense field work, remote sensing technologies have also evolved in the recent past to facilitate mineral exploration. In the present study, we have processed visible near infrared (VNIR) and shortwave infrared (SWIR) bands of Advanced space-borne thermal emission and reflection radiometer (ASTER) data to detect surface mineralization signatures in Mundiyawas - Khera area in Alwar basin, north-eastern Rajasthan, India using spectral angle mapper (SAM). The potential of SAM method to detect target under variable illumination condition was used to delineate galena, chalcopyrite, malachite etc. as surface signatures of mineralization. It was ensured that the identified surface anomalies were spectrally pure using pixel purity index. Spectral anomalies were validated in the field and also using X-Ray diffraction data. Spectral anomaly maps thus derived were integrated using weight of evidence method with the lineament density, geochemical anomaly, bouger anomaly maps to identify few additional potential areas of mineralization. This study thus establishes the importance of remote sensing in mineral exploration to zero in on potentially ore rich but unexplored zones.  相似文献   

3.
马睿  张晓帆  陈川 《遥感学报》2015,19(2):195-208
本文运用ASTER遥感数据识别与提取新疆南天山铜花山地区蛇绿混杂岩带岩性信息。首先,利用比值法快速区别岩性,并比较了识别同一种岩性的不同指数的性能;然后,将对数残差算法应用在ASTER数据的短波红外波段上,在区域尺度上把蛇绿岩杂岩体同围岩区分开来;最后,运用标准光谱数据和光谱角填图法识别出多种蛇绿岩成分及其空间分布。现有地质图和野外验证反映出该方法有一定效果。利用混淆矩阵对光谱角填图法分类结果定量评价,结果表明,把ASTER的可见光-近红外、短波红外波段数据结合在一起进行岩性分类,可以达到比单独用短波红外数据分类更高的分类精度。  相似文献   

4.
Abstract

This study employs visible-near infrared and short wave infrared datasets of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to map salt diapirs and salt diapir-affected areas using Multi-Layer Perceptron (MLP) in the Zagros Folded Belt, Iran, and introduces the role of earth observation technology and a type of digital earth processing in lithological mapping and geo-environmental impact assessment. MLP neural network model with several learning rates between 0.01 and 0.1 was carried out on ASTER L1B data, and the results were compared using confusion matrices. The most appropriate classification image for L1B input to MLP was produced by learning rate of 0.01 with Kappa coefficient of 0.90 and overall accuracy of 92.54%. The MLP result of input data set mapped lithological units of salt diapirs and demonstrated affected areas at the southern and western parts of the Konarsiah and Jahani diapirs, respectively. Field observations and X-ray diffraction analyses of field samples confirmed the dominant mineral phases identified remotely. It is concluded that MLP is an efficient approach for mapping salt diapirs and salt-affected areas.  相似文献   

5.
Abstract

The Shahr-e-Babak region located in the Kerman metallogenic belt is one of the high potential segments of Urumieh–Dokhtar magmatic arc for porphyry copper and epithermal gold mineralization in the south of Iran. This high potential zone encompasses several porphyry copper deposits under exploitation, development and exploration stages. The aim of this study is to evaluate Landsat-8 data and comparison with the Advanced Spaceborne Thermal Emission and Reflection Radiometer data-sets for mapping hydrothermal alteration zones related to Cenozoic magmatic intrusions in Shahr-e-Babak region. Previous studies have proven the robust application of ASTER in lithological mapping and mineral exploration; nonetheless, the Landsat-8 data have high capability to map and detect hydrothermal alteration zones associated with porphyry copper and epithermal gold mineralization. In this investigation, several band combinations and multiplications, developed selective principal component analysis and image transformations were developed for discriminating hydrothermal alteration zones associated with porphyry copper mineralization using Landsat-8 data.  相似文献   

6.
利用ASTER热红外遥感数据开展岩石化学成分填图的初步研究   总被引:14,自引:0,他引:14  
陈江  王安建 《遥感学报》2007,11(4):601-608
ASTER遥感成像仪的发射提供了廉价的多光谱热红外数据,是热红外遥感数据的一个重要来源。ASU热红外光谱库提供了多种矿物的热红外发射率波谱的同时,还提供了矿物的化学成分即氧化物含量的分析结果。把ASU波谱库的矿物波谱重采样至ASTER各热红外波段,对矿物的波谱进行波段比值处理,与各矿物成分进行相关分析,选择波段比值与各氧化物含量最大相关系数,进行对数模拟,从而可以确定出发射率光谱与化学成分的数值关系。本文分别对SiO2,MgO,Al2O3,CaO,K2O,Na2O进行了数值分析及公式模拟。统计是根据各矿物做出的,模拟公式同样适用于岩石,进而可以在遥感热红外数据中得以应用。在四川省西范坪矿区利用模拟公式对SiO2,Na2O,K2O三种氧化物进行了岩石填图,在野外大部分得到了证实;利用SiO2进行了硅化蚀变带填图,在异常带内发现了砂岩型铜矿化。  相似文献   

7.
In this study, we proposed an automated lithological mapping approach by using spectral enhancement techniques and Machine Learning Algorithms (MLAs) using Airborne Visible Infrared Imaging Spectroradiometer-Next Generation (AVIRIS-NG) hyperspectral data in the greenstone belt of the Hutti area, India. We integrated spectral enhancement techniques such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) transformation and different MLAs for an accurate mapping of rock types. A conjugate utilization of conventional geological map and spectral enhancement products derived from ASTER data were used for the preparation of a high-resolution reference lithology map. Feature selection and extraction methods were applied on the AVIRIS-NG data to derive different input dataset such as (a) all spectral bands, (b) shortwave infrared bands, (c) Joint Mutual Information Maximization (JMIM) based optimum bands, and (d) optimum bands using PCA, to choose optimum input dataset for automated lithological mapping. The comparative analysis of different MLAs shows that the Support Vector Machine (SVM) outperforms other Machine Learning (ML) models. The SVM achieved an Overall Accuracy (OA) and Kappa Coefficient (k) of 85.48% and 0.83, respectively, using JMIM based optimum bands. The JMIM based optimum bands were more suitable than other input datasets to classify most of the lithological units (i.e. metabasalt, amphibolite, granite, acidic intrusive and migmatite) within the study area . The sensitivity analysis performed in this study illustrates that the SVM is less sensitive to the number of samples and mislabeling in the model training than other MLAs. The obtained high-resolution classified map with accurate litho-contacts of amphibolite, metabasalt, and granite can be coupled with an alteration map of the area for targeting the potential zone of gold mineralization.  相似文献   

8.
矿化蚀变信息的提取是遥感找矿中重要的内容,ASTER遥感数据因波段范围宽、波段多,在蚀变异常与矿产勘探中有较好的应用前景。本文在比较了前人的研究方法,如比值法、主成分分析法、光谱角法基础上,通过对西藏朱诺矿区进行试验研究,得出了在该研究区采用主成分分析法最佳的结论。  相似文献   

9.
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) SWIR bands are used in identification of alteration zones which have developed during hydrothermal activity. Among the available methods of hyperspectral data analysis, PCA and RBD techniques are found to be useful in delineation of clay alteration and iron oxide zones. ASTER data analysis by PCA and RBD of (B5+B7)/B6 shows delineation of two distinct alteration zones with characteristic mineral assemblages viz. propylitic zone (chlorite, epidote, montmorillonite and calcite) and phyllic zone (illite, kaolinite, white mica and quartz). Iron oxide rich zones (gossans) have been delineated using ASTER band ratio technique (B2/B1). Geochemical dispersion of soil samples shows that Pb and Zn concentration is higher in phyllic and propylitic zones around Sawar and Malpura area respectively. Thus, ASTER data shows the potential in discrimination of metasedimentary rocks and delineation of alteration zones for targeting base metals around Sawar-Malpura area in central Rajasthan.  相似文献   

10.
This paper is an attempt to introduce the role of earth observation technology and a type of digital earth processing in mineral resources exploration and assessment. The sub-pixel distribution and quantity of alteration minerals were mapped using linear spectral unmixing (LSU) and mixture tuned matched filtering (MTMF) algorithms in the Sarduiyeh area, SE Kerman, Iran, using the visible-near infrared (VNIR) and short wave infrared (SWIR) bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument and the results were compared to evaluate the efficiency of methods. Three groups of alteration minerals were identified: (1) pyrophylite-alunite (2) sericite-kaolinite, and (3) chlorite-calcite-epidote. Results showed that high abundances within pixels were successfully corresponded to the alteration zones. In addition, a number of unreported altered areas were identified. Field observations and X-ray diffraction (XRD) analysis of field samples confirmed the dominant mineral phases identified remotely. Results of LSU and MTMF were generally similar with overall accuracy of 82.9 and 90.24%, respectively. It is concluded that LSU and MTMF are suitable for sub-pixel mapping of alteration minerals and when the purpose is identification of particular targets, rather than all the elements in the scene, the MTMF algorithm could be proposed.  相似文献   

11.
基于ASTER遥感影像的西昆仑岩性信息提取方法研究   总被引:1,自引:0,他引:1  
基于西昆仑西段布伦口地区各岩性段内岩石样品的矿物组成及其光谱特征分析,提取代表各岩性单元的岩性端元波谱曲线;对研究区内ASTER可见光(VNIR)和短波红外(SWIR)数据进行匹配滤波处理,成功提取了研究区内9种重要的岩性单元(包括古元古界布仑阔勒群的黑云石英岩、黑云斜长片麻岩、黑云石英片岩和黑云角闪斜长片麻岩,志留系温泉沟群的绿泥石绢云母板岩、黑色千枚岩和绢云母石英片岩,以及石英闪长岩和英云闪长岩)。经已知地质资料和野外查证资料分析证明,用上述方法提取岩性信息的结果可靠,能为岩性填图及矿床勘查工作提供参考。  相似文献   

12.
基于赞比亚谦比希(Chambishi)铜矿带中的多种蚀变矿物及其在ASTER影像VNIR - SWIR谱带的特征光谱分析,采用相对波段吸收深度(Relative absorption- Band Depth,RBD)和波段比值的方法对蚀变信息进行增强处理.用波段比值ASTER 2/ASTER 1和ASTER 3的RBD...  相似文献   

13.
运用多光谱遥感数据进行矿化蚀变信息提取,对圈定找矿预测区具有重要意义.采用ASTER数据及其矿化蚀变信息提取原理,对滇东南马关都龙锡矿含矿岩体分布区分别提取了方解石化、白云岩化、绿泥石化等3类蚀变遥感异常信息.所提取的蚀变异常与野外调查发现的矿化点吻合性好,蚀变信息可靠,对指导找矿有较好的效果,为该地区矿产资源潜力评价...  相似文献   

14.
This study evaluated the utility of narrowband (EO-1 Hyperion) and broadband (Landsat ETM+) remote sensing data for the estimation of leaf area index (LAI) in a tropical environment in Sulawesi, Indonesia. LAI was inferred from canopy gap fraction measurements taken in natural tropical forest and cocoa plantations. Single and multiple spectral bands and spectral indices were used as predictor variables in reduced major axis (RMA) and ordinary least squares (OLS) regression models. The predictive power of most regression models was notably higher when employing narrowband data instead of broadband data. Highly significant relationships between LAI and spectral reflectance were observed near the red-edge region and in most shortwave infrared (SWIR) bands. In contrast to most near-infrared (NIR) narrow bands, the correlation between SWIR reflectance and LAI was not confounded when including both vegetation types and did not suffer from saturation. The results demonstrate that leaf area index of a challenging tropical environment can be estimated with satisfactory accuracy from hyperspectral remote sensing data.  相似文献   

15.
Mineral deposit mapping is very essential for sustainable and eco-friendly exploitation of natural resources. The Kingdom of Saudi Arabia has abundant natural resources such as natural gas, oil and minerals. It reserves high quantity of minerals such as phosphates, bauxites, copper, gold and other industrial minerals. The red soil regions located in Hail and Qassim provinces of Saudi Arabia have rich amount of bauxite (major aluminum ore) deposits. In order to initiate the focus on mapping of mineral deposits along this area, standardized hyper-spectral analysis has been carried out by using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data. The spectral signature of gibbsite (major element in bauxite) samples is analyzed with reference to the spectral features of gibbsite in the visible near infrared and short-wave infrared bands electromagnetic spectrum. Advanced hyper-spectral transformations such as minimum noise fraction function and pixel purity index have been performed to identify the target end-member. The existence of the mineral is confirmed by comparing the spectral signatures of the end-member with the predefined spectral plots of ASTER and United States Geological Survey spectral libraries. Finally, the end-members are mapped and their abundance is estimated in 0–1 scale. The study has opened up new areas for mapping of bauxite deposits in the area and leads to eco-friendly exploitation of natural resources. It also validates the high potential of ASTER multispectral satellite data for the exploration and mapping of mineral resources.  相似文献   

16.
We have attempted comparative analysis of the utility of linear spectral unmixing (LSU) method and band ratios for delineating bauxite from laterite within the lateritic bauxite provinces of Chotonagpur Plateau, Jharkhand of India. This was attempted based on processing of visible–near infrared (VNIR) and shortwave infrared (SWIR) spectral bands of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. In LSU method, spectral features of main constituent minerals of lateritic bauxite are used to decompose the pixel spectra to estimate the relative abundance of bauxite and laterite in each pixel to spatially delineate bauxite within laterite. We have also compared the bauxite map derived using LSU method with bauxite maps of two band ratios in terms of spatial disposition of bauxite. We also have attempted to relate the abundance values of pixels of LSU-based bauxite map with band ratio values of bauxite pixels of two selected bauxite indices.  相似文献   

17.
There is considerable interest in optimizing geothermal exploration techniques via the mapping of alteration and evaporate mineralisation, as well as of thermal emissions associated with geothermally active areas on the Earth’s surface. Optical and thermal satellite sensor technologies, improvements in processing algorithms and the means for large scale (e.g. 1:250,000) spatial data distribution are required for detecting both these attributes. The extensive visible, -near, -shortwave and thermal infrared (VNIR-SWIR-TIR) data archive acquired by the multi-spectral Advanced Spaceborne Thermal Emission Reflectance Radiometer (ASTER) provides a rich source of geoscience related imagery for geothermal exploration. Examples of generating large scale mosaicked ASTER imagery to provide province to continental mineral mapping have been undertaken in areas including such as Australia, western USA, Namibia and Zagros Mountains Iran. In addition, ASTER’s thermal infrared imagery also provides night time land surface temperature (LST) estimates relevant for detecting possible geothermal related anomalies.This study outlines existing methods for the application of ASTER data for geothermal exploration in East Africa. The study area encompasses a section of the East African Rift System across the Tanzanian and Kenyan border. The area includes rugged volcanic terrain which has had geological mapping of limited coverage at detailed scales, from various heritages and mapping agencies. This study summarizes the technology, the processing methodology and initial results in applying ASTER imagery for such compositional and thermal anomaly mapping related to geothermal activity. Fields observations have been used from the geothermal springs of Lake Natron, Tanzania, and compared with ASTER derived spectral composition and land surface temperature results. Published geothermal fields within the Kenyan portion of the study area have also been incorporated into this study.  相似文献   

18.
The aim of this study was to detect and map MSV using RapidEye multispectral sensor in Ofcolaco farm. To achieve this objective, the acquired RapidEye sensor was classified using the robust Random Forest algorithm. Furthermore, the variable importance technique was used to determine the influence of each spectral band and indices on the mapping accuracy. For better performance of image data, the value of the commonly used vegetation indices in improving the classification accuracy was tested. The results revealed that the use of RapidEye spectral bands in detection and mapping of MSV yielded good classification results with an overall accuracy of 82.75%. The inclusion of vegetation indices computed from RapidEye sensor improved the classification accuracies by 3.4%. The most important RapidEye spectral bands in classifying MSV were near infrared, blue and red-edge. On the other hand, the most important vegetation indices were the Soil adjusted vegetation index, Enhanced vegetation index, Red index and Normalized Vegetation Index. The current study recommends future studies to assess the importance of multi-temporal remote sensing applications in detecting and monitoring the spread of MSV.  相似文献   

19.
Concealed and fossilized geothermal systems are not characterized by obvious surface manifestations like hotsprings and fumaroles, therefore, could not be easily identifiable using conventional techniques. In this investigation, the applicability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion data-sets were evaluated in discriminating hydrothermal alteration minerals associated with geothermal systems as a proxy in identifying subtle Geothermal systems at Yankari Park, Nigeria. Feature-oriented principal component selection, spectral angle mapper, linear spectral unmixing were applied to ASTER data based on spectral characteristics of hydrothermal alteration key minerals for a systematic selective extraction of the information of interest. Analytical imaging and geophysics-developed processing methods were applied to Hyperion data for mapping iron oxide/hydroxide minerals and clay mineral assemblages in hydrothermal alteration zones. The results indicate that ASTER and Hyperion could be complemented for reconnaissance stage of targeting subtle alteration mineral assemblages associated with geothermal systems.  相似文献   

20.
Bauxite deposits of Jharkhand in India are resulted from the lateritization process and therefore are often associated with the laterites. In the present study, ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) image is processed to delineate bauxite rich pockets within the laterites. In this regard, spectral signatures of lateritic bauxite samples are analyzed in the laboratory with reference to the spectral features of gibbsite (main mineral constituent of bauxite) and goethite (main mineral constituent of laterite) in VNIR–SWIR (visible-near infrared and short wave infrared) electromagnetic domain. The analysis of spectral signatures of lateritic bauxite samples helps in understanding the differences in the spectral features of bauxites and laterites. Based on these differences; ASTER data based relative band depth and simple ratio images are derived for spatial mapping of the bauxites developed within the lateritic province. In order to integrate the complementary information of different index image, an index based principal component (IPC) image is derived to incorporate the correlative information of these indices to delineate bauxite rich pockets. The occurrences of bauxite rich pockets derived from density sliced IPC image are further delimited by the topographic controls as it has been observed that the major bauxite occurrences of the area are controlled by slope and altitude. In addition to above, IPC image is draped over the digital elevation model (DEM) to illustrate how bauxite rich pockets are distributed with reference to the topographic variability of the terrain. Bauxite rich pockets delineated in the IPC image are also validated based on the known mine occurrences and existing geological map of the bauxite. It is also conceptually validated based on the spectral similarity of the bauxite pixels delineated in the IPC image with the ASTER convolved laboratory spectra of bauxite samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号