首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 143 毫秒
1.
丁耀炜 《岩矿测试》1984,(2):171-173
近年来,用含硫试剂沉淀富集、铑、铱工作不少。本文提出用二硫代乙二酰胺作沉淀剂,在稀硫酸中以毫克量砷为载体,氯化亚锡为还原剂富集微量铑和铱,并拟定了矿石中微量铑、铱的分析流程。本法较之铅试金法流程简单,操作方便,回收率高。  相似文献   

2.
铜阳极泥富集了矿石、精矿或熔剂中绝大部分贵金属(如铱和铑),具有很高的综合回收价值。目前尚无铜阳极泥中铱和铑检测标准,而对其中铱和铑检测方法的开发是铱铑回收提取工作的重要前提。本文建立了锍镍试金富集结合电感耦合等离子体质谱法(ICP-MS)测定铜阳极泥中铱铑的检测技术。实验中通过锍镍试金捕集试样中的贵金属铱和铑,用50%盐酸溶解锍镍扣,使得含铱和铑的沉淀物与银及其他杂质元素有效分离,趁热过滤,铱铑沉淀物和滤膜转入封闭消解罐中以50%王水为介质溶解。试液采用ICP-MS直接测定铱和铑含量。实验优化了样品预处理条件,镍硫比为4∶1,时,熔渣为酸性,熔渣流动性和渣扣分离效果好且能有效捕集试样中铱和铑;锍镍扣溶解酸度为50%盐酸时,锍镍扣溶解反应合适且溶解完全,趁热过滤,其中银、镍、铜等杂质元素大部分被盐酸除去,达到了分离含铱和铑沉淀物与银及其他杂质元素的效果;密封消解温度和时间分别为160℃、2~3h时,铱和铑消解完全;选择合适的测定同位素可以消除可能存在的质谱干扰,以193Ir和103Rh为测定同位素、203Tl和...  相似文献   

3.
用茜素红S螯合形成树脂分离富集催化极谱法测定矿石中的铑、铱李增文张凯鲍长利杨柳(长春科技大学应用理学院,长春130026)贵金属在地壳中的平均含量很低,主要富集在与超基性岩和基性岩有关的铜镍矿床、铬、铁矿床和砂矿床中。目前测定矿石中的铑采用极谱法,铱...  相似文献   

4.
随着国民经济的不断发展,各部门对铂族金属的需求日益增多.为开展综合利用,扩大铂族矿产资源.我们对某地铬精矿中的铂族矿物进行了选矿研究工作,取得了初步结果.该铬精矿中,六种铂族元素均有,其中以钉含量最高.次为锇、铱、铂,再次为铑、钯.铂族元素主要呈硫化物、砷化物、硫砷化物和金属互化物的独立矿物存在.主要矿物有硫铱锇钌矿、砷铂矿、硫砷铱矿、含铱硫砷铂矿、锑钯矿、铱钯矿、锇铱矿、硫砷铑铱铂矿等.铬精矿中主要  相似文献   

5.
该研究用钍试剂Ⅰ与D290大孔强碱性阴离子树脂螯合形成树脂分离、富集岩石样品中的贵金属铑,用火焰原子吸收分光光度法测定。实验表明,在pH=1.0条件下,铑定量上柱,用1 mol/L的HCl洗脱,火焰原子吸收分光光度计直接测定,回收率在96%~103%,相对标准偏差<3%。  相似文献   

6.
建立了锍镍试金富集—电感耦合等离子质谱法测定地质样品中金铂钯铑铱钌的方法。研究了富集时各种实验因素的影响,样品用琉试金富集,盐酸处理锍镍扣,碲共沉淀富集,过滤,沉淀用王水溶解,ICP-M S测定。方法检出限:A u为0.11、P t为0.050、Pd为0.028、R h为0.018、Ir为0.013、R u为0.02,相对标准偏差(n=12),A u为8.25%、P t为4.76%、P t为4.97%、R h为5.63%、Ir为5.38%、R u为6.81%。经国家一级地球化学标准物质验证,铂族元素和金的测定值与标准质相吻合。  相似文献   

7.
韦山桃 《矿产与地质》2006,20(6):709-712
在一定量的[F eC l4]-的存在下,以磷酸三丁酯(俗名TBP)萃取,然后用K I—HC l反萃取,进行富集分离铱(Ir)的实验研究。确定了萃取和反萃取的条件,考查了多种共存元素的分离情况,并在此基础上,制定了岩石矿物中超微量铱的简便、快速的测定方法。在拟定的条件下,铱的检测下限为0.005ng/mL。并对两个w(Ir)值分别为0.27×1-0 6和0.05×10-6的标准地质样品进行了9次测定。其相对标准偏差(R.S.D)为9.4%和7.5%。因此,该方法适用于岩石矿物中超微量铱的测定。  相似文献   

8.
广西黄茆泥盆系—石炭系界线层的元素地球化学异常   总被引:5,自引:1,他引:5  
本文记述了用放射化学和仪器中子活化分析,测定了广西黄茆泥盆系—石炭系剖面,包括铱在内的近40种元素丰度的结果。发现泥盆系—石炭系界线层存在铱的异常。其峰值为156ppt,相对于下伏地层的富集因子为12。与铱同步富集的还有金、镍、钴、砷、锑等亲铁和亲硫元素。讨论了造成铱等元素丰度异常的原因。无论是地外成因,还是火山成因都无法完满解释。真正的异常机制还有待深入研究。  相似文献   

9.
孔屏  柴之芳 《地质科学》1993,28(1):87-92
通过对地质样品中铱的赋存状态研究及对残渣相中微粒的透射电镜分析,得出:在K-T界线样品中铱主要存在于残渣相中,不利于地球化学过程富集铱;铱在残渣相的富集与有机不溶物的存在没有必然联系;白垩-第三纪的生物绝灭事件中有火山活动参与;K-T界线事件的触发物为地外物质撞击。最后提出了K-T界线样品异常铱来源于地外物质撞击和火山喷发的混合模型。  相似文献   

10.
 通过对地质样品中铱的赋存状态研究及对残渣相中微粒的透射电镜分析,得出:在K-T界线样品中铱主要存在于残渣相中,不利于地球化学过程富集铱;铱在残渣相的富集与有机不溶物的存在没有必然联系;白垩-第三纪的生物绝灭事件中有火山活动参与;K-T界线事件的触发物为地外物质撞击。最后提出了K-T界线样品异常铱来源于地外物质撞击和火山喷发的混合模型。  相似文献   

11.
来自蛇绿岩地幔的硫(砷)化物矿物组合   总被引:1,自引:0,他引:1  
近来在西藏雅鲁藏布江蛇绿岩带的罗布莎蛇绿岩块的地幔豆荚状铬铁矿中发现一个包括金刚石、柯石英、自然元素、合金、氧化物以及硫(砷)化物组成的地幔矿物群。该矿物群的硫(砷)化物具有特殊化学成分并呈包裹体分布在贱金属(BM)和铂族元素(PGE)或它们的合金中,大量化学成分分析得知它们主要由下列元素组成:S、As、Te、Fe、Ni、Co、Cu、Pt、Pd、Ru、Rh、Os、Ir、Mn和Ti。根据化学成分可辨别出约30种硫(砷)化物矿物:FeS、NiS、(Ni,Fe)S、Fe3S2、Ni3S2、(Ru,Os,Ir)S2、Rh7As3、Rh5Ni(Cu)As4、Pd4Rh3As3、Pd8As2、Pd3TeAs、Pd7Te3、RuAs、PtAs2、Ni4Rh3As3、Rh(As,S)2、(Rh,Ir)(As,S)2、Ir(As,S)2、MnS、Ti7S3、Ti7N3、Rh3.5Se3.5CuS2、RhS、Ir2S3、(Ir,Cu)2、S3(Co,Ni,Fe)2(As,S)3、(Ir,Pt)(As,S)2、Ru3(As,S)7以及(BM)x(PGE)yS10-(x y)等,其中包括已定名和未定名的矿物。由于矿物粒度小(<25μm),缺乏X射线分析资料,有待进一步研究。  相似文献   

12.
Summary The Jinchuan deposit is a platinum group element (PGE)-rich sulfide deposit in China. Drilling and surface sampling show that three categories of platinum group element (PGE) mineralization occur; type I formed at magmatic temperatures, type II occurs in hydrothermally altered zones of the intrusion, and type III in sheared dunite and lherzolite. All ore types were analyzed for Os, Ir, Ru, Rh, Pd, Pt and Au, as well as for Cu, Ni, Co and S. Type I ore has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios of <7 and relatively flat chondrite-normalized noble metal patterns; the platinum group minerals (PGM) are dominated by sperrylite and moncheite associated with chalcopyrite, pyrrhotite and pentlandite. Type II has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 40 to 330 and noble metal distribution patterns with a positive slope; the most common PGM are sperrylite and Pd bismuthotelluride phases concentrated mostly at the margins of base metal sulfides. Type III ores have the highest (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 240 to 710; the most abundant PGM are sperrylite and phases of the Pt–Pd–Te–Bi–As–Cl system. It is concluded that the Jinchuan deposit formed as a result of primary magmatic crystallization followed by hydrothermal remobilization, transport, and deposition of the PGE.  相似文献   

13.
The concentrations of Rh, Au and other highly siderophile elements (HSE: Re, Os, Ir, Ru, Pt, Rh, Pd and Au), and 187Os/188Os isotope ratios have been determined for samples from peridotite massifs and xenoliths in order to further constrain HSE abundances in the Earth's mantle and to place constraints on the distributions processes accounting for observed HSE variations between fertile and depleted mantle lithologies. Concentrations of Re, Os, Ir, Ru, Pt and Pd were determined by isotope dilution ICP-MS and N-TIMS. The monoisotopic elements Rh and Au were quantified by standardization relative to the concentrations of Ru and Ir, respectively, and were determined from the same digestion aliquot as other HSE. The measurement precision of the concentration data under intermediate precision conditions, as inferred from repeated analyses of 2 g test portions of powdered samples, is estimated to be better than 10% for Rh and better than 15% for Au (1 s).Fertile lherzolites display non-systematic variation of Rh concentrations and constant Rh/Ir of 0.34 ± 0.03 (1 s, n = 57), indicating a Rh abundance for the primitive mantle of 1.2 ± 0.2 ng/g. The data also suggest that Rh behaves as a compatible element during low to moderate degrees of partial melting in the mantle or melt–mantle interaction, but may be depleted at higher degrees of melting. In contrast, Au concentrations and Au/Ir correlate with peridotite fertility, indicating incompatible behaviour of Au during magmatic processes in the mantle. Fertile lherzolites display Au/Ir ranging from 0.20 to 0.65, whereas residual harzburgites have Au/Ir < 0.20. Concentrations of Au and Re are correlated with each other and suggest similar compatibility of both elements. The primitive mantle abundance of Au calculated from correlations displayed by Au/Ir with Al2O3 and Au with Re is 1.7 ± 0.5 ng/g (1 s).The depletion of Pt, Pd, Re and Au relative to Os, Ir, Ru and Rh displayed by residual harzburgites, suggests HSE fractionation during partial melting. However, the HSE abundance variations of fertile and depleted peridotites cannot be explained by a simple fractionation process. Correlations displayed by Pd/Ir, Re/Ir and Au/Ir with Al2O3 may reflect refertilization of previously melt depleted mantle rocks due to reactive infiltration of silicate melts.Relative concentrations of Rh and Au inferred for the primitive mantle model composition are similar to values of ordinary and enstatite chondrites, but distinct from carbonaceous chondrites. The HSE pattern of the primitive mantle is inconsistent with compositions of known chondrite groups. The primitive mantle composition may be explained by late accretion of a mixture of chondritic with slightly suprachondritic materials, or alternatively, by meteoritic materials mixed into mantle with a HSE signature inherited from core formation.  相似文献   

14.
The abundances of the highly siderophile elements (HSE) Re, Os, Ir, Ru, Pt, Rh, Pd and Au, and 187Os/188Os isotope ratios have been determined for a set of carbonaceous, ordinary, enstatite and Rumuruti chondrites, using an analytical technique that permits the precise and accurate measurement of all HSE from the same digestion aliquot. Concentrations of Re, Os, Ir, Ru, Pt and Pd were determined by isotope dilution ICP-MS and N-TIMS analysis. The monoisotopic elements Rh and Au were quantified relative to the abundance of Ir.Differences in HSE abundances and ratios such as Re/Os, 187Os/188Os, Pd/Ir and Au/Ir between different chondrite classes are further substantiated with new data, and additional Rh and Au data, including new data for CI chondrites. Systematically different relative abundances of Rh between different chondrite classes are reminiscent of the behaviour of Re. Carbonaceous chondrites are characterized by low average Rh/Ir of 0.27 ± 0.03 (1s) which is about 20% lower than the ratio for ordinary (0.34 ± 0.02) and enstatite chondrites (EH: 0.33 ± 0.01; EL: 0.32 ± 0.01). R chondrites show higher and somewhat variable Rh/Ir of 0.37 ± 0.07.Well-defined linear correlations of HSE, in particular for bulk samples of ordinary and EL chondrites, are explained by binary mixing and/or dilution by silicates. The HSE carriers responsible for these correlations have a uniform chemical composition, indicating efficient homogenization of local nebular heterogeneities during or prior to the formation of the host minerals in chondrite components. Excepting Rumuruti chondrites and Au in carbonaceous chondrites, these correlations also suggest that metamorphism, alteration and igneous processes had negligible influence on the HSE distribution on the bulk sample scale.Depletion patterns for Rh, Pd and Au in carbonaceous chondrites other than CI are smoothly related to condensation temperatures and therefore consistent with the general depletion of moderately volatile elements in carbonaceous chondrites. Fractionated HSE abundance patterns of ordinary, enstatite and Rumuruti chondrites, however, are more difficult to explain. Fractional condensation combined with the removal of metal phases at various times, and later mixing of early and late formed metal phases may provide a viable explanation. Planetary fractionation processes that may have affected precursor material of chondrite components cannot explain the HSE abundance patterns of chondrite groups. HSE abundances of some, but not all Rumuruti chondrites may be consistent with solid sulphide-liquid sulphide fractionation processes during impact induced melting.  相似文献   

15.
A method was developed for the determination of platinum‐group elements (PGE) in geological samples by isotope dilution‐inductively coupled plasma‐mass spectrometry combined with sulfide fire assay preconcentration. Samples were fused and PGE analytes were concentrated in sulfide buttons. The buttons were dissolved using HCl leaving PGE analytes in insoluble residues, which were digested in HNO3 and simultaneously processed for the distillation of Os. The remaining solutions were further prepared for the purification of Ru, Rh, Pd, Ir and Pt using a tandem assembly of cation and Ln resin columns. The eluents were directly analysed by membrane desolvation‐ICP‐MS. Ruthenium, Pd, Os, Ir and Pt were determined by isotope dilution, whereas Rh was determined by conventional reference material calibration combined with 193Ir as the internal standard element. The method was validated using a series of PGE reference materials, and the measurement data were consistent with the recommended and the literature values. The measurement precision was better than 10% RSD. The procedural blanks were 0.121 ng for Ru, 0.204 for Rh, 0.960 ng for Pd, 0.111 ng for Os, 0.045 ng for Ir and 0.661 ng for Pt, and the limits of detection (3s) were 0.011 ng g?1 for Ru, 0.008 ng g?1 for Rh, 0.045 ng g?1 for Pd, 0.009 ng g?1 for Os, 0.006 ng g?1 for Ir and 0.016 ng g?1 for Pt when a test portion mass of 10 g was used. This indicates that the proposed method can be used for the determination of trace amounts of PGE in geological samples.  相似文献   

16.
Platinum-group element (PGE) geochemistry combined with elemental geochemistry and magnetite compositions are reported for the Mesoproterozoic Zhuqing Fe–Ti–V oxide ore-bearing mafic intrusions in the western Yangtze Block, SW China. All the Zhuqing gabbros display extremely low concentrations of chalcophile elements and PGEs. The oxide-rich gabbros contain relatively higher contents of Cr, Ni, Ir, Ru, Rh, and lower contents of Pt and Pd than the oxide-poor gabbros. The abundances of whole-rock concentrations of Ni, Ir, Ru, and Rh correlate well with V contents in the Zhuqing gabbros, implying that the distributions of these elements are controlled by magnetite. The fractionation between Ir–Ru–Rh and Pt–Pd in the Zhuqing gabbros is mainly attributed to fractional crystallization of chromite and magnetite, whereas Ru anomalies are mainly due to variable degrees of compatibility of PGE in magnetite. The order of relative incompatibility of PGEs is calculated to be Pd?<?Pt?<?Rh?<?Ir?<?Ru. The very low PGE contents and Cu/Zr ratios and high Cu/Pd ratios suggest initially S-saturated magma parents that were highly depleted in PGE, which mainly formed due to low degrees of partial melting leaving sulfides concentrating PGEs behind in the mantle. Moreover, the low MgO, Ni, Ir and Ru contents and high Cu/Ni and Pd/Ir ratios for the gabbros suggest a highly evolved parental magma. Fe–Ti oxides fractionally crystallized from the highly evolved magma and subsequently settled in the lower sections of the magma chamber, where they concentrated and formed Fe–Ti–V oxide ore layers at the base of the lower and upper cycles. Multiple episodes of magma replenishment in the magma chamber may have been involved in the formation of the Zhuqing intrusions.  相似文献   

17.
吉林省油页岩中铂族元素的化学牲及分配规律研究   总被引:2,自引:0,他引:2  
采用电感耦合等离子体发射质谱仪(ICP-MS)测定了吉林省油页岩中铂族元素的含量,并对油页岩中铂族元素的化学特征、与无机组分的相关性及其分布模式等进行了分析和阐述.通过油页岩中铂族元素的含量与地壳和中国东部出露地壳中铂族元素丰度的比较表明,Rh、Ru、Ir等元素相对富集,其中松原油页岩中Rh、Ir的含量约为地壳平均值的10倍.研究区油页岩中铂族元素以Pt-Pd分配模式为典型特征,一般Pt的丰度大于Pd.油页岩中铂族元素与无机组成相关分析的结果表明,油页岩中铂族元素可能呈吸附态存在于高岭石、伊利石等粘土矿物中.  相似文献   

18.
吉林省油页岩中铂族元素的化学特征及分配规律研究   总被引:2,自引:0,他引:2  
采用电感耦合等离子体发射质谱仪(ICP MS)测定了吉林省油页岩中铂族元素的含量,并对油页岩中铂族元素的化学特征、与无机组分的相关性及其分布模式等进行了分析和阐述。通过油页岩中铂族元素的含量与地壳和中国东部出露地壳中铂族元素丰度的比较表明,Rh、RuI、r等元素相对富集,其中松原油页岩中RhI、r的含量约为地壳平均值的10倍。研究区油页岩中铂族元素以Pt Pd分配模式为典型特征,一般Pt的丰度大于Pd。油页岩中铂族元素与无机组成相关分析的结果表明,油页岩中铂族元素可能呈吸附态存在于高岭石、伊利石等粘土矿物中。  相似文献   

19.
All platinum-group metals (PGM) in ashed plant tissues, from an area of platinum mineralization in Saskatchewan, have been measured by neutron activation analysis of a NiS fire assay bead. Concentrations of up to 1350 ppb (ng/g) Pd, 880 ppb Pt, 49 ppb Rh, 37 ppb Ru, 24 ppb Ir, and 15 ppb Os occur in ashed twigs of black spruce (Picea mariana), indicating that the ratios of PGM uptake are about the same as those occurring in the bedrock. Plants growing on drift-covered diabase, known to have about 100 ppb PGM, contain up to 77 ppb Pt in ash, demonstrating the potential value of biogeochemical methods in helping to delineate platiniferous zones. Twigs of black spruce, jack pine, and labrador tea appear to be the optimum sample media in this environment.A rapid multi-element neutron activation analysis by direct irradiation of tissue permits measurement of 0.05 ppb Ir in dry material, or 2 ppb Ir in ashed samples. In view of the normally very low concentrations of Ir in plants, any detectable Ir probably indicates enrichment of PGM in the substrate.Comparison of several wet-chemical analytical methods indicates that the optimum (cost-effective) technique for detecting 1–2 ppb Pt, Pd, or Rh in 2-g samples of ash is by Te co-precipitation (following fusion and dissolution), and analysis by ICP-MS with sample introduction by electrothermal vaporization. However, care must be taken to ensure complete dissolution of all PGMs in the ash.  相似文献   

20.
Lee  C. A. 《Mineralium Deposita》1983,18(2):173-190
Whole-rock samples of the Merensky Unit were analysed for major elements, Cu, Ni, Cr, Co, Eu, Th, U, Cs, and the platinum-group elements Pt, Pd, Rh, Ir and Au. There is a sympathetic variation of Cu, Ni, Co, and S throughout the sequence. Th and U abundances are highest around the Merensky Reef, and their distribution in the rest of the unit reflects the amount of mesostasis. Eu distribution is governed by primary plagioclase. Pt, Pd, Rh, Ir and Au (PM) are concentrated in the Merensky Reef. The relative proportions throughout the unit are Ir2 enrichment trends; interaction of these trends resulted in the Merensky Reef and its attendant mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号