首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
以辽宁省为例,采用统计分析方法,根据辽宁省61个气象站1951-2013年0~320 cm地温资料,分析了季节性冻土区地温场结构和变化特征。结果表明:地温最冷月出现时间随着深度增加而推后,辽宁各地浅层地温最冷月基本均为1月,深层地温最冷月为1-5月,深度越深温度越高。地温最热月出现时间也随深度增加而推后,浅层地温最热月为7、8月,深层地温最热月为8-10月,深度越深温度越低。越深层地温受地表影响越小,320 cm深度与地表的月平均最大温差达到19℃左右,40 cm深度与地表的月平均最大温差仅在8℃左右。随着深度增加,地温的季节变化减小,沈阳320 cm深度地温年内温差不足8℃。5~80 cm深度3-8月为储能期,160 cm深度5-9月为储能期,320 cm深度6-10月为储能期。越接近地表,地温日变化越显著,40 cm以下深度基本可以忽略日变化。沈阳地温升高程度大于气温,以向大气输送热量为主。地表最冷月变暖率明显大于最热月,但随着土层加深各土层最冷月、最热月变暖的程度无明显规律。深层地温的年际变化有时会受到更深层热源的非气候扰动。地温变化对气候、冻土区域工程等的影响不容忽视。  相似文献   

2.
科尔沁草甸地冻融期土壤水热盐动态迁移规律   总被引:3,自引:0,他引:3       下载免费PDF全文
为掌握科尔沁草甸地冻融期土壤水、热、盐迁移规律,以科尔沁左翼后旗阿古拉生态水文试验站2013年10月—2014年5月土壤冻融期实测气象、土壤等数据为基础,用统计分析法对研究区草甸地冻融期土壤温度、水分、盐分的变化规律进行了分析。结果表明:气温对土壤剖面温度的影响随着土壤深度的增加而降低,土壤剖面温度变化滞后于气温变化的时间取决于气温升降幅度,且没有显著的规律;由于气温回升速度大于降温速度,导致土壤消融速度比冻结速度快;土壤冻结过程由表层向下进行,冻结温度与土壤含盐量呈负相关关系,用温度的线性内插法准确确定草甸地于2014年3月9日达到最大冻深104 cm;土壤消融时受地下暖土层热流和地表温度双重影响,由底部向地表和由地表向冻结层进行双向消融;地下水位埋深较浅,受土壤冻融作用影响,升降趋势显著;草甸地土壤冻结期盐分向地表积聚,并于2月达到最大,后经消融及雨水淋润作用开始下降;冻融期盐分变异性大于水分变异性,说明盐分的运移过程更为复杂。  相似文献   

3.
吉林省土壤冻融的逐日变化及与气温、 地温的关系   总被引:2,自引:1,他引:1  
土壤冻融过程对气候和生态环境演变有重要影响。为了研究季节冻土区土壤冻融过程及其对气候变化的响应,利用2014-2017年吉林省典型代表观测站逐日冻土、气温和地温数据,研究土壤冻融的逐日变化及其与气温、地温的关系。结果表明:在土壤冻结和融化完整过程中,冻土上限呈直线上升趋势变化,下限呈先增大后减小的三次曲线趋势变化,即从稳定冻结初日起,冻土深度逐渐加深,在达到最大值后,缓慢变浅。冻土融化包括下限和上限融化两个过程,具有“两头化”的变化特征。冻土上限融化与下限同时开始或者晚于下限,但冻土上限融化的日变化量要大于下限。在土壤冻结过程中,活动积温、0 cm地积温、10 cm地积温与冻结深度呈三次曲线变化关系,随负积温的增加,冻结深度加深。在冻土上限融化过程中,活动积温、0 cm地积温、10 cm地积温与冻土上限深度呈三次曲线变化关系,随正积温的增加,上限融化深度加深。在冻土下限融化过程中,活动积温、0 cm地积温、160 cm地积温与冻土下限深度呈显著的直线趋势,随正积温的增加,下限融化深度变浅。  相似文献   

4.
浅层包气带地温与含水量昼夜动态的实验研究   总被引:7,自引:1,他引:7  
西北荒漠化地区,包气带中的水分除来自大气降水外,还来自凝结水。凝结水对维持荒漠地区的植被生态环境起到至关重要的作用,而凝结水的形成机制又反映在包气带地温与含水量的昼夜动态过程中。文中报告了室外沙坑浅层包气带地温与含水量观测的实验结果。土壤含水量变化采用原位测试的方法观测,避免了传统称重法产生的干扰和不确定性。实验中对深度0~30cm范围的土壤温度进行了高密度观测。结果表明,温度梯度对水汽的运移起到主控作用,温度梯度方向向下,土壤含水量增加,反之,含水量减少。通过热传导方程对土壤中的传热过程进行分析,得到傅立叶级数表示的温度波方程,用于预测不同深度土壤响应地表条件而产生的温度变化。实验中还对近地表微气象以及土壤负压等因素进行了观测。  相似文献   

5.
1981-2010年三江平原40~320cm深地温变化特征   总被引:4,自引:3,他引:1  
利用1981-2010年黑龙江佳木斯气象站40~320cm逐月平均地温观测资料,研究了三江平原地温变化规律、气候突变、异常年份及冻融特征等.结果表明:40~320cm年平均地温呈极显著升温趋势,升幅为0.496~0.574℃.(10a)-1,其中夏季升幅最大;月平均地温呈波形变化,振幅随深度增加而减小;1月随着深度的增加地温逐渐增大,7月地温随深度增加而减小,维持正梯度.除秋季40cm和80cm,冬季320cm平均地温变化相对平稳,未出现地温突变现象,其他各层年、季平均地温均发生了突变;40cm和80cm年平均地温在1981年出现了异常偏冷,320cm年平均地温在20世纪90年代末出现了异常偏冷,40cm和160cm年平均地温在2004年出现了异常偏暖;80cm土壤较40cm冻融时间出现晚,冻结期缩短18d左右,土壤的冻结过程比消融过程要快.  相似文献   

6.
藏北高原D105点土壤冻融状况与温湿特征分析   总被引:6,自引:3,他引:3  
利用CAMP/Tibet在藏北高原D105点所观测的2002年1月1日-2005年12月31日土壤温度、含水量资料, 分析了该点的土壤温、湿度变化及其冻融特征. 结果表明: D105点40 cm深度以上土壤温度日变化明显, 随着深度增加, 土壤温度日变化相位明显滞后. 各层土壤温度月最高值出现在8-9月, 月最低值都出现在1-2月; 年际气候的差异至少可以反映到185 cm深处的土壤. 土壤冻结和消融都是由表层开始, 土壤随深度增加冻结快, 消融则慢. 冻结期间, 土壤温度分布上部低, 下部高; 消融期间, 则分布相反. 60 cm深度以上的土壤含水量在消融期有显著的波动, 表明60 cm深度以上的土壤与大气之间的水热交换比较频繁. 土壤温度的日变化和平均温度对土壤的冻融过程有较大的影响; 土壤含水量的多少会极大的影响土壤的冻融过程、土壤热量的分布状况以及地表能量的分配. 因此水(湿度)热(温度)相互耦合影响着土壤的冻融过程.  相似文献   

7.
地下水浅埋条件下越冬期土壤水热迁移的数值模拟   总被引:26,自引:3,他引:23  
雷志栋 《冰川冻土》1998,20(1):51-54
应用土壤冻融过程中水热耦合迁移模型,对内蒙古河套灌区地下水浅埋条件下整个土壤冻融过程进行了模拟,分析了越冬期土壤水热迁移规律.结果表明,快速冻结阶段土壤冻结速度随深度线性减小.冻结过程中某一深度处的含水量增量与冻结速度呈双曲线型相关关系.提出了土壤冻融过程中的特征含水量概念,以描述土壤含水量的动态变化特征.  相似文献   

8.
冯晓琳  张艳林  常晓丽 《冰川冻土》2021,43(5):1468-1479
大兴安岭北部是我国唯一的中高纬度多年冻土区,其水热特征分析对陆气能量交换、生态系统和气候变化等研究有重要意义。基于2011—2020年期间对大兴安岭森林生态站附近的湿地多年冻土开展的气温和0~2 m地温和土壤含水量数据,对大兴安岭湿地多年冻土活动层的水热特征进行了分析。结果表明:湿地多年冻土活动层内地温的变幅随深度减小,且具有滞后性。融化期地表温度高于深层地温,冻结期相反。2012年、2013年、2019年和2020年的平均融化速率分别为0.49、0.61、0.47和0.56 cm·d-1,向上平均冻结速率分别为1.34、2.12、2.58和1.65 cm·d-1。向下平均冻结速率分别为1.69、1.02、3.32和1.00 cm·d-1,最大融化深度分别为78.73、85.65、66.22和74.94 cm。2012年5月—2013年5月期间,土壤未冻水含量随地温变化的拟合关系较好,相关系数大于0.90,且深层拟合效果优于表层。融化期土壤水分变化幅度大,与地温的相关性差,随深度增加相关性减弱。湿地充足的水分为多年冻土的双向冻结提供了条件。研究成果可为大兴安岭湿地多年冻土区的冻融循环、水热耦合机理和模拟研究提供数据基础和理论依据。  相似文献   

9.
王萍  赵慧颖  闫平  朱海霞  翟墨  李秀芬 《冰川冻土》2021,43(6):1764-1772
黑龙江省春季土壤冻融剧烈,土壤湿度和温度受土壤冻融影响较大,利用黑龙江省64个气象观测站1961—2018年的逐日最高气温、最低气温、平均气温、降水量、地温资料及34个农气观测站人工观测的1981—2018年的土壤湿度资料,分析土壤冻结期间的气象要素变化,研究春季土壤冻融过程中湿度和温度的变化。结果表明:土壤冻结期从北向南缩短,且逐年缩短,冻结期平均气温从北向南升高,逐年上升,降水量西部少、东部和北部多,逐年增加;春季冻融次数平原少、山区多,逐年减少。春季融雪开始日期由北向南提前,并且呈现逐年提前的趋势,融雪期升温速率北部、东部低,中部、南部高;在春季冻融过程中,土壤湿度随着土壤深度的增加而增多,东部土壤湿度受土壤融冻影响最大;在整个冬季土壤冻结期间,北部、中部及东部土壤湿度是增加的,且随着土壤深度的增加,土壤湿度增加的越多,而西部土壤湿度是减少的,且随着土壤深度的增加,土壤湿度减少的越少;春季土壤冻融期间,0 cm平均地温全省平均在-17.3~22.1 ℃之间,南部与全省变化趋势基本一致,升温趋势明显,而北部升温速度明显慢于南部。  相似文献   

10.
龚强  晁华  朱玲  蔺娜  于秀晶  刘春生  汪宏宇 《冰川冻土》2021,43(6):1782-1793
根据东北地区144个国家气象站1951—2016年的地温和土壤冻结深度资料,采用实测资料统计及统计建模推算的方法,对东北地区地温和冻结深度时空特征进行了细化分析。结果表明:东北地区地温整体由南到北逐渐降低,冻结深度逐渐增大。各层年平均地温呈向北2个纬度降低1 ℃左右,年平均最大冻结深度为向北2~3个纬度加深30 cm左右,极端最大冻结深度为向北2个纬度加深30 cm左右。地温和冻结深度与纬度关系显著,与经度和海拔也有一定相关性,但在东北北部的多年冻土区基本不受后两者影响。不同深度的地温季节特征不同,地表温度季节特征与气温一致,160 cm以下深度四季温度从高到低为秋、夏、冬、春。地表夏季与冬季温差达到33.5 ℃,而320 cm深处最热季与最冷季的温差仅为7 ℃。气候变暖使得东北地区各层地温升高、冻结深度减小、冻结期缩短,尤其在多年冻土区及其临近的高纬度季节冻土区更为显著。相对于下层土壤,地表升温最大。伊春地表升温趋势达到1.16 ℃?(10a)-1,40~320 cm土层升温趋势为0.60 ℃?(10a)-1左右,冻结深度减小、冻结期缩短趋势分别达到 23 cm?(10a)-1、8 d?(10a)-1,大幅升温不利于多年冻土的存在。  相似文献   

11.
季节冻土区黑土耕层土壤冻融过程及水分变化   总被引:6,自引:2,他引:4  
利用黑龙江省水利科学研究院水利试验研究中心综合实验观测场2011年11月-2012年4月整个冻结融化期的实测野外黑土耕层土壤温度和水分数据, 对中-深季节冻土区黑土耕层土壤冻融过程中冻结和融化特征分阴、阳坡进行了分析, 研究了冻融过程中不同深度土壤水分的变化情况, 并探讨了降水对不同深度耕层土壤含水量变化的影响. 结果表明:黑土耕层土壤冻结融化过程分为5个阶段, 历时164 d, 约5.5个月. 阶段I, 秋末冬初黑土耕层土壤开始步入冻结期; 阶段II, 黑土耕层土壤整日处于冻结状态, 阴坡比同样深度的阳坡土壤温度低; 阶段III为黑土耕层土壤稳定冻结期; 阶段IV, 黑土耕层土壤步入昼融夜冻的日循环交替状态, 冻融循环的土层逐渐向深部发展, 阳坡比阴坡融化得更深、更早, 阴坡比阳坡经历冻融循环次数更多; 阶段V为稳定融化期, 在融化过程不存在冻融交替的现象, 直到整个冻层内的土壤全部消融. 各深度位置阴坡土壤温度的最高值出现时间比阳坡晚约0.5 h. 经过整个冻结融化期后, 阴、阳坡各层土壤含水量均大于冻结前, 阴坡土壤含水量比阳坡整体偏低. 在整个冻结融化期, 阳坡地下1 cm、5 cm、10 cm 及15 cm处含水量最大值出现在地下5 cm; 阴坡的含水量整体趋于平稳且在融化期受降水影响明显.  相似文献   

12.
冻结层的存在使得寒区有着与非寒区差别明显的水文循环过程,土壤冻融规律、水热盐运移、融雪水入渗等已成为众多学者的研究对象. 寒区低温条件下冻融土壤持水性质与非冻融土壤不同,其包气带冻结层往往具有弱透水性、蓄水保墒和隔热减渗的作用,使得寒区春季冻结层土壤的墒情较高. 以冻融土壤和非冻融土壤墒情对比监测为基础,选取地表以下100 cm的土壤为研究对象,在黑龙江大学呼兰校区设置冻融和非冻融对比监测试验场,同时段、同频率、同埋深(间隔 20 cm土层)进行土壤结构、水热及环境参数监测. 通过对比分析了不同埋深不同冻融阶段的墒情参数,量化了低温冻融条件下土壤墒情较非冻融土壤的高出部分,最后对冻土保墒的机理进行探讨与分析. 结果表明:冻结条件下土壤水分重新分布,在土水势的作用下由非冻结区向冻结区迁移. 初冻期地表土壤墒情达到最大,冻结期土壤最大墒情值随冻结锋面迁移分别在20、40、60 cm处达到最大,稳定冻结期和融化初期在80 cm处达到最大;土壤最大墒情值一般在冻结锋面前沿的10~20 cm处,较好地保持了土壤水分. 无论是从空间(不同埋深)还是时间(不同冻融阶段)角度分析,冻融土壤含水率均大于非冻融土壤,二者含水率的差值随埋深和冻融阶段的推移而加大,在稳定冻结期80 cm处达到最大,差值量可达6.4%~7.8%.  相似文献   

13.
张坤  张青龙  毛云程  李丽  王若旭 《冰川冻土》2016,38(4):1121-1128
基于现场监测资料,对黄土路堑边坡坡面下土体水热变化规律进行分析研究.结果表明,左边坡坡面下土体温度高于右边坡,左边坡冻结期和冻结深度小于右边坡;右边坡含水率变化深度大于左边坡,水分在边坡5 cm以上浅层土体中迁移速度基本相同,在边坡坡面25 cm以下土体渗透性差异较大,左边坡迁移速度低于右坡;冬季左边坡坡面下浅层土体和右边坡观测范围内地温低于0℃,右边坡坡面25 cm以上对应的含水率为零,而左边坡浅层土体和右边坡25 cm以下土体含水率并不为零;干湿循环和冻融循环在左右边坡土体中的显著程度和影响深度不同.  相似文献   

14.
青藏高原季节冻土区土壤冻融过程水热耦合特征   总被引:8,自引:5,他引:3  
青藏高原被誉为“中华水塔”, 其广泛分布的多年冻土和季节冻土在保证我国水资源安全上具有重要的地位。基于2015年7月 - 2016年6月青海海北站季节冻土的水热监测数据(土壤含水量为未冻水含量), 分析了冻结深度的季节变化和冻融过程水热运移特征。结果表明: 各土层土壤温度与土壤水分含量变化均表现为“U”型。土壤温度变化规律与日平均气温基本一致, 但滞后于日平均气温的变化, 滞后时间取决于土层深度。与多年冻土冻融规律不同, 海北站季节冻土表现为单向冻结、 双向融化特征, 冻融过程大致可划分为三个阶段: 冻结初期、 冻结稳定期和融化期。同时, 季节冻土消融速率大于冻结速率, 且融化过程中以浅层土壤融化为主。在冻结过程中, 土壤水分沿上、 下两个方向分别向冻结锋面迁移, 各土层土壤含水量迅速下降。而在融化过程中, 各土层土壤含水量逐渐增加, 且在浅层土壤形成一个土壤水分的高值区。土壤冻融过程中未冻水含量与各土层土壤温度具有较好的相关关系, 且浅层土壤拟合效果优于深层土壤。本研究对揭示高原关键水文过程以及寒区水热耦合模型构建具有重要意义。  相似文献   

15.
冻融期东北农田土壤温度和水分变化规律及影响因素分析   总被引:3,自引:3,他引:0  
为了更好地认识季节性冻融区冻融过程对农田土壤温度和水分的影响, 以吉林省长春市黑顶子河流域为研究对象, 监测了冻融期流域内玉米田和水稻田土壤温度和水分的变化过程。结果表明: 冻融期表层土壤温度主要受积雪厚度影响, 深层土壤温度主要受土壤初始含水率影响。冻结期, 冻结层含水率几乎都呈增加趋势, 其中浅层土壤增幅最大; 冻结速度慢、 初始含水量低、 相邻土层含水量高的土层冻结过程水分增加量更大, 反之则小。融化期, 各下垫面、 土层土壤含水率基本呈下降趋势, 且主要集中在表层0 ~ 30 cm, 水分损失以蒸发为主, 冻结层对土壤蒸发有抑制作用; 冻结层的融化是造成各下垫面不同土层土壤含水率差异, 以及各土层在不同融化阶段土壤含水率差异的主要原因。  相似文献   

16.
利用在西藏纳木错流域念青唐古拉山北坡(NQN,海拔5 400 m)和西北保吉乡(BJ,海拔4 730 m)布设的两台带有四层土壤探头自动气象站(AWS)2005—2006年冬季10个月观测数据进行了统计分析。结果表明:观测期间NQN日及月平均气温均低于BJ,但变化幅度均小于BJ,土壤冻结时间比BJ长,两处的气温梯度为0.31℃/100 m。与安多月平均气温比较,推断NQN存在高山多年冻土。NQN大气—土壤及土壤内热传输速度快于BJ;冻结期内土壤中未冻水含量在0~-2.5℃时发生跃变且与土壤温度存在较好的线性关系;相同深度处NQN土未冻水含量较小。土壤温度日变化在0~40 cm深度处较明显,40cm深度以下变化很小,未冻水含量日变化在5 cm深度较明显,20 cm以下变化微弱。利用两观测点冻结深度(Df)与冻结积温(Tg)的良好相关建立模型,NQN为:Df n= 0.0016Tg+ 1.69,R2=0.9958;BJ为:Df b= 0.002 Tg+ 1.13,R2= 0.9424,并由此推断出两观测点最大季节冻结深度分别为1.69 m和1.13 m。  相似文献   

17.
宋存牛  王选仓 《冰川冻土》2007,29(6):997-1003
基于Harlan模型和Darcy定律,并考虑温度梯度对水分迁移影响、温度和含水量对水热参数影响以及各种环境气候因素的影响,建立了完全依赖气象资料和水热参数的风积沙土路基冻结过程中水热耦合迁移数学模型,采用全隐式有限差分格式和TDMA迭代法对内蒙古锡林浩特地区沙漠公路207国道K135+000处冻结期间路基水热迁移规律进行了数值模拟.结果表明:该地区道路冻结深度随时间近似线性变化,冻结速度达到2~3 cm·d-1,最大冻深为3 m左右,冻融时间约为180 d;水分迁移主要发生在冻结锋面附近,从未冻区向冻结区迁移,且随着冻结锋面前移,迁移量逐渐增大;整个冻融期间最大冻深底部层位含水量变化较大,路面下0~50 cm范围内温度变化比较剧烈.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号