首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas hydrate stability conditions restrict the occurrence of gas hydrate to unconsolidated and high water-content sediments at shallow depths. Because of these host sediments properties, seismic and well log data acquired for the detection of free gas and associated gas hydrate-bearing sediments often require nonconventional analysis. For example, a conventional method of identifying free gas using the compressional/shear-wave velocity (Vp/Vs) ratio at the logging frequency will not work, unless the free-gas saturations are more than about 40%. The P-wave velocity dispersion of partially gas-saturated sediments causes a problem in interpreting well log velocities and seismic data. Using the White, J.E. [1975. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics 40, 224–232] model for partially gas-saturated sediments, the difference between well log and seismic velocities can be reconciled. The inclusion of P-wave velocity dispersion in interpreting well log data is, therefore, essential to identify free gas and to tie surface seismic data to synthetic seismograms.  相似文献   

2.
Seismic tomography is an effective means of estimating velocity and structure from multichannel seismic (MCS) reflection data. In this study we have followed a 2D approach to arrive at the probable velocity field configuration from multichannel seismic data and infer the presence of gas hydrates/free-gas in the offshore Kerala-Konkan region, along the eastern part of a seismic line on which a bottom simulating reflector (BSR) has previously been identified. Tomographic modeling consists of the identification of reflection phases and picking of respective travel times for various source-receiver positions. These picks were then utilized to arrive at a 2D velocity field following a forward and inversion approach using a ray tracing technique. The modeling for the first time brought out the finer scale velocity structure under the region of investigation. Modeling through the 2D approach shows lateral variation in velocity field along the studied segment of the seismic line. The results indicate a thin (∼50–60 m) sedimentary cover with velocity ranging from 1,770 to 1,850 m/s. A sedimentary layer with high P-wave velocity 1,980–2,100 m/s below the sea floor was interpreted as the hydrate layer. The thickness of this layer varies between 110 and 140 m. The hydrate layer is underlain by a low-velocity layer having velocities in the range 1,660–1,720 m/s. This low velocity may represent a free gas layer, whose thickness varies between 50 and 100 m located below the hydrated layer. The investigation suggests the occurrence of gas hydrate underlain by free gas in some parts of the Kerala-Konkan offshore region.  相似文献   

3.
地下介质往往表现为粘弹特性,研究基于粘弹假设的数值模拟方法对于正确认识地震波的传播规律和提高地震勘探精度具有重要意义。波动方程正演过程中纵横波的保幅解耦是研究准确的粘弹介质中地震波传播机理的前提,基于散度和旋度算子的纵横波解耦方法会使波场的相位和振幅产生畸变,且解耦后的波场在极性反转位置上无法与分离前混合波场各分量对应。在散度和旋度算子上再做一次梯度和旋度运算的波场分离方法虽然能够克服上述缺陷,但存在保幅性差等问题。本文从粘弹介质中的一阶速度-应力方程出发,推导了矢量纵横波分离的波数域表达式,结合有限差分思路给出了其在空间域的求解方法。本文方法利用纵横波的传播速度对现有的矢量波场分离方法进行振幅校正,并将校正结果分别作为纵波与横波对时间的二阶偏导,实现了粘弹介质中的纵横波分离。模型试算结果表明,本文方法能够克服现有方法的缺陷,获得更具保幅性的波场分离结果。  相似文献   

4.
Gas hydrates have been identified from two-dimensional (2D) seismic data and logging data above bottom simulating reflector (BSR) during China’s first gas hydrate drilling expedition in 2007. The multichannel reflection seismic data were processed to be preserved amplitudes for quantitatively analyzing amplitude variation with offset (AVO) at BSRs. Low P-wave velocity anomaly below BSR, coinciding with high amplitude reflections in 2D seismic data, indicates the presence of free gas. The absolute values of reflection coefficient versus incidence angles for BSR range from 0 to 0.12 at different CMPs near Site SH2. According to logging data and gas hydrate saturations estimated from resistivity of Site SH2, P-wave velocities calculated from effective media theory (EMT) fit the measured sonic velocities well and we choose EMT to calculate elastic velocities for AVO. The rock-physics modeling and AVO analysis were combined to quantitatively assess free gas saturations and distribution by the reflection coefficients variation of the BSRs in Shenhu area, South China Sea. AVO estimation indicates that free gas saturations immediately beneath BSRs may be about 0.2 % (uniform distribution) and up to about 10 % (patchy distribution) at Site SH2.  相似文献   

5.
在将钻井垂直地震剖面(VSP)数据的时深拟合公式应用于深部地层的时深转换时,拟合深度与计算的层速度常常不够准确。本文首先利用多项式和幂函数给出了东海陆架盆地中部某凹陷41口钻井VSP数据的时深拟合公式,并用双程旅行时(TWT)最深达8 s的三维地震速度体数据与多道地震剖面对拟合公式在深部地层的适用性进行分析。在TWT为8 s时,速度体数据表明41口钻井位置的平均深度为18 140 m,平均层速度为6 208 m/s,二次多项式的平均拟合深度较之偏高9.2%,计算的层速度偏高36.2%,幂函数则分别偏低28.9%与35.6%,拟合效果都不理想。对此,本文采用通过识别VSP数据的增速拐点并对增速拐点前的VSP数据进行二次多项式拟合,对增速拐点后的VSP数据进行幂函数拟合的分段拟合模型,将TWT为8 s时的平均拟合深度和层速度的误差降到3.3%与4.7%。地震剖面显示研究区莫霍面深度约为TWT=11 s,分段拟合模型在TWT=11 s的平均拟合深度为27 516 m,层速度为7 334 m/s,更接近前人研究成果,表明该模型能显著提高深部地层时深转换的精度。  相似文献   

6.
2011年3月11日日本宫城县以东太平洋海域发生Mw9.0级特大地震,造成了地表的严重错位并引发海啸。文中利用位于日本及周边国家的IGS站和国家海洋局GPS业务站观测数据,采用作者研制的精密单点定位(PPP)软件UniP,对此次地震的GPS数据响应进行了研究。结果表明:(1)GPS观测数据能清晰、连续地记录震时地表形变的过程,我国CHAN,NCST等站点水平方向的震时最大位移在10 cm以内,高程方向的震时最大位移在15 cm以内,且形变以可恢复性的弹性形变为主。(2)我国距震中较远,受此次日本地震的影响较小,且大部分站点是在东坐标方向出现不同程度的震后永久性位移。其中CHAN站点的震后位移最为明显,东向形变量为(1.8±0.11)cm;NCST、NLHT站点次之,东向形变量分别为(1.1±0.26)cm和(1.0±0.18)cm。(3)地震波传输到国家海洋局GPS业务站NCST、NLHT等的时间约为10 min,比海啸在深海的传播速度快约14倍,可为海啸预警提供所需的时间差。这些结果显示出GPS能够为地震监测和动力学特征研究提供有价值的基础资料,也表明中国沿海GPS业务观测系统在海底地震监测、海啸预警服务中的应用潜力。  相似文献   

7.
This study presents the modelling of 2-D and 3-D wide-angle seismic data acquired on the complex, volcanic passive margin of the Vøring Plateau, off Norway. Three wide-angle seismic profiles were shot and recorded simultaneously by 21 Ocean Bottom Seismometers, yielding a comprehensive 3-D data set, in addition to the three in-line profiles. Coincident multi-channel seismic profiles are used to better constrain the modelling, but the Mesozoic and deeper structures are poorly imaged due to the presence of flood basalts and sills. Velocity modelling reveals an unexpectedly large 30 km basement high hidden below the flood basalt. When interpreted as a 2-D structure, this basement high produces a modelled gravity anomaly in disagreement with the observed gravity. However, both the gravity and the seismic data suggest that the structure varies in all three directions. The modelling of the entire 3-D set of travel times leads to a coherent velocity structure that confirms the basement high; it also shows that the abrupt transition to the slower Cretaceous basin coincides in position and orientation with the fault system forming the Rån Ridge. The positive gravity anomaly over the Rån Ridge originates from the focussed and coincident elevation of the high velocity lower crust and pre-Cretaceous basement. Although the Moho is not constrained by the seismic data, the gravity modelled from the 3-D velocity model shows a better fit along the profiles. This study illustrates the interest of a 3-D acquisition of wide-angle seismic over complex structures and the benefit of the subsequent integrated interpretation of the seismic and gravity data.  相似文献   

8.
This paper reviews a simple technique for interpreting the velocity structure of upper oceanic crust from travel-time data of sonobuoy and ocean bottom receiver refraction experiments. The technique does not involve sophisticated digital processing or synthetic seismogram analysis. Interpretations can be carried out with a pencil, paper and slide rule.Travel-time inversion procedures based on the -p transformation require the assumption of the shallowmost velocity. In some cases, however, such as oceanic crustal studies, the shallowmost velocity is one tf the critical parameters for which one wishes to invert. An inversion method for the shallowmost velocity is discussed which assumes a constant velocity gradient. The time, range and ray parameter of a point on the travel-time curve are sufficient to obtain the velocity at the top of the gradient zone and the gradient. The method can be used to interpolate the velocity-depth function into regions from which no seismic energy is returned as a first arrival. Once an estimate of the upper crustal velocity is obtained the traditional -p procedures can be applied.The model considered consists of a homogeneous layer over a layer in which velocity increases linearly with depth. For such a geometry there are three classes of behaviour of the travel-time curve based on the number of cusps: zero, one or two. The number of cusps depends on the uppermost velocity in the crust, the velocity gradient of the upper crust and the depth of the sources and receivers. It has not been previously recognized that two cusps in the travel time curve may be observed for this simple model. Since estimating the ray parameter from first arrival times is less ambiguous when there are no cusps, understanding the relations involved with the three classes aids in the design of experiments. It is reasonable to apply the model to shallow sea floor structure because of the high quality of marine refraction data which has recently been obtained.  相似文献   

9.
This paper presents results of a seismic tomography experiment carried out on the accretionary margin off southwest Taiwan. In the experiment, a seismic air gun survey was recorded on an array of 30 ocean bottom seismometers (OBS) deployed in the study area. The locations of the OBSs were determined to high accuracy by an inversion based on the shot traveltimes. A three-dimensional tomographic inversion was then carried out to determine the velocity structure for the survey area. The inversion indicates a relatively high P wave velocity (Vp) beneath topographic ridges which represent a series of thrust-cored anticlines develop in the accretionary wedge. The bottom-simulating reflectors (BSR) closely follow the seafloor and lies at 325 ± 25 m within the well-constrained region. Mean velocities range from ~1.55 km/s at the seabed to ~1.95 km/s at the BSR. We model Vp using an equation based on a modification of Wood’s equation to estimate the gas hydrate saturation. The hydrate saturation varies from 5% at the top ~200 m below the seafloor to 25% of pore space close to the BSR in the survey area.  相似文献   

10.
The present-day basement depth of the seafloor in the absence of sediment loading was inferred along a traverse crossing the Southern Tyrrhenian Basin. A correction for sediment loading was proposed on the basis of density, seismic velocity and porosity data from selected deep boreholes. The empirical relation between sediment correction and seismic two-way travel time was extrapolated downward by applying the Nafe–Drake curve and a specific porosity–depth relation. The sediment loading response of the basement calculated for flexural isostasy is on average about one hundred meters lower than results for local isostasy. A pure lithosphere extensional model was then used to predict quantitatively the basement subsidence pattern on the margins of the basin. The basement depth is consistent with uniform extension model predictions only in some parts of the margins. The observed variability in the region of greatest thinning (transition from continental to oceanic crust) is attributable to the weakening effect caused by diffuse igneous intrusions. Subsidence of the volcanic Calabrian–Sicilian margin is partly accounted for by magmatic underplating. The comparison of the calculated subsidence with an oceanic lithosphere cooling model shows that subsidence is variable in some areas, particularly in the Marsili Basin. This argues for a typical back-arc origin for the Tyrrhenian Basin, as a result of subduction processes. By taking into account the geodynamic setting, stratigraphic data from the deepest hole and the terrestrial heat flow, we reconstructed the paleotemperatures of cover sediments. The results suggest that low temperatures generally have prevailed during sediment deposition and that the degree of maturation is expected not to be sufficient for oil generation processes.  相似文献   

11.
Abstract

The relocation of ocean bottom seismometers (OBSs) is a key step in analyzing the three-dimensional seismic tomographic structure of crust and mantle. In order to get the accurate location of OBSs on the seafloor, we analyze the travel times of direct water waves emitted by air-guns. The Monte Carlo and least square methods have been adopted to calculate the true OBS location. The secondary time correction is necessary if the arrivals of direct water waves show overall time drift during relocation which maybe originates from remnant of linear clock drift correction and average errors of travel time picking, mean water velocity assumption, and experiment geometry. We have improved the original OBS relocation procedure which we used previously for other experiments by deliberateness of a secondary time correction and automatically approaching the really mean water velocity. A series of synthetic tests are carried out firstly to document the feasibility of our procedure and then it is applied on a real experiment. In here, we relocate 28 OBSs in total were relocated in 3D seismic survey near Bashi Channel. Relocation results show that the drifting distances for the 28 OBSs range from 65 to 1136 m between the deployed and relocated locations deduced by relocation results. The Pearson correlation coefficient between OBS drifting direction and sea current direction is 0.79, indicating that the two sets of data are highly linearly related and further manifest the sea current as the most possible driving force for OBS drifting during landing on the seafloor but its detailed influence mechanism is unclear by now. This research is necessary and critical for velocity structure modeling, and the optimal relocation program provides valuable experiences for 3D seismic survey in other area.  相似文献   

12.
The integration of seismic data with core data should provide ground-truth to a structural interpretation of seismic data. The main difficulty in such an integration effort is the correct translation of physical property measurements on cores to a form which can be used in seismostratigraphic interpretation. In the absence of down-hole well data and check-shots, required knowledge of the velocity structure at the drilling locations can be obtained directly from measurements of the physical properties of core samples. This involves upscaling of the data from physical properties of cores to the sample interval used in the seismic data. In the present study, three of the seven drill-sites of ODP (Ocean Drilling Program) Leg 177 in 1997/1998, located on the Agulhas Ridge in the south-eastern Atlantic (sites 1088–1090), were connected with eight seismic profiles. Physical properties data measured on the cores from the various holes at each site were combined to create a single continuous log and used to construct synthetic seismograms. The synthetics generally show a good agreement with real seismic data in terms of amplitude and waveform. Some reflections in these generated traces may have a time-shift due to sections with incomplete or spurious P-wave velocity measurements in the ODP datasets. The main reflectors identified in the real seismic data correspond to hiatuses or periods of reduced sedimentation rates, and correlate well with density variations. One particular hiatus, clearly observable in the real seismic data, was not unequivocally identifiable in the various types of core data, and tying core data to seismic data can confirm its existence in the core data, showing the benefit of including seismic data in an interpretation of core log data. On the other hand, core data provide a calibration tool for the geological timescale of seismic data and information about the lithology, needed in the interpretation of seismic data.  相似文献   

13.
As an interoceanic arc, the Kyushu-Palau Ridge(KPR) is an exceptional place to study the subduction process and related magmatism through its interior velocity structure. However, the crustal structure and its nature of the KPR,especially the southern part with limited seismic data, are still in mystery. In order to unveil the crustal structure of the southern part of the KPR, this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detail...  相似文献   

14.
Existence of gas-hydrate in the marine sediments elevates both the P- and S-wave seismic velocities, whereas even a small amount of underlying free-gas decreases the P-wave velocity considerably and the S-wave velocity remains almost unaffected. Study of both P- and S-wave seismic velocities or their ratio (VP/VS) for the hydrate-bearing sediment provides more information than that obtained by the P- or S-wave velocity alone for the quantitative assessment of gas-hydrate. We estimate the P- and S-wave seismic velocities across a BSR (interface between gas-hydrate and free-gas bearing sediments) using the travel time inversion followed by a constrained AVA modeling of multi channel seismic (MCS) data at two locations in the Makran accretionary prism. Using this VP/VS ratio, we then quantify the amount of gas-hydrate and free-gas based on two rock-physics models. The result shows an estimate of 12–14.5% gas-hydrate and 4.5–5.5% free-gas of the pore volume based on first model, and 13–20% gas-hydrate and 3–3.5% free-gas of the pore volume based on the second model, respectively.  相似文献   

15.
The ultra-slow, asymmetrically-spreading Knipovich Ridge is the northernmost part of the Mid Atlantic ridge system. In the autumn of 2002 a combined ocean-bottom seismometer multichannel seismic (OBS/MCS) and gravity survey along the spreading direction of the Knipovich Ridge was carried out. The main objective of the study was to gain an insight into the crustal structure and composition of what is assumed to be an amagmatic segment of oceanic crust. P-wave velocity and Vp/Vs models were built and complemented by a gravity model. The 190 km long transect reveals a much more complex crustal structure than anticipated. The magmatic crust is thinner than the global average of 7.1 ± 1.0 km. The young fractured portion of Oceanic Layer 2 has low seismic velocities while the older part has normal seismic velocities and is broken into several rotated fault blocks seen as thickness variations of Layer 2. The youngest part of Oceanic Layer 3 is also dominated by low velocities, indicative of fracturing, seawater circulation and thermal expansion. The remaining portion of Layer 3 exhibits inverse variations in thickness and seismic velocity. This is explained by a sequence of periods of faster spreading (estimated to be up to 8 mm/year from interpretation of magnetic anomalies) when more normal gabbroic crust was being generated and periods of slower spreading (5.5 mm/year) when amagmatic stretching and serpentinization of the upper mantle occurred, and crust composed of mixed gabbro and serpentinized mantle was generated. The volumetric changes and upward fluid migration, associated with the process of serpentinization in this part of the crust, caused disruption to the overlying sedimentary layers.  相似文献   

16.
The bottom simulating reflector (BSR), the boundary between the gas hydrate and the free gas zone, is considered to be the most common evidence in seismic data analysis for gas hydrate exploration. Multiple seismic attribute analyses of reflectivity and acoustic impedance from the post-stack deconvolution and complex analysis of instantaneous attribute properties including the amplitude envelope, instantaneous frequency, phase, and first derivative of the amplitude of seismic data have been used to effectively confirm the existence of a BSR as the base of gas hydrate stability zone. In this paper, we consider individual seismic attribute analysis and integrate the results of those attributes to locate the position of the BSR. The outputs from conventional seismic data processing of the gas hydrate data set in the Ulleung Basin were used as inputs for multiple analyses. Applying multiple attribute analyses to the individual seismic traces showed that the identical anomalies found in two-way travel time (TWT) between 3.1 and 3.2 s from the results of complex analyses and l 1 norm deconvolution indicated the location of the BSR.  相似文献   

17.
A wide-spread bottom simulating reflector (BSR), interpreted to mark the thermally controlled base of the gas hydrate stability zone, is observed over a close grid of multichannel seismic profiles in the Krishna Godavari Basin of the eastern continental margin of India. The seismic data reveal that gas hydrate occurs in the Krishna Godavari Basin at places where water depths exceed 850 m. The thickness of the gas hydrate stability zone inferred from the BSR ranges up to 250 m. A conductive model was used to determine geothermal gradients and heat flow. Ground truth for the assessment and constraints on the model were provided by downhole measurements obtained during the National Gas Hydrate Program Expedition 01 of India at various sites in the Krishna Godavari Basin. Measured downhole temperature gradients and seafloor-temperatures, sediment thermal conductivities, and seismic velocity are utilized to generate regression functions for these parameters as function of overall water depth. In the first approach the base of gas hydrate stability is predicted from seafloor bathymetry using these regression functions and heat flow and geothermal gradient are calculated. In a second approach the observed BSR depth from the seismic profiles (measured in two-way travel time) is converted into heat flow and geothermal gradient using the same ground-truth data. The geothermal gradient estimated from the BSR varies from 27 to 67°C/km. Corresponding heat flow values range from 24 to 60 mW/m2. The geothermal modeling shows a close match of the predicted base of the gas hydrate stability zone with the observed BSR depths.  相似文献   

18.
As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8′E) close to a hydrothermal vent (49°39′E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at ~9.0 km is the bottom of a layer (2–3 km thick); the Moho (at depth of ~6–7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by ~15 km, the 660 discontinuity is elevated by ~18 km, and a positive thermal anomaly between 182 and 237 K is inferred.  相似文献   

19.
三维地震与海底地震勘探技术愈来愈广泛应用于海洋天然气水合物调查中.为了获取高品质的纵波、转换横波等地震信息,揭示天然气水合物地层的速度结构异常,地震震源是决定调查成功与否的关键技术之一.本文对激发频宽、输出、气泡效应等震源特性及组合技术进行了综合研究,设计了一种新型的GI枪点震源系统,并于2006-2009年期间在南海北部某海域进行一系列试验.试验效果的综合对比表明:震源优化技术的应用明显提高了地震纵波的地层穿透深度,并改善了海底地震仪(OBS)纵波及转换横波的接收效果.  相似文献   

20.
基于纵波地震和四分量地震的弹性波阻抗反演   总被引:3,自引:0,他引:3  
为了更好地揭示崖13-1气田的泥岩夹层及剩余气分布,提高采收率,尝试了基于纵波地震和四分量地震的弹性波阻抗反演。利用常规纵波地震资料对崖13-1气田气层进行了多角度同时反演;利用四分量地震资料进行了纵波和转换横波波阻抗反演。基于常规纵波地震资料的弹性波阻抗反演剖面的分辨率较高,气层纵波波阻抗与盖层的纵波波阻抗差异大于横波,但横波波阻抗分辨率比纵波波阻抗高,对气层细节反映得更清楚。利用弹性波阻抗反演结果可以较好地发现剩余气、泥岩夹层及气水界面。转换横波地震资料的分辨率较低,基于四分量地震资料的弹性波阻抗反演的分辨率也比较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号