首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A portable gas chromatograph‐mass spectrometer (GC/MS) was used to investigate sources of chlorinated volatile organic compound (cVOC) contamination in indoor air at 46 residences around Hill AFB, Utah, that were potentially affected by vapor intrusion. Analytical methods were developed to allow sample turnaround times of less than 10 min and method detection limits (MDLs) generally less than 1 μg/m3 for a selected list of cVOCs. Area‐by‐area sampling was used to identify the likely vapor source locations. In many cases, individual container/enclosure sampling and subsequent field emission rate measurements from isolated consumer products were used to determine if identified products were likely to be the primary source of vapors in the residence. The portable GC/MS was also used to characterize vapor intrusion in two residences. In one of these two residences, building pressure control was used to enhance vapor entry in order to facilitate the investigation resulting in confirmation of vapor intrusion and identification of a primary route of vapor entry. cVOCs were identified in 42 of the 46 homes investigated, subsurface vapor intrusion was identified in two homes, and two homes had inconclusive results.  相似文献   

2.
In this study, we tested a practical strategy useful for accurate chlorinated volatile organic compound (cVOC) sorption prediction. Corresponding to the feature of the superposition of adsorption due to thermally altered carbonaceous matter (TACM) with organic carbon‐water partitioning, a nonlinear Freundlich sorption isotherm covering a wide range of aqueous concentrations was defined by equilibrium sorption measurement at one or a few low concentration points with extrapolation to the empirical organic carbon‐water partition coefficient (Koc,e) near compound solubility. We applied this approach to obtain perchloroethene equilibrium sorption isotherm parameters for TACM‐containing glacial sand and gravel subsoil samples from a field site in New York. Sorption and associated Koc,c applicable to low (5–500 µg/L) and high (>100,000 µg/L) aqueous concentrations were determined in batch experiments. (The Koc,c is the organic carbon‐normalized sorption partition coefficient corresponding to aqueous concentration Cw.) The Koc,c measurements at low concentration (~5 µg/L) were 6 to 34 times greater than the Koc,e. The importance of this type of data is illustrated through presentation of its substantial impact on the site remedy. In so doing, we provide an approach that is broadly applicable to cVOC field sites with similar circumstances (low carbon content glacial sand and gravel with TACM).  相似文献   

3.
The reliable characterization of subsurface contamination of spatially extended contaminated sites is a challenging task, especially with an unknown history of land use. Conventional technologies often fail due to temporal and financial constraints and thus hinder the redevelopment of abandoned areas in particular. Here we compare two site screening techniques that can be applied quickly at relatively low cost, namely Direct Push (DP)‐based groundwater sampling and tree core sampling. The effectiveness of both methods is compared for a rural megasite contaminated with chlorinated hydrocarbons. Unexpected pollution hot spots could be identified using both of these methods, while tree coring even enabled the delineation of the contaminant plume flowing into an adjacent wetland inaccessible for DP units. Both methods showed a good agreement in revealing the spatial pattern of the contamination. The correlation between groundwater concentrations and equivalent concentrations in wood was linear and highly significant for trichloroethene. Correlation was less obvious for its metabolite cis‐dichloroethene, but still significant. As outcome of our study we recommend tree coring and for initial screening in combination with a DP sampling to retrieve quantitative data on groundwater pollutants in order to assess the contamination situation of a non‐ or only partly investigated site. The subsequent placement of monitoring wells for long‐term monitoring of contamination levels is recommended. A combination of methods would achieve more relevant information at comparable or possibly even lower efforts in comparison to a conventional site investigation.  相似文献   

4.
A newly developed technique which allows the down-hole sampling and subsequent analysis of ground water for trace organic contaminants was tested during an investigation of contaminant migration at an inactive landfill site in Burlington, Ontario, Canada. The sampling device, which is lowered down piezometers with a tube, consists of a small cylindrical cartridge of sorbent material attached to a syringe. Vacuum or pressure applied at the surface controls the movement of the plunger in the syringe. The volume of the syringe determines the volume of sample water that passes through the cartridge. The cartridge is removed from the syringe at the surface. One cartridge is used for each sampling; the syringe is reusable. The residual water in the cartridge is removed in the laboratory, and the cartridge is desorbed to a fused silica capillary column for analysis by gas chromatography (GC). The analyses discussed here were performed on a GC/mass spectrometer/data system (GC/MS/DS). Of the many organic compounds that were identified in the samples, three compounds were clearly landfill-related: 1,1,1-trichloroethane, chlorobenzene, and para-dichlorobenzene. The three compounds were found at levels substantially above blank levels in 9, 5, and 5 piezometers, respectively. The average concentrations were 14., 5.3, and 0.88μg/1 (ppb), respectively. The pooled coefficients of variation for the analyses for the three compounds were 27., 6.9, and 6.4%, respectively. The volatility of 1,1,1-trichloroethane was probably the cause of the greater variability in its analytical data. The main advantages of the technique over most conventional sampling methods include: (1) down-hole sampling in a manner which minimizes the potential for volatilization losses; (2) avoidance of passage of the sample through long sections of tubing that may contaminate the sample or cause adsorptive losses; (3) convenience of sample handling, storage, and shipping; and (4) high sensitivity.  相似文献   

5.
The results of comprehensive field testing of on‐site vapor‐phase‐based groundwater monitoring methods are presented to demonstrate their utility as a robust and cost‐effective approach for rapidly obtaining volatile organic compounds (VOCs) concentration data from a monitoring well. These methods—which rely on sensitive, commercially available field equipment to analyze vapor in equilibrium with groundwater—proved easy to implement and can be tailored to site‐specific needs, including multilevel sampling. During field testing, low‐flow groundwater concentrations could be reasonably estimated using submerged passive vapor diffusion samplers or field equilibration of collected groundwater (R2 = 0.85 to 0.96). These two methods are not as reliant on in‐well mixing to overcome vertical stratification within wells as simpler headspace methods. The importance of well and aquifer‐specific factors on concentration data (and therefore method selection) is highlighted, including the effect of changing in‐well patterns due to seasonal temperature gradients. Results indicated that vertical stratification was relatively limited within the set of wells included in these studies, resulting in similar performance for short depth‐discrete passive vapor diffusion samplers (constructed from 40‐mL vials) and longer samplers (2.5 to 5 feet in length) designed to cover a larger portion of the screened interval. A year‐long, multi‐event evaluation demonstrated that vapor‐phase‐based monitoring methods are no more variable than conventional groundwater monitoring methods, with both types subject to similar spatial and temporal variability that can be difficult to reduce. Vapor sampling methods represent a promising approach for estimation of groundwater concentrations by reducing the cost liabilities associated with monitoring while providing a more sustainable approach.  相似文献   

6.
Gas‐saturated groundwater forms bubbles when brought to atmospheric pressure, preventing precise determination of its in situ dissolved gas concentrations. To overcome this problem, a modeling approach called the atmospheric sampling method is suggested here to recover the in situ dissolved gas concentrations of groundwater collected ex situ under atmospheric conditions at the Horonobe Underground Research Laboratory, Japan. The results from this method were compared with results measured at the same locations using two special techniques, the sealed sampler and pre‐evacuated vial methods, that have been developed to collect groundwater under its in situ conditions. In gas‐saturated groundwater cases, dissolved methane and inorganic carbon concentrations derived using the atmospheric sampling method were mostly within ±4 and ±10%, respectively, of values from the sealed sampler and pre‐evacuated vial methods. In gas‐unsaturated groundwater, however, the atmospheric sampling method overestimated the in situ dissolved methane concentrations, because the groundwater pressure at which bubbles appear (Pcritical) was overestimated. The atmospheric sampling method is recommended for use where gas‐saturated groundwater can be collected only ex situ under atmospheric conditions.  相似文献   

7.
The use of in‐field analysis of vapor‐phase samples to provide real‐time volatile organic compound (VOC) concentrations in groundwater has the potential to streamline monitoring by simplifying the sample collection and analysis process. A field validation program was completed to (1) evaluate methods for collection of vapor samples from monitoring wells and (2) evaluate the accuracy and precision of field‐portable instruments for the analysis of vapor‐phase samples. The field program evaluated three vapor‐phase sample collection methods: (1) headspace samples from two locations within the well, (2) passive vapor diffusion (PVD) samplers placed at the screened interval of the well, and (3) field vapor headspace analysis of groundwater samples. Two types of instruments were tested: a field‐portable gas chromatograph (GC) and a photoionization detector (PID). Field GC analysis of PVD samples showed no bias and good correlation to laboratory analysis of groundwater collected by low‐flow sampling (slope = 0.96, R2 = 0.85) and laboratory analysis of passive water diffusion bag samples from the well screen (slope = 1.03; R2 = 0.96). Field GC analysis of well headspace samples, either from the upper portion of the well or at the water‐vapor interface, resulted in higher variability and much poorer correlation (consistently biased low) relative to laboratory analysis of groundwater samples collected by low‐flow sample or passive diffusion bags (PDBs) (slope = 0.69 to 0.76; R2 = 0.60 to 0.64). These results indicate that field analysis of vapor‐phase samples can be used to obtain accurate measurements of VOC concentrations in groundwater. However, vapor samples collected from the well headspace were not in equilibrium with water collected from the well screen. Instead, PVD samplers placed in the screened interval represent the most promising approach for field‐based measurement of groundwater concentrations using vapor monitoring techniques and will be the focus of further field testing.  相似文献   

8.
Four highly contaminated sediment samples obtained from three sampling locations of the Teltow Canal, Berlin, were investigated by quantitation of extractable and nonextractable organic contaminants. The selection of the anthropogenic contaminants (including chlorinated and brominated naphthalenes, 2, 4, 6‐tribromoaniline, phthalates, tri‐n‐butylphosphate, 2, 2, 4‐trimethyl‐1, 3‐pentanediol diisobutyrate, bisphenol A, butylated nitrophenols, 4‐nitrobenzoic acid, galaxolide, and tonalide) based on the results of extended GC‐MS screening analyses applied to the extracts of the sediment samples as well as to the extracts derived from selective chemical degradation procedures. In detail, alkaline hydrolyses, BBr3‐treatment and RuO4‐oxidation were applied to the pre‐extracted sediment samples in both a separate and a sequential mode.  相似文献   

9.
Different types of data can be collected to evaluate whether or not vapor intrusion is a concern at sites impacted with volatile organic compound (VOC) contamination in the subsurface. Typically, groundwater, soil gas, or indoor air samples are collected to determine VOC concentrations in the different media. Sample results are evaluated using a “multiple lines of evidence” approach to interpret whether vapor intrusion is occurring. Data interpretation is often not straightforward because of many complicating factors, particularly in the evaluation of indoor air. More often than not, indoor air sample results are affected by indoor or other background sources making interpretation of concentration‐based data difficult using conventional sampling approaches. In this study, we explored the practicality of compound‐specific isotope analysis (CSIA) as an additional type of evidence to distinguish between indoor sources and subsurface sources (i.e., vapor intrusion). We developed a guide for decision‐making to facilitate data interpretation and applied the guidelines at four different test buildings. To evaluate the effectiveness of the CSIA method for vapor intrusion applications, we compared the interpretation from CSIA to interpretations based on data from two different investigation approaches: conventional sampling and on‐site GC/MS analysis. Interpretations using CSIA were found to be generally consistent with the other approaches. In one case, CSIA provided the strongest line of evidence that vapor intrusion was not occurring and that a VOC source located inside the building was the source of VOCs in indoor air.  相似文献   

10.
The HydraSleeve is a sampling device for collecting groundwater from the screened interval of a monitoring well without purging that uses a check valve to take in water over the first 3 to 5 feet of an upward pulling motion. If the check valve does not perform as expected, then the HydraSleeve has the potential to collect water from an incorrect depth interval, possibly above the screened interval of the well. We have evaluated volatile organic chemical (VOC) results from groundwater samples collected with the HydraSleeve sampler compared to other methods for sampling monitoring wells at three sites. At all three sites, lower VOC concentration results were observed for samples collected using the HydraSleeve. At two of these three sites, the low concentration sample results were most strongly associated with monitoring wells with more than 10 feet of water above the monitoring well‐screened interval. At the site with the largest dataset, the median bias for samples collected with HydraSleeve was ?20% (p < 0.001). At this site, a bias of ?26% (p < 0.001) was observed for the subset of monitoring wells with greater than 10 feet of water above the screened interval compared to a bias of ?7% (p = 0.21) for wells screened across the top of the water table. In addition to lower VOC concentrations, the monitoring records obtained using the HydraSleeve were more variable compared to monitoring records obtained using purge sampling methods, a characteristic that would make it more difficult to determine the long‐term concentration trend in the well.  相似文献   

11.
The influence of large‐scale mining operations on groundwater quality was investigated in this study. Trace element concentrations in groundwater samples from the North Mara mining area of northern Tanzania were analyzed. Statistical analyses for relationships between elemental concentrations in the samples and distance of a sampling site from the mine tailings dam were also conducted. Eleven trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined, and averages of Fe and Al concentrations were higher than levels accepted by the Tanzanian drinking water guideline. Levels of Pb in three samples were higher than the World Health Organization (WHO) and United States Environmental Protection Agency (USEPA) drinking water guidelines of 10 and 15 µg/L, respectively. One sample contained a higher As level than the WHO and USEPA guideline of 10 µg/L. The correlation between element concentrations and distance from the mine tailings dam was examined using the hierarchical agglomeration cluster analysis method. A significant difference in the elemental concentration existed depending on the distance from the mine tailings dam. Mann–Whitney U‐test post hoc analysis confirmed a relationship between element concentration and distance of a sampling site from the mine tailings dam. This relationship raises concerns about the increased risks of trace elements to people and ecosystem health. A metal pollution index also suggested a relationship between elemental concentrations in the groundwater and the sampling sites’ proximity from the mine tailings dam.  相似文献   

12.
This study investigates potential occurrence, distribution, and sources of the newly added gasoline oxygenate, methyl‐tert‐butyl ether (MTBE) and the petroleum derivatives benzene, toluene, ethylbenzene, and xylenes called collectively, BTEX, in Jordan's heavily populated Amman–Zarqa Basin (AZB). It presents the first data on the levels of MTBE and BTEX in the aquifers of this basin. One hundred and seventy‐nine (179) groundwater wells were sampled near petrol service stations, oil refinery storage tanks, car wrecks, bus stations, and chemical industries at different locations in the basin. Headspace GC and purge and trap GC–MS were utilized to determine the target substances in the samples. Concentrations of BTEX varied between no‐detection (minimum) for all of them to 6.6 µg/L (maximum) for ethylbenzene. MTBE was found in few samples but none has exceeded the regulated levels; its concentrations ranged between no‐detection to 4.1 µg/L. However, though the contamination levels are very low they should be considered alarming.  相似文献   

13.
Phytoremediation, a plant‐based and cost‐effective technology for the cleanup of contaminated soil and water, is receiving increasing attention. In this study, the aquatic macrophyte Eleocharis acicularis was examined for its ability to take up multiple heavy metals and its potential application for phytoremediation at an abandoned mining area in Hokkaido, Japan. Elemental concentrations were measured in samples of E. acicularis, water, and soil collected from areas of mine tailing and drainage. The results reveal that Pb, Fe, Cr, Cu, Ni, and Mn accumulation in the plants increased over the course of the experiment, exceeding their initial concentrations by factors of 930, 430, 60, 25, 10, and 6, respectively. The highest concentrations of Fe, Pb, Zn, Mn, Cr, Cu, and Ni within the plants were 59500, 1120, 964, 388, 265, 235, and 47.4 mg/kg dry wt., respectively, for plants growing in mine drainage after 11 months of the experiment. These results indicate that E. acicularis is a hyperaccumulator of Pb. We also found high Si concentrations in E. acicularis (2.08%). It is likely that heavy metals exist in opal‐A within cells of the plant. The bioconcentration factors (BCF: ratio of metal concentration in the plant shoots to that in the soil) obtained for Cr, Cu, Zn, Ni, Mn, and Pb were 3.27, 1.65, 1.29, 1.26, 1.11, and 0.82, respectively. The existence of heavy metals as sulphides is thought to have restricted the metal‐uptake efficiency of E. acicularis at the mine site. The results of this study indicate that E. acicularis shows great potential in the phytoremediation of mine tailing and drainage rich in heavy metals.  相似文献   

14.
Natural estrogens from humans increasingly attract attention because of their strong endocrine disrupting potency. The discharge of sewage water is considered as the most important source of these endocrine disrupting chemicals (EDCs) in the environment. Therefore, a GC‐MS method was developed for the simultaneous analysis of six natural free estrogens and their sulfate conjugates in municipal wastewater, in which natural free estrogens and sulfate conjugates were successfully separated from an Oasis HLB solid phase extraction (SPE) cartridge with two different eluents, and the sulfate conjugates were then transformed to their corresponding free estrogens by acid solvolysis. Before the analysis with GC‐MS, samples were derivatized by N,O‐bis (trimethylsilyl) trifluoroacetamide (BSTFA) plus 1% trimethylchlorosilane (TMCS) at 80°C for 40 min. Satisfactory recoveries ranging from 64 to 112.3% were obtained by spiking ultra‐purified water, raw, and treated municipal wastewater with the six estrogens at 50, 100, and 50 ng/L, respectively. The method was successfully applied to wastewater samples from one WWTP, which suggested that E1 was the dominant natural estrogens in effluent and E3‐3S was one of the conjugates possibly occurring in the effluent.  相似文献   

15.
Purging influence on soil‐gas concentrations for volatile organic compounds (VOCs), as affected by sampling tube inner diameter and sampling depth (i.e., system volume) for temporary probes in fine‐grained soils, was evaluated at three different field sites. A macro‐purge sampling system consisted of a standard, hollow, 3.2‐cm outer diameter (OD) drive probe with a retractable sampling point attached to an appropriate length of 0.48‐cm inner diameter (ID) Teflon® tubing. The macro‐purge sampling system had a purge system volume of 24.5 mL at a 1‐m depth. In contrast, the micro‐purge sampling systems were slightly different between the field sites and consisted of a 1.27‐cm OD drive rod with a 0.10‐cm ID stainless steel tube or a 3.2‐cm OD drive rod with a 0.0254‐cm inner diameter stainless steel tubing resulting in purge system volumes of 1.2 and 7.05 mL at 1‐m depths, respectively. At each site and location within the site, with a few exceptions, the same contaminants were identified in the same relative order of abundances indicating the sampling of the same general soil atmosphere. However, marked differences in VOC concentrations were identified between the sampling systems, with micro‐purge samples having up to 27 times greater concentrations than their corresponding macro‐purge samples. The higher concentrations are the result of a minimal disturbance of the ambient soil atmosphere during purging. The minimal soil‐gas atmospheric disturbance of the micro‐purge sampling system allowed for the collection of a sample that is more representative of the soil atmosphere surrounding the sampling point. That is, a sample that does not contain an atmosphere that has migrated from distance through the geologic material or from the surface in response to the vacuum induced during purging soil‐gas concentrations. It is thus recommended that when soil‐gas sampling is conducted using temporary probes in fine‐grained soils, the sampling system use the smallest practical ID soil‐gas tubing and minimize purge volume to obtain the soil‐gas sample with minimal risk of leakage so that proper decisions, based on more representative soil‐gas concentrations, about the site can be made.  相似文献   

16.
Analysis of dissolved light hydrocarbon gas concentrations (primarily methane and ethane) in water supply wells is commonly used to establish conditions before and after drilling in areas of shale gas and oil extraction. Several methods are currently used to collect samples for dissolved gas analysis from water supply wells; however, the reliability of results obtained from these methods has not been quantified. This study compares dissolved methane and ethane concentrations measured in groundwater samples collected using three sampling methods employed in pre‐ and post‐drill sampling programs in the Appalachian Basin. These include an open‐system collection method where 40 mL volatile organic analysis (VOA) vials are filled directly while in contact with the atmosphere (Direct‐Fill VOA) and two alternative methods: (1) a semi‐closed system method whereby 40 mL VOA vials are filled while inverted under a head of water (Inverted VOA) and (2) a relatively new (2013) closed system method in which the sample is collected without direct contact with purge water or the atmosphere (IsoFlask®). This study reveals that, in the absence of effervescence, the difference in methane concentrations between the three sampling methods was relatively small. However, when methane concentrations equaled or exceeded 20 mg/L (the approximate concentration at which effervescence occurs in the study area), IsoFlask® (closed system) samples yielded significantly higher methane concentrations than Direct‐Fill VOA (open system) samples, and Inverted VOA (semi‐closed system) samples yielded lower concentrations. These results suggest that open and semi‐closed system sample collection methods are adequate for non‐effervescing samples. However, the use of a closed system collection method provides the most accurate means for the measurement of dissolved hydrocarbon gases under all conditions.  相似文献   

17.
The electrochemical oxidation (EO) of diethyl phthalate (DEP) in aqueous solution was studied at Pb/PbO2 and Ti/SnO2 anode materials under galvanostatic‐experimental conditions. Results obtained clearly demonstrated that the anode plays a significant role for the optimization of the oxidation process, deciding the mechanisms and by‐products formed. DEP and by‐products of oxidation were also analyzed during various stages of the electrolysis reaction by HPLC and GC/MS techniques. Before the analysis by GC/MS technique, the samples were treated by solid phase microextraction (SPME) in order to concentrate the compounds from the reaction solution and identify all electrolysis intermediates. Current efficiencies (instantaneous current efficiency; ICE and total current efficiency; TCE) achieved during EO experiments were dependent on anode used and current density (20–40 mA cm?2) at 40°C. The results obtained demonstrated that the environmental electrochemical methods can be a feasible alternative for the wastewater treatment containing hazardous phthalates.  相似文献   

18.
Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log‐linear fashion. The bioconcentration factor for these elements decreases log‐linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals.  相似文献   

19.
Because of their fast response to hydrological events, small catchments show strong quantitative and qualitative variations in their water runoff. Fluxes of solutes or suspended material can be estimated from water samples only if an appropriate sampling scheme is used. We used continuous in‐stream measurements of the electrical conductivity of the runoff in a small subalpine catchment (64 ha) in central Switzerland and in a very small (0·16 ha) subcatchment. Different sampling and flux integration methods were simulated for weekly water analyses. Fluxes calculated directly from grab samples are strongly biased towards high conductivities observed at low discharges. Several regressions and weighted averages have been proposed to correct for this bias. Their accuracy and precision are better, but none of these integration methods gives a consistently low bias and a low residual error. Different methods of peak sampling were also tested. Like regressions, they produce important residual errors and their bias is variable. This variability (both between methods and between catchments) does not allow one to tell a priori which sampling scheme and integration method would be more accurate. Only discharge‐proportional sampling methods were found to give essentially unbiased flux estimates. Programmed samplers with a fraction collector allow for a proportional pooling and are appropriate for short‐term studies. For long‐term monitoring or experiments, sampling at a frequency proportional to the discharge appears to be the best way to obtain accurate and precise flux estimates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Adaptive site management and aggressive bioremediation in the source zone of a complex chlorinated dense nonaqueous phase liquid (DNAPL) site reduced total chlorinated hydrocarbon mass discharge by nearly 80%. Successful anaerobic bioremediation of chlorinated hydrocarbons can be impaired by inadequate concentrations of electron donors, competing electron acceptors, specific inhibitors such as chloroform, and potentially by high contaminant concentrations associated with residual DNAPL. At the study site, the fractured bedrock aquifer was impacted by a mixture of chlorinated solvents and associated daughter products. Concentrations of 1,1,2,2‐tetrachloroethane (1,1,2,2‐TeCA), 1,1,2‐trichloroethane (1,1,2‐TCA), and 1,2‐dichloroethane (1,2‐DCA) were on the order of 100 to 1000 mg/L. Chloroform was present as a co‐contaminant and background sulfate concentrations were approximately 400 mg/L. Following propylene glycol injections, concentrations of organohalide‐respiring bacteria including Dehalococcoides and Dehalogenimonas spp. increased by two to three orders of magnitude across most of the source area. Statistical analysis indicated that reaching volatile fatty acid concentrations greater than 1000 mg/L and depleting sulfate to concentrations less than 50 mg/L were required to achieve a Dehalococcoides concentration greater than the 104 cells/mL recommended for generally effective reductive dechlorination. In a limited area, chloroform concentrations greater than 5 mg/L inhibited growth of Dehalococcoides populations despite the availability of electron donor and otherwise appropriate geochemical conditions. After implementing a groundwater recirculation system targeting the inhibited area, chloroform concentrations decreased permitting significant increases in concentrations of Dehalococcoides and vinyl chloride reductase gene copies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号