首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
This paper presents results of numerical modeling of site response for Euroseistest. Ground motion across a very detailed model of the subsoil of this valley has been simulated for vertically incident SH waves. The predominance of locally generated surface waves is very clear in the synthetic seismograms. These results are then compared with published studies of observed site effects at this basin and with a detailed analysis of two events in the time domain. It is discussed in which sense it is possible to obtain a good fit between observations and 1D models, even though the real behavior involves locally generated Love waves. For this reason, it can be misleading to rely on an incomplete observation such as empirical transfer functions. Finally, it is stressed that in order to predict ground motion in alluvial valleys the information contained in the phase cannot be neglected.  相似文献   

2.
This paper describes the process of construction of the 2D model of Volvi's geological structure and results of empirical and theoretical approaches to the evaluation of site response at Euroseistest. The construction of the 2D model is based on a re-interpretation of the available geophysical and geotechnical data in an effort to improve the definition of the subsoil structure at Euroseistest in terms of the most important parameters needed to model site response. The results of this re-interpretation are compared with a previous published 2D model of the same alluvial valley. Different analysis of the measurements and different criteria in the synthesis of data have led to a different model, even if both studies had access to the same field measurements. This underscores the fact that a model results of an interpretation and is not uniquely determined by the data, no matter how detailed they are. The well known subsoil structure opened the possibility to correlate the geometry and the dynamic properties of the 2D model with the results of site response determined from a detailed analysis of two events in frequency and time domains and 1D numerical modeling. The study of site response shows the important effect of the lateral variations on the ground motion and suggests that the contribution of locally generated surface waves to the resonant peak may be important. In the case of Volvi's graben, the limitations of the 1D approximation to simulate ground motion under complex soil conditions in both frequency and time domains are also shown. This paper lays the ground for a companion article dealing with 2D site effects in this basin.  相似文献   

3.
—?Modern seismic codes usually include provisions for site effects by considering different coefficients chosen on the basis of soil properties at the surface and an estimate of the depth of bedrock. However, complex local geology may generate site amplification on soft soils significantly larger than what would be expected if we assume that the subsoil consists of plane soil layers overlaying a homogeneous half-space. This paper takes advantage of the large number of previous studies of site effects done at Euroseistest (northern Greece). Those studies have supplied a very detailed knowledge of the geometry and properties of the materials filling this shallow valley. In this paper we discuss the differences between site effects evaluated at the surface using simple 1-D computations and those evaluated using a very detailed 2-D model of the subsoil structure. The 2-D model produces an additional amplification in response spectra that cannot be accounted for without reference to the lateral heterogeneity of the valley structure. Our numerical results are extensively compared with observations, which show that the additional amplification computed from the 2-D model is real and affects by a significant factor response spectra, and thus suggests that some kind of aggravation factor due to the complexity of local geology is worthy of consideration in microzonation studies and seismic codes.  相似文献   

4.
Site effects are one of the most predictable factors of destructive earthquake ground motion but results depend on the type of model chosen. We compare simulations of ground motion for a 3D model of the Mygdonian basin in northern Greece (Euroseistest) using different approximation for this basin. Site effects predicted using simple 1D models at many points inside the basin are compared to site effects predicted using four different 2D cross sections across the basin and with results for a full 3D simulation. Surface topography was neglected but anelastic attenuation was included in the simulations. We show that lateral heterogeneity may increase ground motion amplification by 100 %. Larger amplification is distributed in a wide frequency range, and amplification may occur at frequencies different from the expected resonant frequencies for the soil column. In contrast, on a different cross section, smaller conversion of incident energy into surface waves and larger dispersion leads to similar amplitudes of ground motion for 2D and 1D models. In general, results from 2D simulations are similar to those from a complete 3D model. 2D models may overestimate local surface wave amplitudes, especially when the boundaries of the basin are oblique to the selected cross section. However, the differences between 2D and 3D site effects are small, especially in regard of the difficulties and uncertainties associated to building a reliable 3D model for a large basin.  相似文献   

5.
We present the results of the analysis of array recorded microtremors at 14 sites, close to the edges of the Mygdonian basin in northern Greece (Euroseistest). These measurements were made in order to better constrain the geometry and velocity structure of the basin as the soil layers taper out close to rock outcrop, where geology is complex and we may expect significant changes of the subsoil structure over short distances. The data were analysed using the SPAC method and HVSR. The first interprets the measurements as Rayleigh waves (for the vertical component we analysed) and allows to invert a phase velocity dispersion curve from computed correlation coefficients. The second estimates a local transfer function directly, from ratios of Fourier amplitude spectra. A phase velocity dispersion curve could be derived for 12 of the 14 measurement sites, and at three of the sites no resonant frequency was observed in the HVSR. It is encouraging that we obtained good results at most of our sites, in spite of the lateral heterogeneity expected close to the edges of Euroseistest. Our results allow us to obtain shear wave velocity models at most of the measurement sites (12 out of 14). They are also useful to explore the relation between size of the array and wavelength range for which a dispersion curve may be estimated, which in our case has strong limitations. We identify the frequency of resonance of the sediments as a small loss of coherency in SPAC’s correlation coefficients. Finally, we also consider the applicability of the joint inversion of the resonance frequency determined using HVSR and the phase velocity dispersion curve obtained from SPAC.  相似文献   

6.
Euroseistest is currently the longest running test site in the world. It was originally defined as the 2D cross-section of the Mygdonian basin going from Profitis to Stivos villages. In this paper, we present the first results of the effort to extend the idea of test site to a larger portion of the whole sedimentary structure, i.e. the extension of the idea of Euroseistest from a 2D to a 3D structure. To this end we have compiled available geological and geotechnical information. We have analyzed microtremor and earthquake data recorded seven years ago, that had not been thoroughly exploited. We present the results of the analysis of H/V spectral ratios from microtremors recorded at 195 sites, and from earthquake records at 14 stations. The results are validated through comparison with the well studied 2D cross-section. In addition to this, the geometry of the edges of the basin has been deduced from electrical tomographies. The synthesis of all these data allowed us to propose reliable map of dominant frequencies throughout the basin, a good constrain on the geometry of the basin at the edges, and shear-wave velocity profiles at some points. Our results indicate that average shear-wave velocity is not constant throughout, and thus the dominant frequency map is not a faithful image of the geometry of the basin. We have also obtained a reliable estimate of the site response throughout the basin. The results have been used to plan an additional measurement campaign, and are currently used to compute site response using a 3D seismic modelling code. We expect that the usefulness of Euroseistest to understand site effects in 3D geological structures will be as large as it has been in its 2D phase.  相似文献   

7.
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity.  相似文献   

8.
The paper focuses on the strong motion array deployed in the upper Aterno River Valley, in the immediate outskirts north-west of the town of L’Aquila, which is part of the Italian Strong Motion Network operated by the Department of Civil Protection. The array is composed of six accelerometric stations located along a cross section of the valley. The importance of this array relies on the fact that a large amount of high-quality records were obtained during the 2009 L’Aquila seismic sequence, from both the mainshock and several aftershocks. These data are especially important to investigate site effects in sediment-filled valleys during moderate earthquakes in epicentral area because well-documented observational studies are very limited in the literature. However, the main drawback for the study of site effects in the Aterno valley is the lack of a detailed knowledge of the geometry of the valley, soil layering and dynamic properties of materials. The main motivation for this study stems from the need to provide a reliable subsoil model of the valley coupled with high-quality strong motion data. Based on the above, in the framework of S4 project, a major effort was undertaken to get a trustworthy cross section of the valley by an ad hoc investigation, comprising geological and geotechnical surveys as well as an extensive geophysical campaign, characterized by both active and passive measurements. These results were complemented by additional geological and geotechnical data available in the literature. By merging all the information acquired, a 2D subsoil model of the transversal section of the upper Aterno valley has been produced. The valley is characterised by an asymmetric shape with a shallower rock basement at the western edge of the valley that deepens at the valley centre. Moreover, based on the results of geophysical tests, representative Vs values were assigned to the different lithologic units forming the alluvial deposits filling the valley. Shear wave velocity is a fundamental parameter for ground response studies and it is also effective in classifying the accelerometric station from a seismic point of view. The 2D model may be therefore, considered a benchmark model for future studies of site effects. It will offer the possibility to examine site effects with a complex underlying geology and to validate the results of numerical simulations of site response analyses with the numerous observations from earthquake recordings, both for weak and strong ground motion conditions.  相似文献   

9.
The simulation of the seismic response of heterogeneous sedimentary basins under incident plane waves is computed using the Indirect Boundary Element Method (IBEM). To deal with these kinds of basins we used approximate analytical expressions for the two-dimensional Greens functions of a medium with constant-gradient wave propagation velocity. On the other hand, for the homogeneous half space underlying the sedimentary basin, the full space Greens functions were used. The response of semi-circular heterogeneous basins under incident SH waves is explored by means of the displacements in the frequency-space diagrams and synthetic seismograms. Moreover, we compared these results with those obtained for other homogeneous semi-circular models. The principal differences among them are pointed out. This simulation provided interesting results that displayed a complex amplification pattern in a rich spectrum of frequencies and locations. The maximum amplitudes levels were found around the edges of the heterogeneous sedimentary basins. In time domain some features characterize the seismic response of the basin which include enhanced generation and trapping of surface waves inside the sediments, and the reduced emission of seismic energy to the hard rock. In the heterogeneous models the lateral reflections of surface waves greatly influence the total displacements at the free surface in comparison with the homogeneous models where the displacements have a shared influence among both vertical and lateral reflections.  相似文献   

10.
张素芳  张智 《地球物理学报》2008,51(4):1180-1187
除介质各向异性之外,地球内部介质的横向非均匀性也是控制面波速度变化的重要因素.本文基于振型耦合和多重散射的地震波传播理论,数值模拟并分析了在具有均匀介质背景的三维异常体——上地幔横向非均匀介质中传播时,地震面波的振幅与偏振等动力学响应参数;其中分别模拟了不同周期入射、不同角度入射和不同尺度非均匀介质模型等多种情形下面波波场,并对横向非均匀性诱导的面波偏振异常进行了分析.结果表明,相对于长周期面波而言,短周期面波的振幅和偏振方向受横向非均匀性的影响更大,特别是偏振方向对地球结构的非均匀性更为敏感;切向分量存在横向非均性引起的Rayleigh与Love面波耦合现象;异常体边界处表现出强的面波波场响应.  相似文献   

11.
This paper presents results of numerical modelling of site response for Thessaloniki, obtained with two different 2D methods; a finite difference and a finite element method. Ground motion across a 2D model of the subsoil of the city has been simulated for vertically incident SH waves. The predominance of locally generated surface waves is very clear in the synthetic seismograms of a weak event and of stronger ones. These results are then compared with the observations in time domain and frequency domain. The role of the soil formations with high attenuation in the lateral propagation and the effect of the differential motion close to the lateral variations are also pinpointed. The stronger events were finally used to compute strong ground motion in order to reveal and to discuss practical engineering aspects such as peak ground acceleration value, the most familiar indicator in seismic norms, the soil to rock spectral coefficients for the period bandwidth of interest, and the aggravation factor in terms of 2D to 1D response spectra as a useful ruler to account for complex site effects.  相似文献   

12.
The 3D structure of the Mygdonian sedimentary basin (N. Greece) is investigated. The aim of this study is to propose a 3D model of this sedimentary structure that can later be used to model the seismic records currently being obtained by the permanent accelerograph network operating in the area. This model builds on previous efforts and incorporates new data. The geometry and dynamic properties of the soil layers were inverted using data from microtremor array measurements, seismic refraction profiles, boreholes, and geotechnical investigations. Phase-velocity dispersion curves of Rayleigh waves were determined at 27 sites in the basin using the spatial autocorrelation method (SPAC) introduced by Aki [1]. S-wave velocity profiles were inverted from these dispersion curves and the whole valley structure was interpolated using our new results and all previously available data. The proposed 3D model describes the geometry and shear-wave velocities of the Mygdonian and pre-Mygdonian sedimentary systems, and the top bedrock surface. Our results indicate that this 3D model correctly reflects the geometry and dynamic properties of the sedimentary layers. The case of Euroseistest, where the subsoil structure is the result of bringing together many disparate data, could be used as an example for similar alluvial basins throughout the world, where usually only scarce data is available.  相似文献   

13.
卓发成 《地震工程学报》2020,42(4):1035-1042
为了研究盆地基岩倾角对盆地地表动力反应的影响,选取了一个跨度2 km,深度500 m的二维成层盆地为研究对象进行有限元动力反应分析。以持时0.25 s的狄拉克脉冲作为输入地震动,探讨了P波和SV波垂直入射时,盆地基岩倾角从10°\,20°\,30°\,40°依次增加的情况下盆地地震反应。结果表明:入射波在倾斜基岩处发生波型转化,同时产生面波,在盆地中心区域发生汇聚;随着基岩倾角的增加地表中心处的卓越频率有减小的趋势。  相似文献   

14.
Azimuth dependent wave amplification in alluvial valleys   总被引:1,自引:0,他引:1  
An extension of the indirect boundary element method (IBEM) to three-dimensional scattering by two-dimensional alluvial valleys is presented. While the valley is two-dimensional, the incident plane waves can arrive outside the 2D plane so the scattering is three-dimensional with coupling of P---SV---SH waves. Such a method makes it possible to take earthquake location into account in the estimation of site effects in alluvial valleys. The method is validated by transparency tests, by comparison with 2D simulations, and by comparison with results of other authors. The advantage of the method is that is combines high accuracy with cost-efficiency in terms of computer-time. It is applied to theoretically estimate site effects across a simplified model of an alluvial valley in the French Alps where azimuth dependence of local amplification has been observed. A parametric study with simulations for a range of azimuths and incidence angles shows that (1) the local amplification depends strongly on both azimuth and incidence of the incoming waves, (2) the global pattern of amplification across the valley is very complex for all azimuths, and (3) it is not possible to predict the 3D response of the valley from 2D modeling. Theoretical spectral ratios are in approximate agreement with observed ones for a station in the center of the valley where the local structure justifies use of a simplified model for the comparison.  相似文献   

15.
A hybrid indirect boundary element – discrete wavenumber method is presented and applied to model the ground motion on stratified alluvial valleys under incident plane SH waves from an elastic half-space. The method is based on the single-layer integral representation for diffracted waves. Refracted waves in the horizontally stratified region can be expressed as a linear superposition of solutions for a set of discrete wavenumbers. These solutions are obtained in terms of the Thomson–Haskell propagators formalism. Boundary conditions of continuity of displacements and tractions along the common boundary between the half-space and the stratified region lead to a system of equations for the sources strengths and the coefficients of the plane wave expansion. Although the regions share the boundary, the discretization schemes are different for both sides: for the exterior region, it is based on the numerical and analytical integration of exact Green's functions for displacements and tractions whereas for the layered part, a collocation approach is used. In order to validate this approach results are compared for well-known cases studied in the literature. A homogeneous trapezoidal valley and a parabolic stratified valley were studied and excellent agreement with previous computations was found. An example is given for a stratified inclusion model of an alluvial deposit with an irregular interface with the half-space. Results are displayed in both frequency and time domains. These results show the significant influence of lateral heterogeneity and the emergence of locally generated surface waves in the seismic response of alluvial valleys.  相似文献   

16.
Surface wave methods consist of the extraction and inversion of the Rayleigh wave phase-velocity dispersion curve to recover the (usually 1D) shear-wave velocity profile. In the literature, uncertainty due to data error has not received much attention, but the discussion about uncertainty due to model error is even poorer. Even with an unrealistic noise-free dataset and an exact forward model, an inappropriate parameterization can generate solutions very far from the actual soil structure. In general, the model used for the dispersion curve interpretation is 1D. Hence, when the velocity distribution is laterally heterogeneous, model errors can have significant consequences on the reliability of the resulting shear-wave velocity distribution. From a poor velocity reconstruction, an unsatisfactory, and often dangerous site response analysis follows. In fact, shear wave measurements play a relevant role in seismic ground motion amplification estimation. In this paper, we discuss the possibility of processing the seismograms using a multi-offset phase analysis (MOPA), in order to derive soil elastic parameters for weak motion predictions. This technique allows the detection and location of the lateral discontinuities, and a better model parameterization. In fact, once the discontinuities are identified, we can split the profile into several, truly 1D, parts. The use of the standard 1D dispersion curve extraction and inversion for each side of the heterogeneity generates velocity profiles that we can put side by side to get correct 2D reconstructions of the shear-wave distributions. From 2D velocity reconstruction, we can calculate the site response that may be significantly different from the site response generated from a traditional 1D analysis of the same seismograms. In this work, we discuss the site responses of two synthetic examples with lateral heterogeneities. We show how misleading a 1D analysis may be if applied to a truly 2D velocity distribution, particularly in terms of site response prediction.  相似文献   

17.
建立包含震源、沉积盆地和表层低速沉积层的二维模型,采用交错网格有限差分/伪谱混合方法求解地震波传播,讨论沉积层厚度和速度对地震地面运动的作用。结果表明:沉积层内产生的地震波的多重反射以及转换会引起地面运动持续时间的延长,它们的相干叠加会造成地面运动峰值的放大;随着沉积层速度的增加,多重反射与转换波的能量减小,地面运动持续时间减小,但是不同速度或者不同厚度的低速层模型均显示出一致的地面运动峰值放大特征。结果说明,在包含震源、沉积盆地和沉积层的模型中,沉积层对地面运动的作用机理更复杂。在实际应用中有必要同时考虑这些因素的综合作用。  相似文献   

18.
柴达木盆地东部地震地面运动放大效应   总被引:1,自引:1,他引:0       下载免费PDF全文
柴达木盆地是青藏高原东北部大型断陷山间盆地,该地区的流动观测记录了2008年11月10日发生于大柴旦附近的M_W6.3地震。和附近的基岩上的记录相比,盆地内部的记录显示出非常显著的地面运动放大效应,表现为峰值速度的增大、持续时间的延长,其呈现出长持续时间的后续震相。傅里叶频谱分析表明盆地内部显著的后续震相的频率和直达波相比较低,地面质点运动轨迹图显示后续震相为面波运动特征。为了解释地面运动的差异,构建二维模型,通过交错网格高阶有限差分方法计算了地震波在盆地内部的传播过程,结果显示盆地内部低速层的存在造成直达波的放大以及多次反射与转换,盆地边缘结构造成的波的相干叠加产生了强烈的次生面波,其低频、大振幅、长持续时间的特征是盆地内部地面运动放大的主要原因。  相似文献   

19.
Transient response of three dimensional dipping layers of different shapes subjected to incident P, SV, SH and Rayleigh waves is investigated. The time domain response is constructed from steady state solutions through the Fourier synthesis. An indirect boundary integral equation method is applied to calculate the required steady state solutions. The material of the half-space and the layer is assumed to be linear, weakly inelastic, homogeneous and isotropic. Numerical results show that the maximum amplification of motion is strongly dependent upon the type of incident wave, the shape of the basin and signal frequency. The change in the shape of the valley from hemispherical to semi-prolate causes a significant increase in the amplitude of surface waves near the edges; however, the maximum amplification of motion near the centre of the valley decreases. This phenomenon is especially apparent for the case of an incident P wave. In comparison to the corresponding two dimensional responses, the amplitude of motion near the centre of the valley is in general higher for three dimensional models.  相似文献   

20.
This paper presents a 2D model of the geological structure of Thessaloniki city and results of empirical and theoretical approaches for the evaluation of site response due to complex site effects. The construction of the 2D model is based on the available geophysical and geotechnical data in terms of the most important parameters needed to model site response. The well-known subsoil structure, despite the existence of some local uncertainties, gave the possibility to correlate the geometry and the dynamic properties of the 2D model with the results of site response determined from the analysis of one event in frequency and time domains and 1D numerical modelling. The study of site response shows the effect of the lateral variations on ground motion and suggests that the contribution of locally generated surface waves to the resonant peak may be important. In this case history, the limitations of the 1D approximation to simulate ground motion under complex soil conditions in both frequency and time domains are also shown. This paper lays the ground for a companion article dealing with 2D site effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号