首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
This paper describes the process of construction of the 2D model of Volvi's geological structure and results of empirical and theoretical approaches to the evaluation of site response at Euroseistest. The construction of the 2D model is based on a re-interpretation of the available geophysical and geotechnical data in an effort to improve the definition of the subsoil structure at Euroseistest in terms of the most important parameters needed to model site response. The results of this re-interpretation are compared with a previous published 2D model of the same alluvial valley. Different analysis of the measurements and different criteria in the synthesis of data have led to a different model, even if both studies had access to the same field measurements. This underscores the fact that a model results of an interpretation and is not uniquely determined by the data, no matter how detailed they are. The well known subsoil structure opened the possibility to correlate the geometry and the dynamic properties of the 2D model with the results of site response determined from a detailed analysis of two events in frequency and time domains and 1D numerical modeling. The study of site response shows the important effect of the lateral variations on the ground motion and suggests that the contribution of locally generated surface waves to the resonant peak may be important. In the case of Volvi's graben, the limitations of the 1D approximation to simulate ground motion under complex soil conditions in both frequency and time domains are also shown. This paper lays the ground for a companion article dealing with 2D site effects in this basin.  相似文献   

2.
This paper presents results of numerical modelling of site response for Thessaloniki, obtained with two different 2D methods; a finite difference and a finite element method. Ground motion across a 2D model of the subsoil of the city has been simulated for vertically incident SH waves. The predominance of locally generated surface waves is very clear in the synthetic seismograms of a weak event and of stronger ones. These results are then compared with the observations in time domain and frequency domain. The role of the soil formations with high attenuation in the lateral propagation and the effect of the differential motion close to the lateral variations are also pinpointed. The stronger events were finally used to compute strong ground motion in order to reveal and to discuss practical engineering aspects such as peak ground acceleration value, the most familiar indicator in seismic norms, the soil to rock spectral coefficients for the period bandwidth of interest, and the aggravation factor in terms of 2D to 1D response spectra as a useful ruler to account for complex site effects.  相似文献   

3.
The discrete nature of the numerical methods utilized in 1D site response analysis and calculation of the response spectra (e.g., frequency domain, Duhamel integral, and Newmark β methods) introduces time-step dependence in the resulting solution. Using an input ground motion with too large of a time-step leads to under-prediction of high-frequency characteristics of the system response due to limitations in the numerical solution of single and multiple degree of freedom systems. In order to reduce potential errors, using a sampling rate at least ten times greater than the maximum considered frequency is recommended. The preferred alternative is selection of input ground motions with a sufficiently small time step to avoid introducing numerical errors. However, where such motions are not available, then the time step of the ground motion can be reduced through interpolation. This paper demonstrates that the use of Fourier transform zero-padded interpolation is the preferred approach to obtain a ground motion with an adequate time step for the calculation of the elastic acceleration response spectra, and to analyze site response using either frequency or time domain methods.  相似文献   

4.
Site effects are one of the most predictable factors of destructive earthquake ground motion but results depend on the type of model chosen. We compare simulations of ground motion for a 3D model of the Mygdonian basin in northern Greece (Euroseistest) using different approximation for this basin. Site effects predicted using simple 1D models at many points inside the basin are compared to site effects predicted using four different 2D cross sections across the basin and with results for a full 3D simulation. Surface topography was neglected but anelastic attenuation was included in the simulations. We show that lateral heterogeneity may increase ground motion amplification by 100 %. Larger amplification is distributed in a wide frequency range, and amplification may occur at frequencies different from the expected resonant frequencies for the soil column. In contrast, on a different cross section, smaller conversion of incident energy into surface waves and larger dispersion leads to similar amplitudes of ground motion for 2D and 1D models. In general, results from 2D simulations are similar to those from a complete 3D model. 2D models may overestimate local surface wave amplitudes, especially when the boundaries of the basin are oblique to the selected cross section. However, the differences between 2D and 3D site effects are small, especially in regard of the difficulties and uncertainties associated to building a reliable 3D model for a large basin.  相似文献   

5.
本文设计独立基础框架和整体箱型基础框架结构模型,基于试验数据的对比分析,探讨基础类型与地震动特性对场地土以及结构自身地震响应的影响。试验结果及分析表明:地表结构的存在总体上是放大了地表加速度响应,放大最大幅度达到了40%,影响范围可达3倍的结构跨度,且具有一定埋深的箱型基础的影响大于浅埋独立基础。由于土体对独立基础的约束相对较弱,导致独立基础结构模型的加速度响应总体上大于箱型基础的;独立基础结构模型可能发生摇摆运动导致结构基础竖向响应的频谱特性含有较多的高频成分。另外,地震动特性对结构响应也较显著,其中脉冲地震动NR波的影响最为显著。  相似文献   

6.
Observations from many recent strong motion events have shown the importance of local soil conditions and non-linear soil behaviour on the seismic ground response (site effects). As demonstrated by previous seismic microzoning studies (Lebrun et al.) [1]), as well as by at least three historical major earthquakes, Pointe-à-Pitre is prone to strong site effects, due to the particular geology of the area. In this paper, we present a comparison between the strong-motion data available from the stations operating on the swampy site of Pointe-à-Pitre airport and the ground motions derived from 1D non-linear finite element simulations.Results show that, for moderate to strong ground motions, 1D simulations reproduce the main characteristics of site response in terms of duration, energy distribution, amplitude and frequency content. It also shows the importance of very superficial soft layers as peat or saturated mud in low frequency site effects simulations. This point is important for further engineering studies since such very soft formations overlain by stiffer landfills are commonly expected in the Antilles context. Our work also shows that Anderson's criteria, used to quantify the goodness-of-fit of simulated ground motions to the observed ones, appear to be an interesting diagnostic tool for testing the quality of numerical simulations from an engineering point of view.  相似文献   

7.
工程场地地震安全性评价中计算二维复杂场地地震反应分析时,如采用一维等效线性化分析模型会带来较大的误差,而直接采用二维的非线性模型在技术上还存在一定的困难和不合理性。目前工程中多采用对一维分析结果进行二维修正的思想给出设计地震动及反应谱。然而在建立二维分析模型时,由于勘测条件的限制使模型建立出现很多不确定性。基于以往提出的二维复杂工程场址设计地震动的修正分析思想,建立了几种可能且工程认可的二维复杂场地模型,主要研究不同分层特征模型及土层剪切波速这一物理参数不确定时对设计地震动的影响,进一步考虑不同场地类别下,不同二维分层模型及土体物理参数对地震动的影响。根据分析结果提出了不同类别场地下,方便且合理建立二维复杂场地地震动分析模型的方法,为实际工程中模型的建立及参数的选取提供一些参考。  相似文献   

8.
Earthquake ground motion records are nonstationary in both amplitude and frequency content. However, the latter nonstationarity is typically neglected mainly for the sake of mathematical simplicity. To study the stochastic effects of the time‐varying frequency content of earthquake ground motions on the seismic response of structural systems, a pair of closely related stochastic ground motion models is adopted here. The first model (referred to as ground motion model I) corresponds to a fully nonstationary stochastic earthquake ground motion model previously developed by the authors. The second model (referred to as ground motion model II) is nonstationary in amplitude only and is derived from the first model. Ground motion models I and II have the same mean‐square function and global frequency content but different features of time variation in the frequency content, in that no time variation of the frequency content exists in ground motion model II. New explicit closed‐form solutions are derived for the response of linear elastic SDOF and MDOF systems subjected to stochastic ground motion model II. New analytical solutions for the evolutionary cross‐correlation and cross‐PSD functions between the ground motion input and the structural response are also derived for linear systems subjected to ground motion model I. Comparative analytical results are presented to quantify the effects of the time‐varying frequency content of earthquake ground motions on the structural response of linear elastic systems. It is found that the time‐varying frequency content in the seismic input can have significant effects on the stochastic properties of system response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A detailed numerical simulation of the ground motion and a site response analysis for two towns in the Marche Region (Treia and Cagli) is carried out on the basis of structural models deduced from available geological and geophysical data. In both cases, the reference event is an M = 5.7 earthquake associated with a normal fault located beneath each town. The ground motion is computed using the 2D spectral element method (SPEM 2D). The method solves the propagation of the seismic field through complex geological structures and enables an estimate of the effects of deep crustal structure, superficial geology, and topography on ground motion. Numerical simulations of the seismic field are performed along 2D vertical planes containing the seismic source. Strong ground motion has not been yet recorded in the two towns; therefore, the numerical simulation of ground motion represents a way to overcome the lack of instrumental data. The simulations carried out for Treia show that ground motion is influenced by both source mechanism and effects due to propagation through the geological structure, while ground motion in Cagli features strong local effects, caused by the presence of alluvial deposits under a large area of the town.  相似文献   

10.
This paper addresses the analytical evaluation of soil lateral heterogeneity effects,especially the random fluctuations of the soil layer's predominant frequency,on the spatial coherency of ground motion and the seismic response of multi-support structures.A coherency probabilistic model is proposed.In this model,the spatial variation of motion is attributed to wave passage effects,effects of loss of coherence in the bedrock motion and particularly site response effects(based on the assumption of vertically propagating shear-waves through a horizontal layer with random characteristics).The results indicate that soil lateral heterogeneity effects tend to cause diminution of the values of the total coherency function.This diminution is not limited to the vicinity of the mean resonant frequency of the layer,but reaches considerably high frequencies even for relatively low values of coefficient of variation(CV of 5 to 15%).Therefore,the trend of the total coherency function(exponential decay) can be influenced significantly by site effects.Finally,the proposed coherency model is applied for two different support seismic excitations.Study results indicate that the greater the soil heterogeneity,the larger are the dynamic displacements and shear forces in the columns of the oscillator(i.e.,support structure).Furthermore,these two components of the response are influenced differently by soil heterogeneity effects.  相似文献   

11.
This paper presents the effects of strong lateral discontinuity (SLD) in basins on the ground motion characteristics, differential ground motion (DGM) and aggravation factor (aggravation factor is simply the extra spectral amplification due to complex 2D site effects over the 1D response of the soil column). The seismic responses of open- and closed-basin models with SLD were simulated using SH-wave finite difference algorithm with fourth-order spatial accuracy. Simulated seismic responses, DGM and its spectra revealed that SLD induces Love waves, and the lower cutoff frequency for the same is equal to the fundamental frequency (f0) of the soil layer. The maximum average aggravation factor (AAF) and DGM were obtained near the edge of open basin and at the centre of closed basin. A decrease of amplitude of Love wave, DGM level and AAF with offset from SLD was observed in an open basin. On the other hand, in closed basin, spatial variation of AAF and DGM level was highly variable. Duration of shaking, AAF and DGM level was more in the closed basin than in an open basin. Increase of DGM level and AAF with decrease of the width of basin was observed.  相似文献   

12.
Studies of structural responses and damage to high-frequency blast motion are very limited. Current practice uses some empirical allowable ground vibration limits in assessing structural performance. These empirical limits overlook the physical parameters that govern structural response and damage, such as the ground motion characteristics and inherent structural properties. This paper studies the response of RC frame structures to numerically simulated underground blast-induced ground motions. The structural response and damage characteristics of frame structures to ground motions of different frequencies are investigated first. The effects of blast ground motion spatial variations and soil–structure interaction on structural responses are also studied. A suitable discrete model that gives accurate response prediction is determined. A damage index defined based on the accumulated plastic hinge rotation is used to predict structural damage level. Numerical results indicated that both the low structural vibration modes (global modes) and the first elemental vibration mode (local) might govern the dynamic structural responses depending on the ground motion frequency and structural response parameters under consideration. Both ground motion spatial variations and soil–structure interaction effects are prominent. Neglecting them might yield inaccurate structural response prediction. The overall structural response and damage are highly ground motion frequency dependent. Numerical results of structural damage are also compared with some test results obtained in a previous study and with code specifications. Discussions on the adequacy of the code allowable ground vibration limits on RC frame structures are also made.  相似文献   

13.
A detailed 2D model has been constructed and validated for Euroseistest valley, in northern Greece. We take advantage of this model to investigate what parameters, in addition to surface soil conditions (obviously the most important parameter), can be used to correctly characterize site response in a 2D structure. Through a parametric analysis using 2D numerical simulations for SH waves, we explore the differences between the computed ground motion for different simplifications of the valley's structure. We consider variations in the velocity structure within the sediments, and variations of the shape between sediments and bedrock. We also compare the results from different 1D models reflecting current approaches to the determination of site response. Our results show clearly that, in the case of Euroseistest, site response owes fundamentally to its closed basin shape because it is largely controlled by locally generated surface waves. Thus, in terms of predicting site response, a rough idea of its shape ratio and of the average mechanical properties of the sediments are better than a very detailed 1D profile at the central site. Although the details of ground motion may vary significantly between the models, the relative amount of surface waves generated in the 2D models seems to be relatively constant. Moreover, if we quantify the additional amplification caused by the lateral heterogeneity in terms of the ‘aggravation factor’ introduced by Chávez-García & Faccioli [7], a roughly constant factor between 2 and 3 seems to appropriately take into account the effects of lateral heterogeneity. Of course, a correct estimate of the overall impedance contrast is necessary to correctly predict the maximum amplification, a caveat that also applies to 1D models. In this sense, Euroseistest rings an alarm bell. In this valley the more significant impedance contrast lies at about 200 m depth, and it is missed both by consideration of the average shear wave velocity of the first 30 m (the Vs30 criterion) or using the detailed velocity profile down to a depth where a shear wave velocity larger than 750 m/s is found. Our conclusions indicate that, in order to improve current schemes to take into account site effects in building codes, the more to be gained comes from consideration of lateral heterogeneity, at least in the case of shallow alluvial valleys, where locally generated surface waves are likely to be important.  相似文献   

14.
《震灾防御技术》2022,17(4):611-621
设计并开展一系列土-结构群相互作用体系振动台试验,考虑结构数量、地震动类型与幅值等参数,研究土-结构群相互作用对结构及场地土响应的影响,并对模型土参数确定方法进行分析。研究结果表明,地表建筑物的存在并不总是减小自由场地面运动,但地面运动随着地表结构数量的增加而降低;土-结构群相互作用对位于结构群中心的结构响应影响最大,且会放大土体卓越频率附近的响应成分;不同评价指标之间具有不同的侧重点,但均可较好地评价结构群之间的相互作用;输入地震动的总能量越高,土-结构群相互作用越明显。  相似文献   

15.
Various authors, analysing the set of accelerograms recorded at Gubbio Piana (GBP) (central Italy), have demonstrated that strong amplification occurs at this accelerometric station, which is installed within an alluvial basin. In particular, Ambraseys et al. [(2005a), Bull Earthq Eng 3:1–53; (2005b), Bull Earth Eng 3:55–73] observed that the strong motion peaks at GBP greatly exceed the median values predicted by the attenuation relationships they derived for Europe. In this work, we analyse and discuss some characteristics of the ground motion recorded at the GBP station. We show that the ground motion parameters, such as peak-ground acceleration and peak-ground velocity, are strongly influenced by the presence of locally induced surface waves that produce both a lengthening of the significant shaking duration and an increase in the peak values with respect to a nearby bedrock site. The basin-induced surface waves are observed in the three components of motion and their effects on the peak values are particularly evident in the vertical component. In the frequency domain, the energy of the surface waves is mostly restricted to the frequency band 0.4–0.8 Hz for both the horizontal and vertical components. The horizontal and vertical Fourier amplitudes are also very similar, and this indicates that the H/V spectral ratio technique is not applicable to describing the site response due to the propagation of seismic wave in a complex 2D/3D geological structure. Finally, a preliminary polarization analysis shows that the directions of polarization, as well as the degree of elliptical polarization, exhibit a strong variability with time, that may be related to a complex propagation of Love and Rayleigh waves within the basin.  相似文献   

16.
This paper presents results of numerical modeling of site response for Euroseistest. Ground motion across a very detailed model of the subsoil of this valley has been simulated for vertically incident SH waves. The predominance of locally generated surface waves is very clear in the synthetic seismograms. These results are then compared with published studies of observed site effects at this basin and with a detailed analysis of two events in the time domain. It is discussed in which sense it is possible to obtain a good fit between observations and 1D models, even though the real behavior involves locally generated Love waves. For this reason, it can be misleading to rely on an incomplete observation such as empirical transfer functions. Finally, it is stressed that in order to predict ground motion in alluvial valleys the information contained in the phase cannot be neglected.  相似文献   

17.
当前,合理确定地震动峰值加速度与反应谱特征周期是工程场地地震动参数确定工作的主要内容。本文以北京地区典型中硬场地为研究对象,分析场地条件对不同周期地震动反应谱值的影响。首先,计算不同震级、震中距条件下的基岩地震动加速度反应谱,合成基岩输入地震动时程;再利用110个工程场地的钻孔资料进行土层地震反应计算,分析中硬场地条件对不同输入环境下的地震动加速度反应谱值的放大效应。结果表明,中硬场地对高、中频震动放大效应明显,尤其是对0.2-0.5s周期段地震动加速度反应谱值的放大倍数大多在1.3以上;场地覆盖层厚度变化对不同频段地震动加速度反应谱值的放大倍数所产生的影响是不同的,与场地自振周期的相关性很强;在不同的地震动输入环境下,中硬场地对不同频段地震动加速度反应谱的影响是不同的,这一结论对实际的抗震设防工作具有一定参考价值。  相似文献   

18.
董娣  纪金豹  袁美巧  王赞军  于海阔 《地震研究》2020,(1):155-165,I0004
对美国NGA数据库中的3551组地震记录按场地条件、震级、震中距进行了分组,采用一维连续小波变换得到每条记录的小波功率谱。研究任意时间处小波功率谱最大值所对应的主频率,并对每个地震动分组内的主频率值做一定时间窗内的均方根处理,分别采用线性函数、指数函数和指数三角函数模型来拟合得到的主频率随时间变化的曲线,最后分析了场地条件、震级和震中距对频率时变曲线的影响,并给出了每个分组内水平向和竖直向地震动主频率随时间变化的模型参数。结果表明:地震动主频率随时间的增大逐渐减小,但是竖直向要比水平向衰减得快一些。  相似文献   

19.
吴效勇  王晓青  袁小祥  窦爱霞  丁香 《地震》2019,39(4):147-157
场地条件对地震动具有较大影响, 研究不同场地条件下的地震动特征对地震动的校正具有重要意义。 本文以九寨沟地震为例, 收集了66个台站的198条三分量强震观测记录和SRTM(Shuttle Radar Topography Mission)公里格网的DEM(Digital Elevation Model)数据, 从多个角度对场地特征进行分析。 首先根据坡度法使用DEM数据对九寨沟特征进行了场地分类, 然后讨论了不同场地类型下的加速度时程、 加速度反应谱、 地震动衰减等地震动特征。 研究表明, 缺少实测资料的情况下, 地形坡度可以作为Vs30(地表以下30 m范围的平均剪切波速度)的一种替代指标, 利用坡度法可以较快速地对场地进行分类; 利用强震观测记录能够从多角度对台站的场地特征进行分析, 不同场地类型对地震动影响不同, 其中, 土层对地震动具有明显的放大效应。 该结论可以为地震动结果的校正提供依据。  相似文献   

20.
采用Shake 2000程序,以Turkey Flat试验场地为模型,通过输入不同类型下多种强度的地震波,计算研究多工况下剪切波速测试标准差对地表加速度反应谱和峰值加速度的影响。结论为:(1)浅硬场地上剪切波速测试标准差对地震动的影响很大,影响程度与输入地震波的强度和频率以及场地剪切波速计算值有关;(2)如果将反应谱残差大于20%或加速度峰值差别大于20%定义为统计意义上的不可忽略,那么剪切波速测试标准差对计算结果的影响在大多数情况下均不可忽略;(3)当输入波的卓越周期与场地特征周期接近时,浅硬场地上剪切波速测试标准差引起的反应谱变化非常显著;(4)只有当输入波的卓越周期与场地特征周期相差较大且输入波强度偏小时,剪切波速测试标准差引起的反应谱变化才可略去;(5)当浅硬场地上剪切波速实测结果低于统计均值时,地震动计算结果的偏差一般明显大于剪切波速实测结果,高于统计均值时引起的偏差,且地震输入越强表现越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号