首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The structures and evolution of the coastal-trapped waves (CTW) along the northern coast of the South China Sea (SCS) in the year?1990 are studied using observed hourly sea level records collected from four sites around the northern SCS and a three-dimensional numerical model with realistic bathymetry and wind forcing. Analysis of the yearlong records of the observed sea level data indicates that the sea level variations are highly correlated between the stations and the sea level variability propagates southwestward along the coast. The sea level signals traveling from northeast to southwest along the coast with a propagation speed of 5.5–17.9?m?s?1 during both the typhoon season and the winter month show the characteristics of a CTW. The wave speed is faster between stations Shanwei and Zhapo than that between Xiamen and Shanwei. Sea level variations during both typhoon season and winter month are reasonably well represented by the numerical model. The model runs focused on the wave signals related to typhoons and winter storm show that the CTW propagating southwestward along the coast can be reinforced or decreased by the local wind forcing during its propagation and there are apparent differences in the propagation characteristics between the waves along the mainland and those traveling around Hainan Island. The abrupt change of the shelf width and coastline around Leizhou Peninsula and Hainan Island are responsible for strong scattering of CTWs from one mode into higher modes. The alongshore velocities across different transects associated with CTW are investigated to examine the vertical structures of the waves. The alongshore velocity structures at transects during different events are related to the combined effect of stratification and shelf profile, which can be estimated using the Burger number. The empirical orthogonal function analysis of alongshore velocity and nodal lines of the mode structure suggest mode two CTWs in transect S2 during typhoon season and mode 1 CTWs during winter. Sensitivity model experiments are also performed to demonstrate the effects of local wind and topography on the wave propagation.  相似文献   

2.
A linear coastal-trapped-wave (CTW) model is used to examine the effects of large-scale winds, with time scale ranging from a few days to a few weeks, on the West India Coastal Current (WICC), particularly on the shelf off the central west coast of India. We show that unlike the seasonal cycle of WICC, which is primarily forced by the winds along the east coast of India, the high-frequency WICC is mostly driven by the west-coast winds. Nevertheless, the influence of winds as far as Sri Lanka and east coast of India cannot be neglected. Simple numerical experiments with the CTW model show that the strong current observed at Goa (15° N) compared to Bhatkal (13° N) and Jaigarh (17° N) is due to two factors: (1) the superposition of local and remote CTWs and (2) the widening of shelf width north of Goa, which decreases the amplitude of the currents poleward of Goa. If the local winds are weak, the amplitude of current decreases poleward due to friction, and the current at the south leads the north. We also note that the observed phase difference between sea level and alongshore current at Goa could be attributed to the propagation of remotely forced higher-order modes of CTWs.  相似文献   

3.
We characterize the response of diurnal-period ocean current variability to the sea breeze using measurements of current velocity taken off the mouth of the Itata River and wind stress collected at Hualpen Point (central Chile) in spring of 2007 and summer of 2006 and 2008. During these three periods, the winds are predominately towards the northeast, following the coastal topography, with the highest variability found in the near-diurnal and synoptic frequency bands. The sea breeze amplitude is intermittent in time and is associated with synoptic-scale variability on the order of three to 15 days, so that the diurnal-period winds (and currents) are enhanced when the alongshore wind (i.e. upwelling-favorable) is strong. The water current variability in the near-diurnal band is significant, explaining up to 40% (spring 2007) of the total current variance in the first 15 m depth.  相似文献   

4.
Nearshore currents of the southern Namaqua shelf were investigated using data from a mooring situated three and a half kilometres offshore of Lambert's Bay, downstream of the Cape Columbine upwelling cell, on the west coast of South Africa. This area is susceptible to harmful algal blooms (HABs) and wind-forced variations in currents and water column structure are critical in determining the development, transport and dissipation of blooms. Time series of local wind data, and current and temperature profile data are described for three periods, considered to be representative of the latter part of the upwelling season (27 January–22 February), winter conditions (5–29 May) and the early part of the upwelling season (10 November–12 December) in 2005. Differences observed in mean wind strength and direction between data sets are indicative of seasonal changes in synoptic meteorological conditions. These quasi-seasonal variations in wind forcing affect nearshore current flow, leading to mean northward flow in surface waters early in the upwelling season when equatorward, upwelling-favourable winds are persistent. Mean near-surface currents are southward during the latter part of the upwelling season, consistent with more prolonged periods of relaxation from equatorward winds, and under winter conditions when winds were predominantly poleward. Within these seasonal variations in mean near-surface current direction, two scales of current variability were evident within all data sets: strong inertial oscillations were driven by diurnal winds and introduced vertical shear into the water column enhancing mixing across the thermocline, while sub-inertial current variability was driven by north–south wind reversals at periods of 2–5 days. Sub-inertial currents were found to lag wind reversals by approximately 12 h, with a tendency for near-surface currents to flow poleward in the absence of wind forcing. Consistent with similar sites along the Californian and Iberian coasts, the headland at Cape Columbine is considered to influence currents and circulation patterns during periods of relaxation from upwelling-favourable winds, favouring the development of a nearshore poleward current, leading to poleward advection of warm water, the development of stratification, and the creation of potentially favourable conditions for HAB development.  相似文献   

5.
Measurements from recently installed 5 MHz high-frequency radar (CODAR) stations south of Point Arena, California, are used to describe surface current patterns during the upwelling season (June-August 2007). The systems provide hourly current maps on a 5-km grid, covering a region from approximately 10 to 150 km offshore (the continental shelf into the deep ocean). These HF-radar observations provide an unprecedented view of circulation in this “coastal transition zone”, between the wind-driven circulation over the shelf and the California Current circulation offshore. Circulation patterns include: (1) bifurcation of the coastal upwelling jet downstream of Point Arena into an along-shelf (down-coast) branch and an offshore branch, and (2) a large-scale anticyclonic meander that often develops into an eddy-like recirculation south of the bifurcation. The “recirculation” feature extends well offshore, with surface currents 50-100 km from the coast consistently opposing the wind stress. The spatial and temporal evolution of the surface current features during upwelling events affects surface transport from Point Arena to areas in the south, increasing the travel time of a substantial fraction of newly upwelled water from a few days to roughly two weeks. Thus, surface currents even far offshore influence coastal transport of nutrients, phytoplankton and larvae on ecologically relevant timescales, with resultant connectivity patterns very different than implied by a simple examination of the mean flow.  相似文献   

6.
In this paper SST imagery and a three-dimensional numerical model of a river plume were employed to detect upwelling induced by tidal straining in the Rhine ROFI (region of fresh water influence). Previous studies have shown that the Rhine ROFI in the North Sea exhibits strong cross-shore density gradients that compete with tidal and wind mixing to establish stratification. During neap periods with low mixing energy an area measuring 30 km offshore by 100 km alongshore becomes stratified. When the ROFI is stratified strong cross-shore currents are observed, with surface currents rotating anti-cyclonically and bottom currents rotating cyclonically. The cross-shore currents interact with the cross-shore density gradients to produce a semi-diurnal cycle of stratification. Due to continuity requirements imposed by the proximity of the coast, the offshore-directed surface currents and onshore-directed bottom currents should lead to coastal upwelling.  相似文献   

7.
The transition zone separating estuarine environments from the coastal ocean is characterized not only by distinctive morphological and sedimentary trends but by unique hydrodynamic forces as well. Lower Chesapeake Bay, a large coastal estuary within the Mid-Atlantic Bight of the U.S. East Coast, experiences complex wave and current-induced forces produced during winter storms. Wave and current measurements made near Thimble Shoal Light over five winter seasons show that most storms simultaneously produce both ocean and bay-generated wave trains that appear as distinct bimodal peaks in directional spectra. Analysis of selected storm wave records reveal that lower-frequency ocean waves, although nominally lower in amplitude than higher-frequency bay waves, are roughly equivalent to bay waves in terms of energy expended on beds of fine- to medium-grained sand at either end of the Thimble Shoal Channel. Grain-friction energy dissipation estimates calculated for waves and currents suggest that waves provide more net energy capable of transporting bottom sediment than currents, although strong barotropic flows briefly encountered during a major storm on 13–14 March 1993, exceeded wave energy expended at the bed by almost an order of magnitude. From analyses of wave orbital velocity spectra, it is shown that dual wave trains characterized by differences in peak frequency and direction may assist each other through interactions that increase their combined contribution to frictional energy dissipation and inferred sediment transport at the bed.  相似文献   

8.
The Pearl River Estuary (PRE) in South China's Guangdong Province is a subtropical estuary with highly irregular topography and dynamically complicated circulations. A nested-grid coastal circulation modelling system is used in this study to examine dynamic responses of the PRE to tides, meteorological forcing and buoyancy forcing. The nested-grid modelling system is based on the Princeton Ocean Model and consists of three downscaling subcomponents: including an outer-most model with a coarse horizontal resolution of ~7 km for simulating tidally forced and wind-driven surface elevations and depth-mean currents over the China Seas from Bohai Sea to the northern South China Sea and an innermost model with a fine resolution of ~1.2 km for simulating the 3D coastal circulation and hydrography over the PRE and adjacent coastal waters. Model results during the winter northeast monsoon surge in January and super typhoon Koryn in June of 1993 are used to demonstrate that the 3D coastal circulation and hydrographic distributions in the PRE are affected by tides, winds and buoyancy forcing associated with river discharge from the Pearl River with significant seasonal and synoptic variabilities.  相似文献   

9.
The effect of monsoon, coastal current and temperature on the distribution and seasonal variations of Calanus sinicus abundance were studied. The samples from the northwest continental shelf of South China Sea were collected with 505 μm planktonic nets from July 2006 to October 2007. The abundance of C. sinicus made up 34.28% and 12.34% of all copepods in spring and summer, respectively. The distribution of C. sinicus varied seasonally and regionally. The distribution of C. sinicus ranged between east inshore and offshore waters from the Leizhou Peninsula to Hainan Island, with a mean of 23.00 (±77.78) ind. m−3 in spring. In summer it had a mean of 13.74 (±45.10) ind. m−3 occurring only in the east inshore waters from Leizhou Peninsula to Hainan Island. C. sinicus was not abundant during autumn and winter seasons. The surveyed area was divided into three sub-regions based on topographical analysis and water mass, region I (included the east inshore waters of Leizhou Peninsula), region II (included the east inshore waters of Hainan Island) and region III (included the offshore waters from Leizhou Peninsula to Hainan Island). The average abundance of C. sinicus within region I was determined to be 115.63 (±145.93) and 68.12 (±84.00) ind. m−3 in spring and summer, respectively, values higher than those of regions II and III. Our findings suggested that C. sinicus was transported from the East China Sea to the northwest continental shelf of South China Sea by the Guangdong Coastal Current, which was driven by the northeast monsoon in spring. The presence of a cold eddy, in addition to coastal upwelling driven by the southwest monsoon, provided suitable survival conditions for C. sinicus in summer. This species disappeared in autumn due to high temperatures (>27 °C) and did not begin to enter into the northwest continental shelf of South China Sea from the East China Sea during the period of investigation in winter. The frequency of C. sinicus was low in region III during the year as a result of the South China Sea Warm Current and pelagic waters with high temperature during the spring and summer months.  相似文献   

10.
Barotropic responses of the East China Sea to typhoon KOMPASU are investigated using a high-resolution, three-dimensional, primitive equation, and finite volume coastal ocean model. Even the fact that the typhoon KOMPASU only brushed across the brink of China mainland without landing, it still imposed great influence across China's east coastal area, where storm surges ranging from 35 to 70 cm were intrigued during this event and a large wake of water setdown due to the outward radial transport driven by the cyclonic wind stress was generated after the KOMPASU traveled across the Yellow Sea. Analysis of the numerical results reveals that the barotropic waves propagating along the coast after the typhoon's landing can be identified as Kelvin wave and the currents associated with the storm are geostrophic currents. A series of model runs are initiated to diagnose the effects of wind stress, atmospheric pressure, and storm track variation on the surge's spatial distribution in the East China Sea. The barotropic waves affected by the atmospheric disturbance due to the typhoon in deep Pacific Ocean travel far more rapidly, arriving at the coastal regions at least 60 h ahead of the typhoon. The wave amplitudes are merely 0.2–0.4 cm and damp gradually due to friction. The model experiments also confirm that the surge levels in nearshore regions are highly dominated by winds, whereas the water level variations in deeper areas are controlled by the atmospheric pressure forcing during typhoon events in the East China Sea.  相似文献   

11.
Sea breezes are characteristic features of coastal regions that can extend large distances from the coastline. Oscillations close to the inertial period are thought to account for around half the kinetic energy in the global surface ocean and play an important role in mixing. In the vicinity of 30°N/S, through a resonance between the diurnal and inertial frequencies, diurnal winds could force enhanced anti-cyclonic rotary motions that contribute to near-inertial energy.Observations of strong diurnal anti-cyclonic currents in water of depth 175 m off the Namibian coastline at 28.6°S are analysed over the annual cycle. Maxima in the diurnal anti-cyclonic current and wind stress amplitudes appear to be observed during the austral summer. Both the diurnal anti-cyclonic current and wind stress components have approximately constant phase throughout the year. These observations provide further evidence that these diurnal currents may be wind forced. Realistic General Ocean Turbulence Model (GOTM) 1-D simulations of diurnal wind forcing, including the first order coast-normal surface slope response to diurnal wind forcing, represent the principal features of the observed diurnal anti-cyclonic current but do not replicate the observed vertical diurnal current structure accurately. Cross-shelf 2-D slice simulations suggest that the first order surface slope response approximation applies away from the coast (>140 km). However, nearer to the coast, additional surface slope variations associated with spatial variations in the simulated velocity field (estimated from Bernoulli theory) appear to be significant and also result in transfer of energy to higher harmonics. Evidence from 3-D simulations at similar latitude in the northern hemisphere suggests that 3-D variations, including propagating near-inertial waves, may also need to be considered.  相似文献   

12.
In southwest Western Australia, strong and persistent sea breezes are common between September and February. We hypothesized that on the inner continental shelf, in the absence of tidal forcing, the depth, magnitude, and lag times of the current speed and direction responses to sea breezes would vary though the water column as a function of the sea breeze intensity. To test this hypothesis, field data were used from four sites were that were in water depths of up to 13 m. Sites were located on the inner continental shelf and were on the open coast and in a semi-enclosed coastal embayment. The dominant spectral peak in currents at all sites indicated that the majority of the spectral energy contained in the currents was due to forcing by sea breezes. Currents were aligned with the local orientation of the shoreline. On a daily basis, the sea breezes resulted in increased current speeds and also changed the current directions through the water column. The correlation between wind–current speeds and directions with depth, and the lag time between the onset of the sea breeze and the response of currents, were dependent on the intensity of the sea breezes. A higher correlation between wind and current speeds occurred during strong sea breezes and was associated with shorter lag times for the response of the bottom currents. The lag times were validated with estimates of the vertical eddy viscosity. Solar heating caused the water column to stratify in summer and the sea breezes overcame this stratification. Sea breezes caused the mixed layer to deepen and the intensity of the stratification was correlated to the strength of the sea breezes. Weak sea breezes of <5 m s−1 were associated with the strongest thermal stratification of the water column, up to 1°C between the surface and bottom layers (6 and 10 m below the surface). In comparison, strong sea breezes of >14 m s−1 caused only slight thermal stratification up to 0.5°C. Apart from these effects on the vertical structure of water column, the sea breezes also influenced transport and mixing in the horizontal dimension. The sea breezes in southwest Western Australia rotated in an anticlockwise direction each day and this rotation was translated into the currents. This current rotation was more prominent in surface currents and in the coastal embayment compared to the open coast.  相似文献   

13.
14.
Physical oceanography measurements reveal a strong salinity (0.18 psu km?1) and temperature (0.07 °C km?1) front off the east coast of India in December 1997. T–S diagrams suggest lateral mixing between the fresh water at the coast and the ambient warmer, saltier water. This front seems to be the result of southward advection of fresh and cool water, formed in the northern Bay of Bengal during the monsoon, by the East Indian Coastal Current, as suggested by the large-scale salinity structure in the SODA re-analysis and the anti-cyclonic gyre in the northwestern Bay of Bengal during winter. The data further reveals an offshore front in January, which appears to be the result of a meso-scale re-circulation around an eddy, bringing cold and freshwater from the northern Bay of Bengal further away from the shore. Our cruise data hence illustrates that very strong salinity fronts can appear in the Bay of Bengal after the monsoon, as a result of intense coastal circulation and stirring by eddies.  相似文献   

15.
Unusually warm and saline near-surface inflow was observed in the southern Bay of Biscay (Northeast Atlantic) in autumn–winter 2006–2007. These anomalies were swiftly entrained eastward through the Iberian Poleward Current flowing over the slope and shelf. Here, we present a quasi-synoptic three dimensional view of this event, which started as early as August 2006. In situ hydrological and Lagrangian measurements were used to describe its characteristics. The warm anomaly was surface intensified over the shelf, with surface temperature above 17 °C, a monthly anomaly over 1 °C compared to the 1994–2006 period. The saline anomaly was maximum around 100–200 m deep, over the upper slope, with values above 35.9 psu. Slope and shelf were seen to exhibit a complex structure of eastward (poleward) and westward (equatorward) currents. Maximum currents, observed near surface, over the upper slope in the eastern part of the Bay of Biscay, were determined to exceed 1.3 m s?1. This current system eventually became unstable, thereby promoting strong exchange of properties between coastal and deep ocean. The event was coincident with abnormal southerly wind conditions west of Iberia in autumn 2006, and with the unusually warm autumn–winter weather over western Europe. A dynamical analysis relying on wind forcing west and north of Iberia is proposed.  相似文献   

16.
Winter observations of shelf and slope hydrography and currents in the inner Gulf of Tehuantepec are analysed from two field studies in 1989 and 1996 to specify the variability of near-shore conditions under varying wind stress. During the winter period frequent outbursts of ‘Norte’ winds over the central Gulf result in persistent alongshore inflows along both its eastern and western coasts. Wind-induced variability on time scales of several days strongly influences the shelf currents, but has greater effect on its western coast because of the generation and separation of anticyclonic eddies there. The steadier inflow (∼0.2 m s−1) on the eastern shelf is evident in a strong down-bowing of shallow isosurfaces towards the coast within 100 km of shore, below a wedge of warmer, fresher and lighter water. This persistent entry of less saline (33.4–34.0), warmer water from the southeast clearly originates in buoyancy input by rivers along the Central American coast, but is augmented by a general shoreward tendency (0.2 m s−1) in the southeastern Gulf. The resultant shallow tongue of anomalous water is generally swept offshore in the head of the Gulf and mixed away by the strong outflow and vertical overturning of the frequent ‘Norte’ events but during wind relaxations the warm, low-salinity coastal flow may briefly extend further west. In the head of the Gulf, flow is predominantly offshore (<0.2 m s−1) as the alongshore component alternates eastward and westward in association with elevation or depression, respectively, of the pycnocline against the shore. More saline, open ocean water is introduced from the north-western side of the Gulf by the inflow along the west coast. During extended wind relaxations, the flow becomes predominantly eastward beyond the shelf while nearshore the coastally trapped buoyant inflow from the southeast penetrates across the entire head of the gulf at least as far as its western limit. On the basis of these and other recent observations, it seems that the accepted view of a broad, persistent Costa Rica Coastal Current (CRCC) is the result of averaging over many relatively sparse observations and that the instantaneous CRCC is a highly variable and convoluted flow around and between constantly changing eddies. The buoyancy-driven shelf current reported here forms a hitherto unrecognized, but major, component of this CRCC system.  相似文献   

17.

Physical oceanography measurements reveal a strong salinity (0.18 psu km−1) and temperature (0.07 °C km−1) front off the east coast of India in December 1997. T–S diagrams suggest lateral mixing between the fresh water at the coast and the ambient warmer, saltier water. This front seems to be the result of southward advection of fresh and cool water, formed in the northern Bay of Bengal during the monsoon, by the East Indian Coastal Current, as suggested by the large-scale salinity structure in the SODA re-analysis and the anti-cyclonic gyre in the northwestern Bay of Bengal during winter. The data further reveals an offshore front in January, which appears to be the result of a meso-scale re-circulation around an eddy, bringing cold and freshwater from the northern Bay of Bengal further away from the shore. Our cruise data hence illustrates that very strong salinity fronts can appear in the Bay of Bengal after the monsoon, as a result of intense coastal circulation and stirring by eddies.

  相似文献   

18.
In this paper, high-resolution wave, current and water depth fields derived by marine X-Band radar are presented for a coastal region of extreme tidal currents in the presence of inhomogeneous bathymetry at the south coast of New Zealand’s North Island. The current and water depth information for the presented location covers an area of approximately 13 km2 with a spatial resolution of 225 m and an update rate of 3 min. The sea state data provides a spatial representation of coastal effects like wave shoaling and refraction forced by bathymetry and current interaction. The near-surface current measurements about 3 km off the coast show expected tidal current pattern with maximum northwest/southeast current of 1.5–2 m/s alongshore. This is in agreement with currents from the RiCOM hydrodynamic model. The spatial resolution of the observed current field exhibits in addition small-scale current features caused by the influence of the local bathymetry. These data demonstrate the insight to be gained in complex, high-energy coastal situations through the use of high-resolution remote sensing techniques.  相似文献   

19.
This paper examines the role of atmospheric forcing in modifying the pathways of riverine water on the Laptev Sea shelf, using summer-to-winter hydrographic surveys from 2007 to 2009. Over the two consecutive winter seasons of 2007–2008 and 2008–2009 in the area of the winter coastal polynya, our data clearly link winter surface salinity fields to the previous summer conditions, with substantially different winter salinity patterns preconditioned by summer atmospheric forcing. In the summer of 2007, dominant along-shore westerly winds in the cyclonic regime force the Lena River runoff to flow eastward. In contrast, in the summer of 2008, dominant along-shore easterly winds over the East Siberian Sea and on-shore northerly winds over the Laptev Sea in the anticyclonic regime lock the riverine water in the vicinity of the Lena Delta. Over the coastal polynya area in the southeastern Laptev Sea these patterns precondition a surface salinity difference of 8–16 psu between the winters of 2008 and 2009. Overall, this indicates a residence time of at least half a year for riverine water on the Laptev Sea shelf. Future climate change associated with an enhanced summer cyclonicity over the eastern Arctic may turn more riverine water eastward along the eastern Siberian coast, resulting in weaker vertical density stratification over the Laptev Sea shelf, with possible impact on the efficiency of vertical mixing and polynya dense water production.  相似文献   

20.
The oceanic response to a typhoon, where mesoscale ocean circulations co-exist, was investigated by analyzing the independent observations of profiling floats data at three different locations, satellite altimetry data near the eye of Typhoon Man-Yi (2007) before and after its passage, and synthetic aperture radar data taken during the typhoon’s passage. In spite of the nearly symmetric wind pattern around the eye, the distribution of mesoscale eddies had a major impact on the surface currents and mixed layer (ML) depths. As a result, the entrainment of the water below the ML into the ML was affected by the mesoscale circulation and became asymmetric, which accounted for most of the changes observed in the temperature profiles. Changes in the isotherms were driven primarily by the westward propagation of the mesoscale pattern rather than by the typhoon-induced shoaling. The typhoon-induced shoaling could have played a significant role in the generation of high-frequency (e.g., near-inertial) oscillations and/or sub-mesoscale structures. Although a similar or even greater energy flux was observed at the surface, the entrainment within the anticyclonic circulation was weaker than that within the cyclonic circulation and at the edge of the anticyclonic circulation because of the thick pre-existing ML. A strong ocean response to Typhoon Man-Yi (2007) within a cyclonic circulation or at the edge of an anticyclonic circulation, rather than within an anticyclonic eddy, has implications for the role of mesoscale ocean circulations in better understanding and forecasting the typhoon intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号