首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
华北克拉通北缘—西伯利亚板块南缘(张家口—中蒙边界)的深地震测深剖面长600 km,跨越华北板块、内蒙造山带和西伯利亚板块.沿测线采用8个1.5t的爆炸震源激发地震波,使用300套数字地震仪接收,取得了高质量的地震资料.通过资料分析和处理,识别出沉积层及结晶基底的折射波(Pg)、上地壳底面的反射波(P2)、中地壳内的反射波(P3)、中地壳底面的反射波(P4)、下地壳内的反射波(P5,仅在镶黄旗—苏尼特右旗下方出现)和莫霍面的反射波(Pm)等6个震相.采用地震动力学射线方法(seis88)得到的地壳速度结构表明:(1)在华北板块与内蒙造山带之间,内蒙造山带与西伯利亚板块之间,上地壳中存在明显的高速度局部变化,在地表发育大量的古生代花岗岩体、超基性岩体.(2)在中下地壳华北板块南缘的地震波速度大,为6.3~6.7 km/s,西伯利亚板块北缘的速度小,为6.1~6.7 km/s,且界面比较平缓.原因是在内蒙造山带内地壳的缩短和隆升造山引起了中下地壳界面的剧烈起伏,不同海陆块的拼合和物质交换导致了不同区域速度的不均匀性.(3)莫霍面在赤峰断裂带(F2)以南和索伦敖包—阿鲁科尔沁旗断裂带(F4)以北较为平缓,平均深度为40~42 km.在F2—F4之间呈双莫霍面,莫霍面1明显上隆,深度为33.5 km,层速度为6.6~6.7 km/s.莫霍面2明显下凹,在西拉木伦河断裂带(F3)下方,最深达到47 km,速度达到最大为6.8~6.9 km/s,这可能是由壳幔物质混合引起的.依据莫霍面的特点,本文认为双莫霍面以南为华北板块北缘,以北为西伯利亚板块南缘,拼合位置在赤峰断裂带(F2)与索伦敖包—阿鲁科尔沁旗断裂带(F4)之间的区域.  相似文献   

2.
在青藏高原东北缘祁连山造山带至阿拉善地块之间完成了一条372km的大地电磁剖面,通过二维反演计算,获得了沿剖面180km深的壳幔电性结构模型,结合研究区地质和地球物理资料开展综合分析,研究结果表明:(1)剖面自南向北所经过的祁连山造山带、走廊过渡带和阿拉善地块对应3种壳幔电性结构模型:东祁连壳幔高-低-高阻似层状电性结构、河西走廊壳幔低阻带状电性结构和阿拉善南缘壳幔高-低-高阻层状电性结构.(2)剖面所经过的主要断裂带在电性结构上表现为低阻异常带或电性梯度带,并且止于中上地壳或消失于下地壳低阻层中.除这些分布于中上地壳的断裂系统以外,在下地壳至上地幔顶部还存在两条切割莫霍面的壳幔韧性剪切带:西华山北缘壳幔韧性剪切带和阿拉善南缘壳幔韧性剪切带.其中,西华山北缘壳幔韧性剪切带可能是1920年海原8.6级地震发生的深部背景之一;而阿拉善南缘壳幔剪切带可能是卫宁北山燕山晚期和喜山期幔源岩浆上升到地壳浅部或喷出到地表的通道,为在该区域寻找晚中生代至新生代含矿隐伏岩体提供了深部电性结构依据.(3)由若干形状不规则、彼此不相连的"碎块状"极高阻块体组成的中上地壳与"似层状"的中下地壳低阻层共同构成的地壳电性结构,是引起青藏高原东北缘强烈破坏性地震最佳的地壳电性结构组合之一.印度板块向欧亚板块俯冲碰撞楔入引起青藏高原块体向北东方向运移与阿拉善地块向南的俯冲碰撞楔入,是青藏高原东北缘强震活动带产生的动力学背景.  相似文献   

3.
秦岭—桐柏—大别复合造山带(以下称为秦岭大别造山带)属于中国中央造山带的一部分,由华北克拉通与扬子克拉通汇聚形成.对于秦岭大别造山带及其周缘地区的研究,可以为这一大陆碰撞造山带的形成与演化过程提供重要信息.本文整合研究区域的接收函数与背景噪声数据,采用H-κ叠加分析、接收函数与背景噪声联合反演、克希霍夫偏移成像等方法,得到了沿秦岭东西方向具有高分辨率的地壳及上地幔结构.研究结果显示:(1)莫霍面深度由西向东逐步抬升,由剖面西侧最深约55 km上升至剖面东侧最浅约30 km;莫霍面于东西秦岭之间起伏明显;桐柏以及东大别下方莫霍面局部加深.(2)西秦岭中下地壳观测到的高速异常阻隔了青藏高原东北缘地壳低速异常的向东扩张,反映了青藏高原东北缘的中下地壳流没有通过西秦岭继续向东流动.(3)西秦岭岩石圈地幔顶部高速异常延伸至100 km深度(剖面底部),桐柏—西大别岩石圈地幔顶部高速延伸至70 km深度,东大别、东秦岭岩石圈地幔顶部未见较大深度范围的高速异常.  相似文献   

4.
通过分析阿尔金—龙门山地学断面的地震资料,建立了该剖面的地壳纵波速度结构。研究结果表明,阿尔金北侧的塔里木盆地地区莫霍面为50km,而在其南侧的祁连地块莫霍面突然加深至73km,在柴达木盆地莫霍面又抬升至58km左右,然后,在松潘甘孜地块莫霍面降至70km,并呈现为台阶状向龙门山方向抬升到60km左右,最低速层,而在其南部地区则没有低速层出现,推测低速层为地壳中部的局部熔融物质,阿尔金—龙门山剖面上的两个莫霍面坳陷区分别与祁连地块和松潘—甘孜地块上的两个莫霍面坳陷区相对应,指示出这个两个地块具有较深的山根,青藏高原北部的巨厚地壳很可能是由于中生代以来发生的印度板块与亚洲板块碰撞时受到来自东西及南北方向的挤压,使地壳缩短所致。  相似文献   

5.
若尔盖与西秦岭地震反射岩石圈结构和盆山耦合   总被引:10,自引:0,他引:10       下载免费PDF全文
松潘地块北缘的若尔盖盆地与西秦岭造山带相接触,构成青藏高原东北缘典型的新生代盆山构造.其岩石圈结构与深部构造关系,记录了青藏高原东北缘板块碰撞的深部过程,同时又关联着若尔盖盆地油气远景的评价.2004年秋冬季,我们完成了第一条跨越若尔盖盆地和西秦岭造山带的深地震反射剖面.整个剖面全长254 km,分5段完成,其中第2段剖面(简称SP04_2)横过盆山结合部位.SP04_2剖面首次揭示若尔盖盆地-西秦岭造山带盆山结合部位的岩石圈结构,发现了若尔盖盆地和西秦岭造山带下地壳均以北倾为主的强反射特征,提供出若尔盖盆地下地壳整体向西秦岭造山带俯冲的地震学证据,揭示了若尔盖盆地和西秦岭造山带在挤压构造体系下形成的深部构造关系.而近于平的Moho反射特征又反映出两者在造山后期经历了强烈的伸展作用.  相似文献   

6.
青藏高原东北缘合作-大井剖面地壳电性结构研究   总被引:14,自引:8,他引:6  
青藏高原东北缘合作-大井剖面的大地电磁探测结果表明,该区域的电性结构呈明显的纵向分层、横向分块的特点,中下地壳普遍存在高导层.青藏高原东北缘西秦岭北缘断裂带、北祁连南缘断裂带、北祁连北缘断裂带(海原断裂带)及龙首山南缘断裂带等区域性断裂带在电性结构模型中均表现为电性梯度带或低阻异常带.电性结构的横向分区与构造上的地块划分有明显的一致性,各个地块的电性结构存在明显差异.西秦岭北缘断裂带作是一个大型的板块边界,但板块结合带附近没有明显逆冲或俯冲痕迹,可能主要以左旋走滑为主.北祁连地块向北仰冲与阿拉善地块向南俯冲边界可能不是海原断裂带,而是龙首山南缘断裂带.西秦岭造山带内的壳内高导层与青藏高原内部存在的高导层具有可对比性,可能是由于部分熔融与含盐水流体共同作用的结果.中祁连地块内的高导层可能是含盐水流体引起的.而北祁连与河西走廊过渡带内的高导层则可能是板块俯冲或仰冲的构造运动痕迹,也可能是由含盐水流体引起的.  相似文献   

7.
大兴安岭造山带及两侧盆地的地壳速度结构   总被引:5,自引:0,他引:5  
内蒙新巴尔虎左旗-黑龙江齐齐哈尔深地震测深剖面长630 km,跨越海拉尔盆地、大兴安岭造山带和松辽盆地.本文根据沿测线爆破地震的9炮记录截面图中,5个震相的到时资料,结合地震记录中的振幅信息,确定了沿剖面的二维纵波地壳速度结构,海拉尔盆地的地壳厚度为39.0~41.0 km,大兴安岭造山带西侧莫霍面深度为38.5~43.5 km.东侧的莫霍面深度为34.5~36.4 km.松辽盆地的莫霍面深度为32.4~36.2km.整个地壳形态东浅西深,松辽盆地最浅的莫霍面深度为32.4 km,大兴安岭西侧最深的莫霍面深度为43.5 km.最后讨论了本区的深部特征和盆山结构关系.  相似文献   

8.
在安徽大别山(东大别)进行的深地震宽角反射/折射探测获得6条二维地壳速度结构剖面. 结果显示,东大别造山带地壳为一高速穹隆构造,在其核部中、下地壳变质岩出露于地表,波速高达5.0km/s;在其翼部,上、中地壳发育速度约6.1km/s的壳内低速层(体). 莫霍面的起伏变化较大,中心部位深达41km左右,周边地区则抬升到32~34km. 在晓天—磨子潭断裂一线下方莫霍面垂向错断,断距约4km. 东大别造山带具有大陆深俯冲-碰撞造山带地壳结构的典型式样. 莫霍面错断与扬子陆块深俯冲有关,错断处表征扬子与华北陆块碰撞缝合的深部位置. 高速穹隆构造可能是两陆块碰撞挤压的产物,穹隆翼部上、中地壳发育的低速滑脱带(面)可能在碰撞期之后的地壳伸展、超高压变质岩从中地壳抬升出露于地表过程中起到重要作用.  相似文献   

9.
由于印度洋板块向亚欧板块俯冲使青藏高原不断隆起,其形成不仅导致了亚洲大陆内部强烈的晚新生代构造变形,还对其边缘地区的地貌格局产生重大影响.青藏高原东北缘是青藏高原向北东方向扩展的前缘部位,是印度与欧亚两大板块碰撞作用由近南北方向向北东、东方向转换的重要场所.本文利用2004年和2008年完成的深地震反射剖面资料,采用关键处理技术和参数开展唐克-合作剖面与合作-临夏剖面联线处理,获得总长约400 km的深地震反射剖面,完整揭示了西秦岭造山带及其两侧盆地的地壳结构和构造变形样式.结果显示西秦岭造山带下地壳向若尔盖逆冲推覆的深部构造特征;西秦岭下地壳北倾的强反射及其北侧南倾的强反射特征揭示出扬子与华北两个大陆板块在西秦岭造山带下的汇聚行为.Moho的埋深和起伏形态表明青藏高原东北缘地壳经历了高原隆升后强烈的伸展减薄作用.  相似文献   

10.
跨越东、西秦岭造山带的深地震测深剖面沿近东-西向布设长约560km.沿测线采用6个1.5~2.0吨的爆炸震源激发地震波,使用260套数字地震仪接收,取得了较高质量的地震资料.通过资料分析和处理,识别出沉积层及结晶基底的折射波(Pg)、上地壳底面的反射波(P2)、中地壳底面的反射波(P3)、下地壳内的反射波(P4)、莫霍面的反射波(Pm)和首波(Pn)六个震相.采用地震动力学射线方法(seis88)得到的地壳速度结构表明:(1)在秦岭造山带内反射界面起伏剧烈,西部在略阳-勉县以西明显抬升,断差约3~4km.东部在旬阳-白河县以东呈斜坡状抬升,总体特征呈中间深,两侧浅的态势.东部的速度大于西部,速度差为0.02~0.05km/s.(2)上地壳在略阳-白河县段、中地壳在西乡东-白河县段的速度等值线明显起伏上隆,说明在深度25km之上的区域速度极不均匀,地表上略阳、西乡东对应于勉-略缝合带、大巴山弧的位置.下地壳的速度等值线变化形态与反射界面形态基本一致.(3)莫霍面与地表高程呈镜像,深度为42~54km,地壳平均速度较大为6.44~6.48km/s.东、西秦岭的地壳厚度变化较大,分界位置大致在勉县-略阳和西乡东-石泉西.勉略带以西为西秦岭造山带,莫霍面深度为52~54km,最深处在略阳-勉县地区为54km.西乡东-石泉西以东为东秦岭造山带,莫霍面深度为42~49km,西乡-石泉附近为49~49.5km,安康附近为44.7km,最浅处在十堰附近为42km.东、西秦岭造山带之间是扬子板块的北部边缘带,莫霍面深度为48~49km.莫霍面整体形态呈现起伏的向西倾斜台阶式的增深特点,东西深度相差10~12km.(4)勉-略缝合带以西的地壳增厚,可能是由青藏高原隆升及向东北缘的扩张引起的.总之,沿秦岭造山带的东-西方向的地壳结构比较复杂,它不同于板块碰撞作用形成的盆山结构.莫霍面首波(Pn)在210km之后出现,速度为7.85~8.0km/s.  相似文献   

11.
利用实测布格异常和EGM2008重力异常融合结果,采用频率域位场反演方法计算大别造山带东段莫霍面三维空间分布,结合区域地质构造和地震活动等资料讨论大别造山带东段莫霍面分布特征及其构造含义等。研究结果显示:①莫霍面空间分布体现了块体构造差异,大别造山带莫霍面最深,最大深度达42km,显示东大别造山带存在明显山根,扬子地块深度次之,华北地块最浅;郯庐断裂带及其东侧区域存在莫霍面上隆带;②大别造山带北侧和南侧莫霍面陡变带分别位于青山—晓天断裂附近和襄樊—广济断裂以北,体现华北地块和扬子地块向大别造山带之下俯冲的构造特征,指示了深部构造缝合带位置;莫霍面深度特征表明郯庐断裂带区域构造边界带属性明显,其切割深度至少达到壳幔边界,大别造山带商城—麻城断裂两侧经历了差异隆升;③研究区域绝大多数地震发生在莫霍面以上深度,莫霍面深度陡变带、上隆带及不同莫霍面深度特征区的转换带为区域地震活动提供了深部构造条件。  相似文献   

12.
利用接收函数反演青藏高原西部地壳S波速度结构   总被引:2,自引:0,他引:2       下载免费PDF全文
相对于宽阔的腹地,青藏高原西部南北向宽度仅约600km,却记录了印度和欧亚板块汇聚的深部过程及其响应.本文用22台宽频带流动地震台站在西缘构建了一条南北向探测剖面(~80°E,TW-80试验).利用接收函数反演剖面下方S波速度结构,综合西部已有的宽频带探测结果,分析认为:印度板块向北俯冲可能已到达班公湖—怒江缝合带附近,俯冲过程中下地壳发生榴辉岩化;喀拉昆仑断裂带、班公湖—怒江缝合带、阿尔金断裂带均为切穿地壳的深断裂,莫霍面发生错断;喀拉昆仑断裂带和龙木错断裂带之间的中上地壳没有发现连续的S波低速体,说明可能缺乏解耦层,支持青藏高原西部地壳为整体缩短增厚模式.  相似文献   

13.
青藏高原东北缘马衔山断裂带构造属性的综合研究   总被引:1,自引:0,他引:1       下载免费PDF全文
左旋走滑的马衔山断裂带位于青藏高原东北缘陇中盆地内部,呈北西-南东向伸展.宽约8~10 km,长约115 km.马衔山断裂带表面虽然局部已被黄土覆盖,但并不代表它的活动性不强.1125年的兰州MS7.0地震就发生在马衔山断裂带北缘的西侧.前人对马衔山断裂带的研究基本上多依靠于地表地质和地球化学数据分析进行一般性讨论,而缺少对马衔山断裂带深部构造伸展的清晰认识.本文中,我们主要依靠一条横跨马衔山断裂带的深地震反射剖面数据资料进行地壳尺度的构造解释.在此基础之上,对研究区所获得的重力数据进行相应的处理分析.最后辅助于马衔山断裂带两侧野外地表形变的观察和前人研究所获得的地球化学数据分析,我们的研究认为马衔山断裂带为一不同块体间的边界断裂带.它可能形成于早古生代祁连造山带东缘北部马里亚纳式岛弧和南部日本式岛弧的相互拼贴作用.该边界断裂带在随后的青藏高原东北缘物质逃逸过程中被激活,并且目前仍处于构造活动活跃期.  相似文献   

14.
本文利用中国地震科学探测台阵2013-2015年在南北地震带北段及其周缘架设的673个台站所记录到的远震波形所提取到的接收函数并应用H-κ扫描方法获取了南北地震带北段及其周缘的地壳厚度和泊松比,结果显示研究区地壳厚度从青藏高原东北缘向鄂尔多斯块体逐渐减小,从65 km逐渐减薄至40 km,不同块体之间地壳厚度存在明显差异.祁连造山带西部地壳厚度超过60 km,而东部地壳厚度仅为约50 km左右,表明祁连造山带东、西部地壳增厚变形存在着明显差异.西秦岭造山带地壳厚度从60 km减薄到40 km,其东部具有较薄的地壳厚度可能经历了拆沉.阿拉善块体作为华北克拉通西部块体的一部分,西部地壳厚度约50 km,而东部约45 km,表明阿拉善块体西部由于印度一欧亚板块碰撞也受到了活化改造,其克拉通性质只在其中东部残留.研究区泊松比变化范围为0.20~0.31,平均泊松比约0.25,表明地壳主要由长英质矿物组成,较高的泊松比主要分布在六盘山断裂带和银川一河套地堑.研究结果显示地壳厚度与高程之间具有较好的相关性,表明地壳整体上处于相对均衡的状态,而西秦岭造山带和祁连造山带东部的部分区域地壳可能处于不均衡状态.  相似文献   

15.
华北克拉通北缘(怀来-苏尼特右旗)地壳结构   总被引:4,自引:3,他引:1       下载免费PDF全文
2009年,中国地质科学院地质研究所与美国俄克拉荷马大学合作实施了一条长453 km的深地震反射、宽角反射与折射、三分量反射地震联合探测剖面. 剖面南起怀来盆地,向北依次穿过燕山造山带西缘、内蒙地轴、白乃庙弧带、温都尔庙杂岩带,到达索伦缝合带. 其中,宽角反射与折射剖面采用8个0.5~1.5 t炸药震源激发,使用300套Texan单分量数字检波器接收,获得了高质量的地震资料. 通过资料分析和处理,识别出沉积层及结晶基底的折射波(Pg)、来自上地壳底界面的反射波(Pcp),中地壳底界面的反射波(Plp),莫霍界面的反射波(Pmp)及上地幔顶部的折射波(Pn)等5个震相. 分别采用Hole有限差分层析成像和Rayinvr算法对华北克拉通北缘及中亚造山带南部进行了上地壳P波速度结构成像和全地壳二维射线追踪反演成像. 结果显示:(1)中亚造山带地壳厚度~40 km,变化平缓,低于全球平均造山带地壳平均厚度,可能为造山后区域伸展的结果. 阴山-燕山带附近莫霍明显加深,推测其为燕山期造山过程形成的山根,但该山根很可能在后期被改造. (2)测线中部地壳上部速度较高,对应地表大面积花岗岩出露,而下地壳速度较低,速度梯度低,呈通道状,推测其可能曾为古亚洲洋向南俯冲消亡的主动陆缘,并在碰撞后演变为伸展环境下岩浆侵入的通道. (3)华北克拉通北缘与中亚造山带显示出不同速度变化特征,前者变化相对缓而后者则变化剧烈,二者的分界出现在赤峰-白云鄂博断裂附近.  相似文献   

16.
六盘山断裂带及其邻区地壳结构   总被引:3,自引:1,他引:3       下载免费PDF全文
新生代期间,中国大陆西部受印度一欧亚板块碰撞和青藏高原隆升影响,以地壳缩短、增厚、陆内造山和强烈地震活动等为主要特征.在青藏高原东北边缘,高原物质侧向移动被鄂尔多斯地块所阻,在六盘山地区发育了一系列左旋斜冲断裂.断裂带周缘构造变形强烈,地震活动频繁,是研究青藏高原横向扩展控制大陆内部弥散变形的理想场所.本文对穿越青藏高原东北缘一六盘山断裂带一鄂尔多斯地块的宽角反射与折射地震资料使用层析成像和射线反演算法进行成像,获得了研究区地壳速度结构模型,其结果反映出六盘山断裂带两侧地壳结构、构造特征差异显著:1)上地壳层析成像结果显示鄂尔多斯盆地一侧地壳上部速度较低,等值线呈近水平状,具有典型的沉积盆地特征,而青藏高原东北缘一侧上地壳速度相对较高,横向变化剧烈,呈褶皱状,二者的分界为海原一六盘山逆冲走滑断裂;2)全地壳射线反演结果显示鄂尔多斯地块地壳速度梯度大,下地壳底部速度高由铁镁质物质组成,具有典型稳定古老克拉通的特征,青藏高原东北缘地壳速度总体较低,主要由长英质及长英-铁镁质过渡物质组成,具有典型造山带的特征,而六盘山断裂带下方地壳速度结构复杂,层面呈拱形,部分层出现速度逆转,为两个构造单元的接触过渡带;3)青藏高原东北缘一侧地壳厚度~50 km,鄂尔多斯地块地壳厚度~42 km,六盘山断裂带下方莫霍面发生叠置,揭示出青藏高原东北缘、鄂尔多斯地壳在六盘山下汇聚,较薄且刚性的鄂尔多斯地壳挤入较厚且塑性的青藏高原东北缘地壳中的构造模式.  相似文献   

17.
2001年5~11月,在大别造山带西段的新县、红安地区(31 °20~3°50′N,114°30′-115°E)架设了宽频带数字地震流动台阵.采用接收函数方法对台阵记录的高质量远震P波数据进行反演,获得了大别造山带西段的S波速度剖面和地壳上地幔精细结构.研究结果显示,研究区的地壳厚度整体上较薄,约为32~38km,莫霍面自南向北倾斜.在台阵北缘对应桐城一桐柏剪切带处,莫霍面发生错断,断距达到4-6km,显示桐城.桐柏剪切带为早中生代扬子板块与华北板块碰撞的古缝合带的南界.在上地幔顶部存在向北倾斜东西向延伸的s波低速带,显示出大别山造山带与毗邻华北块体之间的拼合关系.在台阵南部下地壳底部存在高速体,这可能和拆沉作用以后,发生大规模拉张作用相伴随的幔源基性岩浆在下地壳下部的底侵作用有关.  相似文献   

18.
中国海陆莫霍面及深部地壳结构特征研究是东亚地区宏观构造格架研究中的重点内容之一.本文以地震测深等数据为约束信息,以重力数据为基础,通过分区计算,反演了中国海陆莫霍面深度.依据地壳性质与莫霍面深度分布特征,划分了莫霍面深度梯级带与分区,并对各分区的莫霍面分布特点进行了归纳、总结.并选取阿尔泰—巴士海峡典型剖面进行了重、震反演,建立了密度结构.剖面上莫霍面深度和深部结构能够清晰地反映中国大陆"三横、两竖、两三角"构造格架中的两横和两竖,在昆仑—秦岭—大别以北的准噶尔地块和中朝地台莫霍面深度45~50 km,而其以南至贺兰山—龙门山之间的祁连、柴达木至松潘—甘孜的莫霍面呈"W"型起伏,莫霍面深度由祁连地块北部的50 km,加深至68 km,在柴达木盆地抬升至58 km,在阿尼玛卿山莫霍面降至68 km,向南逐渐抬升至四川盆地的44 km,经大兴安岭—太行山—武陵山这一竖的台阶式抬升至华南褶皱带的35 km,在江绍—南岭以南缓慢抬升至南海北部陆架区的20~25 km.在巴士海峡处南海沿马尼拉海沟向东俯冲,莫霍面形态较复杂.同时剖面上祁连—柴达木地块的中下地壳存在一个低速、低密度体,推测其可能是由于部分熔融引起的,是青藏高原东北缘壳内物质流动的通道.  相似文献   

19.
川西高原重磁异常特征与构造背景分析   总被引:5,自引:1,他引:4       下载免费PDF全文
高玲举  张健  董淼 《地球物理学报》2015,58(8):2996-3008
川西高原位于青藏高原东缘,是我国大陆地壳构造变形及地震活动最强烈的区域.利用最新重力、航磁资料,通过异常分析和反演计算,研究了该区鲜水河断裂、理塘断裂、金沙江断裂的重磁异常特征、莫霍面特征、居里面特征,分析得出了这些断裂的深部地质结构与构造背景.计算表明:川西高原莫霍面东南浅、西北深,地壳厚度在43~63km之间.居里面特征表现为条带状,深度在17~23km之间.其中,鲜水河断裂带对应莫霍面深度梯度带,居里面为高低起伏圈闭.理塘断裂带北段莫霍面局部隆坳相间,南段莫霍面逐渐抬升,居里面呈现由西向东加深的梯度带.金沙江断裂带,居里面形成局部抬升,深部可能存在高温地热异常源.综合分析认为,川西高原地壳结构主要特点为:增厚的下地壳,热-塑性变形的中地壳,脆性变形的上地壳.  相似文献   

20.
通过对南北地震带北段区域所布设的676个流动地震台站观测资料进行处理,联合反演面波频散与接收函数数据,获得了研究区内地壳厚度、沉积层厚度的分布情况以及地壳上地幔高分辨率S波速度结构成像结果.反演结果显示研究区地壳厚度从青藏高原东北缘向外总体逐渐变薄,秦岭造山带地壳厚度较同属青藏高原东北缘的北祁连块体明显减薄;鄂尔多斯盆地及河套盆地分布有非常厚的沉积层,阿拉善块体部分区域也有一定沉积层分布,沉积层与研究区内盆地位置较为一致;松潘—甘孜块体、北祁连造山带等青藏高原东北缘总体表现为S波低速异常;在中下地壳,松潘—甘孜块体下方的低速体比北祁连造山带下方的低速体S波速度值更小、分布深度更浅,更有可能对应于部分熔融的地壳;鄂尔多斯盆地在中下地壳以及上地幔内有着较大范围的高速异常一直延伸到120 km以下,而河套盆地地幔只在80 km以上部分有着高速异常的分布,此深度可能代表了河套盆地的岩石圈厚度,来自深部地幔的热物质上涌造成了该区域的岩石圈减薄;阿拉善块体在地壳和上地幔都表现出高低速共存的分布特征,暗示阿拉善块体西部岩石圈可能受青藏高原东北缘的挤压作用发生改造.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号