首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Focal mechanisms determined from moment tensor inversion and first motion polarities of the Himalayan Nepal Tibet Seismic Experiment (HIMNT) coupled with previously published solutions show the Himalayan continental collision zone near eastern Nepal is deforming by a variety of styles of deformation. These styles include strike-slip, thrust and normal faulting in the upper and lower crust, but mostly strike-slip faulting near or below the crust–mantle boundary (Moho). One normal faulting earthquake from this experiment accommodates east–west extension beneath the Main Himalayan Thrust of the Lesser Himalaya while three upper crustal normal events on the southern Tibetan Plateau are consistent with east–west extension of the Tibetan crust. Strike-slip earthquakes near the Himalayan Moho at depths >60 km also absorb this continental collision. Shallow plunging P -axes and shallow plunging EW trending T -axes, proxies for the predominant strain orientations, show active shearing at focal depths ∼60–90 km beneath the High Himalaya and southern Tibetan Plateau. Beneath the southern Tibetan Plateau the plunge of the P -axes shift from vertical in the upper crust to mostly horizontal near the crust–mantle boundary, indicating that body forces may play larger role at shallower depths than at deeper depths where plate boundary forces may dominate.  相似文献   

2.
Summary. New fault plane solutions, Landsat photographs, and seismic refraction records show that rapid extension is now taking place in the northern and eastern parts of the Aegean sea region. The southern part of the Aegean has also been deformed by normal faulting but is now relatively inactive. In northwestern Greece and Albania there is a band of thrusting near the western coasts adjacent to a band of normal faulting further east. The pre-Miocene geology of the islands in the Aegean closely resembles that of Greece and Turkey, yet seismic refraction shows that the crust is now only about 30 km thick beneath the southern part of the sea, compared with nearly 50 km beneath Greece and western Turkey. These observations suggest that the Aegean has been stretched by a factor of two since the Miocene. This stretching can account for the high heat flow. The sinking slab produced by subduction along the Hellenic Arc may maintain the motions, though the geometry and widespread nature of the normal faulting is not easily explained. The motions in northwestern Greece and Albania cannot be driven in the same way because no slab exists in the area. They may be maintained by blobs of cold mantle detaching from the lower half of the lithosphere, produced by a thermal instability when the lithosphere is thickened by thrusting. Hence generation and destruction of the lower part of the lithosphere may occur beneath deforming continental crust without the production of any oceanic crust.  相似文献   

3.
Summary. Over 80 earthquakes, exclusively from the Hindukush focal region, which were recorded at the Gauribidanur seismic array (GBA) have been used in this study. These events have similar epicentral distances and a narrow azimuthal range from GBA but varying focal depths from 10 to 240 km. A fault plane dipping steeply (75°) in the north-west direction and striking N 66° E has been investigated on the basis of the spatial distribution of earthquakes in two vertical planes through 68° E and 32° N. Short period P -wave recordings up to 30 s were processed using the adaptive cross-correlation filtering technique. Slowness and azimuthal anomalies were obtained for first arrivals. These anomalies show positive as well as negative bias and are attributed to a steep velocity gradient in the upper mantle between the 400–700 km depth range where the seismic rays have their maximum penetration. Relative time residuals between the stations of GBA owe their origin very near to the surface beneath the array. A search of the signals across the array revealed that most of the events occurring at shallower depths had complex signatures as compared to the deeper events. The structure near the source region, complicated source functions and the scattering confined to the crust—upper mantle near source are mainly responsible for the complexity of the Hindukush earthquakes as the transmission zone of the ray tubes from turning point to the recording station is practically the same.  相似文献   

4.
Teleseismic data have been collected with temporary seismograph stations on two profiles in southern Norway. Including the permanent arrays NORSAR and Hagfors the profiles are 400 and 500 km long and extend from the Atlantic coast across regions of high topography and the Oslo Rift. A total of 1071 teleseismic waveforms recorded by 24 temporary and 8 permanent stations are analysed. The depth-migrated receiver functions show a well-resolved Moho for both profiles with Moho depths that are generally accurate within ±2 km.
For the northern profile across Jotunheimen we obtain Moho depths between 32 and 43 km (below sea level). On the southern profile across Hardangervidda, the Moho depths range from 29 km at the Atlantic coast to 41 km below the highland plateau. Generally the depth of Moho is close to or above 40 km beneath areas of high mean topography (>1 km), whereas in the Oslo Rift the crust locally thins down to 32 km. At the east end of the profiles we observe a deepening Moho beneath low topography. Beneath the highlands the obtained Moho depths are 4–5 km deeper than previous estimates. Our results are supported by the fact that west of the Oslo Rift a deep Moho correlates very well with low Bouguer gravity which also correlates well with high mean topography.
The presented results reveal a ca . 10–12 km thick Airy-type crustal root beneath the highlands of southern Norway, which leaves little room for additional buoyancy-effects below Moho. These observations do not seem consistent with the mechanisms of substantial buoyancy presently suggested to explain a significant Cenozoic uplift widely believed to be the cause of the high topography in present-day southern Norway.  相似文献   

5.
This is the second paper of a series of two concerning strong ground motion in SW Iberia due to earthquakes originating from the adjacent Atlantic area. The aim of this paper is to use the velocity model that was proposed and validated in the companion paper for seismic intensity modelling of the 1969 ( M s= 8.0) and 1755 ( M = 8.5–8.7) earthquakes.
First, we propose a regression to convert simulated values of Peak Ground Velocity (PGV) into Modified Mercalli Intensity (MMI) in SW Iberia, and using this regression, we build synthetic isoseismal maps for a large ( M s= 8.0) earthquake that occurred in 1969. Based on information on the seismic source provided by various authors, we show that the velocity model effectively reproduces macroseismic observations in the whole region. We also confirm that seismic intensity distribution is very sensitive to a small number of source parameters: rupture directivity, fault strike and fault dimensions. Then, we extrapolate the method to the case of the great ( M = 8.5–8.7) 1755 earthquake, for a series of hypotheses recently proposed by three authors about the location of the epicentral region. The model involving a subduction-related rupture in the Gulf of Cádiz results in excessive ground motion in northern Morocco, suggesting that the source of the 1755 earthquake should be located further west. A rupture along the western coast of Portugal, compatible with an activation of the passive western Iberian margin, would imply a relatively low average slip, which, alone, would could not account for the large tsunami observed in the whole northern Atlantic ocean. A seismic source located below the Gorringe Bank seems the most likely since it is more efficient in reproducing the distribution of high intensities in SW Iberia due to the 1755 earthquake.  相似文献   

6.
The proposal that the moment release rate increases in a systematic way in a large region around a forthcoming large earthquake is tested using three recent, large New Zealand events. The three events, 1993–1995, magnitudes 6.7–7.0, occurred in varied tectonic settings. For all three events, a circular precursory region can be found such that the moment release rate of the included seismicity is modelled significantly better by the proposed accelerating model than by a linear moment release model, although in one case the result is dubious. The 'best' such regions have radii from 122 to 167 km, roughly in accord with previous observations world-wide, but are offset by 50–60 km from the associated main shock epicentre. A grid-search procedure is used to test whether these three earthquakes could have been forecast using the accelerating moment release model. For two of the earthquakes the result is positive in terms of location, but the main shock times are only loosely constrained.  相似文献   

7.
We present a stepwise inversion procedure to assess the focal depth and model earthquake source complexity of seven moderate-sized earthquakes  (6.2 > M w > 5.1)  that occurred in the Afar depression and the surrounding region. The Afar depression is a region of highly extended and intruded lithosphere, and zones of incipient seafloor spreading. A time-domain inversion of full moment tensor was performed to model direct P and SH waves of teleseismic data. Waveform inversion of the selected events estimated focal depths in the range of 17–22 km, deeper than previously published results. This suggests that the brittle–ductile transition zone beneath parts of the Afar depression extends more than 22 km. The effect of near-source velocity structure on the moment tensor elements was also investigated and was found to respond little to the models considered. Synthetic tests indicate that the size of the estimated, non-physical, non-isotropic source component is rather sensitive to incorrect depth estimation. The dominant double couple part of the moment tensor solutions for most of the events indicates that their occurrence is mainly due to shearing. Parameters associated with source directivity (rupture velocity and azimuth) were also investigated. Re-evaluation of the analysed events shows predominantly normal faulting consistent with the relative plate motions in the region.  相似文献   

8.
Summary. Based on accurately located 23 very shallow earthquakes ( h = 1–14 km) in northern and central Greece by portable networks of seismic stations and by the joint epicentre method, the travel times of the Pn -waves from the foci of these earthquakes to the sites of 54 permanent stations in the Balkan region have been determined. The travel times of Pn -waves in the central and eastern part of the area (eastern Greece, south-eastern Yugoslavia, the Aegean Sea, Bulgaria, southern Romania, western Turkey) fit a straight line very well with the Pn velocity equal to 7.9 ± 0.1 km s-1. On the contrary, the travel times of Pn -waves to stations in the western part of the area (Albania, western Greece) do not fit this curve because the Pn -waves travelling to these stations are delayed by more than 1 s due to the thicker crust under the Dinarides–Hellenides mountain range. Time delays for Pn -waves have been calculated for each permanent station in the Balkan area with respect to the mean travel-time curve of these waves in the central and eastern part of the area. Corrections of the travel times for these delays contribute very much to the improvement of the accuracy in the location of the shallow earthquakes in the Aegean and surrounding area.  相似文献   

9.
In a tectonically active setting large earthquakes are always threats; however, they may also be useful in elucidating the subsurface geology. Instrumentally recorded seismicity is, therefore, widely utilized to extend our knowledge into the deeper crust, especially where basement is involved. It is because the earthquakes are triggered by underground stress changes that usually corresponding to the framework of geological structures. Hidden faults, therefore, can be recognized and their extension as well as orientation can be estimated. Both above are of relevance for assessment on seismic hazard of a region, since the active faults are supposed to be re-activated and cause large earthquakes. In this study, we analysed the 1999 October 22 earthquake sequence that occurred in southwestern Taiwan. Two major seismicity clusters were identified with spatial distribution between depths of 10 and 16 km. One cluster is nearly vertical and striking 032°, corresponding to the strike-slip Meishan fault (MSF) that generated the 1906 surface rupture. Another cluster strikes 190° and dips 64° to the west, which is interpreted as west-vergent reverse fault, in contrast to previous expectation of east vergence. Our analysis of the focal solutions of all the larger earthquakes in the 1999 sequence with the 3-D distribution of all the earthquakes over the period 1990–2004 allows us reinterpret the structural framework and suggest previously unreognized seismogenic sources in this area. We accordingly suggest: (1) multiple detachment faults are present in southwestern Taiwan coastal plain and (2) additional seismogenic sources consist of tear faults and backthrust faults in addition to sources associated with west-vergent fold-and-thrust belt.  相似文献   

10.
We study the crustal structure of eastern Marmara region by applying the receiver function method to the data obtained from the 11 broad-band stations that have been in operation since the 1999 İzmit earthquake. The stacked single-event receiver functions were modelled by an inversion algorithm based on a five-layered crustal velocity model to reveal the first-order shear-velocity discontinuities with a minimum degree of trade-off. We observe crustal thickening from west (29–32 km) to east (34–35 km) along the North Anatolian Fault Zone (NAFZ), but we observe no obvious crustal thickness variation from north to south while crossing the NAFZ. The crust is thinnest beneath station TER (29 km), located near the Black Sea coast in the west and thickest beneath station TAR (35 km), located inland in the southeast. The average crustal thickness and S -wave velocity for the whole regions are  31 ± 2  km and  3.64 ± 0.15 km s−1  , respectively. The eastern Marmara region with its average crustal thickness, high heat flow value (101 ± 11 mW m−2) and with its remarkable extensional features seems to have a Basin and Range type characteristics, but the higher average shear velocities (∼3.64 km s−1) and crustal thickening from 29 to 35 km towards the easternmost stations indicate that the crustal structure shows a transitional tectonic regime. Therefore, we conclude that the eastern Marmara region seems to be a transition zone between the Marmara Sea extensional domain and the continental Anatolian inland region.  相似文献   

11.
Summary. LITHOPROBE has acquired nearly 270 km of crustal seismic reflection data across the eastern portion of the southern Canadian Cordillera, These reflection profiles, obtained during the Fall of 1985, extend from the Rocky Mountain thrust and fold belt, across the Rocky Mountain Trench, Purcell anticlinorium, Kootenay Arc, Nelson batholith and Valhalla gneiss complex. North American basement and its overlying foreshortened miogeoclinal rocks can be traced westward to the Kootenay Arc. The Purcell anticlinorium is carried by a series of west dipping thrust faults which emerge east of the anticlinorium and converge downward and merge with a detachment surface above autochthonous North American basement. Proterozoic supracrustal rocks, thickened by folding and thrusting, occupy the core of the anticlinorium. Steeply dipping surface structures of the western Purcell anticlinorium and Kootenay Arc appear to be truncated at 3 - 4 s (9-12 km) by a gently east-dipping reflection that may delineate the upper boundary of an allochthonous wedge inserted between the near surface rocks and autochthonous basement below. Beneath the Kootenay Arc, at a travel time of 9–10 s (27–30 km), the North American basement seems to be truncated by the major east-dipping Slocan Lake fault zone, which can be traced from its surface exposure at the east edge of the Valhalla gneiss complex eastward to near the base of the crust. A high amplitude, west-dipping reflection underlies the Valhalla complex and may be related to a major compressional shear zone.  相似文献   

12.
The deep seismicity of the Tyrrhenian Sea   总被引:4,自引:0,他引:4  
The study reappraises the deep seismicity of the Tyrrhenian Sea. Careful examination of the quality of reported hypocentres shows that the earthquakes define a zone dipping NW, about 200 km along strike, 50 km thick, and reaching a depth of about 500 km. The zone is slightly concave to the NW at a depth of 300 km, but, contrary to many previous reports, is not tightly concave, nor are there significant spatial gaps in the seismicity, which is effectively continuous with depth. Seismicity is, however, concentrated in the depth interval 250–300 km, where the dip of the seismic zone changes from 70° (above 250 km) to a more gentle dip of 45° at greater depths. Seven fault-plane solutions are available for the largest earthquakes in this depth interval, all of them consistent with a P -axis down the dip of the seismic zone, and all of them requiring movement on faults out of the plane of the subducting slab.
Two deep earthquakes near Naples lie well outside the main zone of activity; for one of which a fault-plane solution is available that has a P -axis not aligned with the dip of the seismic zone. The tightly concave slab-geometry favoured by other reports is supported mainly by the location of these events near Naples, which we think may represent deformation in a separate, probably shallower dipping, piece of subducted lithosphere.
The lack of shallow seismicity, and particularly of thrust faulting earthquakes, at the surface projection of the Benioff zone suggests that active subduction has ceased. Estimates of the convergence rate responsible for subduction in the last 10 Myr far exceed the present convergence rate of Africa and Eurasia, suggesting that the subduction was related instead to the stretching and thinning of the crust in the Tyrrhenian Sea.  相似文献   

13.
Summary . Vertical component Rayleigh-wave amplitudes from 1461 shallow earthquakes recorded in the distance range 0–150° are analysed to separate the effects of earthquake size, epicentral distance (Δ) and recording station.
The estimated decay of amplitude with distance has the form of a theoretical curve for the decay of Rayleigh waves with distance if the assumption is made that the decay due to dispersion for the data analysed is that of an Airy phase. Writing the decay due to anelastic attenuation as exp (- k Δ), k is estimated to be 0.676/rad over the whole range of distance. If the distance effects are represented by a straight line of the form h log Δ+ constant, h is estimated to be 1.15. The calibration function for computing M s derived from the estimated distance effects is very similar to that of Marshall & Basham.
Station effects on Rayleigh-wave amplitudes though statistically significant are small, and can probably be ignored in the computation of M s.
Comparing the estimated surface-wave magnitudes (earthquake size) obtained in this study with the long and short period body-wave magnitudes ( m LPb and m SPb respectively) obtained by Booth, Marshall & Young for the same earthquake shows that m LPb is about equal to M s over the magnitude range of interest (˜4.0–7.0). The m LPb and Ms relationship shows that the greater the long-period energy radiated by an earthquake the smaller proportionately is the short-period energy.  相似文献   

14.
Summary. P -wave seismograms at ranges less than 10 km are synthesized by asymptotic ray theory and by summation of Gaussian beams for point sources located in a low-velocity wedge surrounding a fault. The computations are performed using models of the wedge inferred from the analysis of reflection and refraction experiments across the San Andreas and Hayward-Calaveras faults. Calculations in these models show that the 10–20Hz vertical displacements of earthquakes located at 3–10km depth are amplified by up to an order of magnitude in a 1–2km wide region centred on the fault trace compared to displacements predicted by laterally homogeneous models of the crust. This amplification is not cancelled by high attentuation in the fault zone and compensates for the reduction in amplitudes directly above the source predicted from the radiation pattern of a strike-slip earthquake. Depending on the source depth of the earthquake and the structure and velocity contrast of the wedge, multiple triplications in the travel-time curve of direct P - and S -waves will occur at stations in the fault zone. A wedge model successfully predicts the triplications observed in the P waveforms of aftershocks of the Coyote Lake earthquake recorded in the fault zone, showing that body waves from microearthquakes can be used to determine the three-dimensional velocity structure of the fault zone. The amplification, waveform complexity, and distortion of ray paths introduced by the low- velocity wedge suggest that its effects should be included in the interpretation of strong ground motions and travel times observed in the fault zone. For realistic models of the wedge, asymptotically approximate methods of calculating the body waveforms are strictly valid for frequencies greater than 20Hz. Numerical methods may be necessary to calculate accurately the wavefield at lower frequencies.  相似文献   

15.
Summary. The ScSp wave converted from the ScS wave at the boundary between the descending lithospheric slab and the mantle above it was clearly observed from a nearby deep earthquake with magnitude 7.7 at some stations of the seismic network of Tohoku University which covers the Tohoku District, the northeastern part of Honshu, Japan. By applying the three-dimensional seismic-ray tracing method, the location of this boundary was determined from the difference in arrival time between the ScS and ScSp waves. The result shows that the upper boundary of the descending slab lies exactly on the upper plane of the double-planed deep seismic zone found in the Northeastern Japan Arc.
There is an additional evidence that the boundary is located on the upper plane of the double-planed deep seismic zone. The hypocentre distribution of intermediate-depth earthquakes located by the small-scale seismic-array observation is extremely different from that obtained by the relatively large-scale seismic network. The discrepancy in the distribution of hypocentres of the same earthquake independently located is well explained by the inclined lithospheric slab model derived from the difference in arrival time between the ScS and ScSp waves.
The earthquakes with reverse faulting or with down-dip compressional stresses occur at the upper boundary of the descending slab. Within the descending slab, the earthquakes with down-dip extensional stresses also occur in a very narrow zone from 30 to 40 km below the dipping boundary in the depth range from 50 to about 200 km, and these shocks form the lower plane of the double-planed deep seismic zone.  相似文献   

16.
Summary. In this study, seismological techniques are combined with surface observations to investigate the faulting associated with three large earthquakes in western Turkey. All involved normal faulting that nucleated at 6–10 km depth with dips in the range 30–50°. The two largest earthquakes, at Alaşehir (1969.3.28) and Gediz (1970.3.28), were clearly multiple events and their seismograms indicate that at least two discrete subevents were involved in producing the observed surface faulting. In addition, their seismograms contain later, longer-period signals that are likely to represent source, not structure or propagation, complexities. These later signals can be modelled by subevents with long time functions on almost flat detachment-type faults.
As a result of these observations, we propose a model for the deformation of the lower crust, in which brittle failure of the top part occurs when high strain rates are imposed during an earthquake that ruptures right through the upper, brittle crust. Under these special circumstances, seismic motion occurs on discrete faults in the lower crust, which otherwise normally deforms by distributed creep. In the case of the normal faults studied here, motion in the uppermost lower crust takes place on shallow dipping faults that are downward continuations of the steeper faults that break to the surface. The faults thus have an overall listric geometry, flattening into a weak zone below the brittle layer at a depth that is probably dependent on the termperature gradient. This interpretation explains why detachment-type mechanisms are not seen in first motion fault plane solutions of normal faulting earthquakes, and suggests an origin for the Metamorphic Core Complexes seen in the Basin and Range Province, which probably represent flat lower crustal faults, analogous to those postulated at Alaşehir and Gediz, that have been uplifted to the surface.  相似文献   

17.
We image the Hikurangi subduction zone using receiver functions derived from teleseismic earthquakes. Migrated receiver functions show a northwest dipping low shear wave feature down to 60 km depth, which we associate with the crust of the subducted Pacific Plate. Receiver functions (RF) at several stations also show a pair of negative and positive polarity phases with associated conversion depths of ∼20–26 km, where the subducted Pacific Plate is at a depth of ∼40–50 km beneath the overlying Australian Plate. RF inversion solutions model these phases with a thin low S -wave velocity zone less than 4 km thick, and an S -wave velocity contrast of more than ∼0.5 km s−1 with the overlying crust. We interpret this phase pair as representing fluids near the base of the lower crust of the Australian Plate, directly overlying the forearc mantle wedge.  相似文献   

18.
10 M ≥ 6.7 earthquakes ruptured 1000 km of the North Anatolian fault (Turkey) during 1939–1992, providing an unsurpassed opportunity to study how one large shock sets up the next. We use the mapped surface slip and fault geometry to infer the transfer of stress throughout the sequence. Calculations of the change in Coulomb failure stress reveal that nine out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 1–10 bar, equivalent to 3–30 years of secular stressing. We translate the calculated stress changes into earthquake probability gains using an earthquake-nucleation constitutive relation, which includes both permanent and transient effects of the sudden stress changes. The transient effects of the stress changes dominate during the mean 10 yr period between triggering and subsequent rupturing shocks in the Anatolia sequence. The stress changes result in an average three-fold gain in the net earthquake probability during the decade after each event. Stress is calculated to be high today at several isolated sites along the fault. During the next 30 years, we estimate a 15 per cent probability of a M ≥ 6.7 earthquake east of the major eastern centre of Ercinzan, and a 12 per cent probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere.  相似文献   

19.
We use teleseismic waveform analysis and locally recorded aftershock data to investigate the source processes of the 2004 Baladeh earthquake, which is the only substantial earthquake to have occurred in the central Alborz mountains of Iran in the modern instrumental era. The earthquake involved slip at 10–30 km depth, with a south-dipping aftershock zone also restricted to the range 10–30 km, which is unusually deep for Iran. These observations are consistent with co-seismic slip on a south-dipping thrust that projects to the surface at the sharp topographic front on the north side of the Alborz. This line is often called the Khazar Fault, and is assumed to be a south-dipping thrust which bounds the north side of the Alborz range and the south side of the South Caspian Basin, though its actual structure and significance are not well understood. The lack of shallower aftershocks may be due to the thick pile of saturated, overpressured sediments in the South Caspian basin that are being overthrust by the Alborz. A well-determined earthquake slip vector, in a direction different from the overall shortening direction across the range determined by GPS, confirms a spatial separation ('partitioning') of left-lateral strike-slip and thrust faulting in the Alborz. These strike-slip and thrust fault systems do not intersect within the seismogenic layer on the north side, though they may do so on the south. The earthquake affected the capital, Tehran, and reveals a seismic threat posed by earthquakes north of the Alborz, located on south-dipping thrusts, as well as by earthquakes on the south side of the range, closer to the city.  相似文献   

20.
By inversion analysis of the baseline changes and horizontal displacements observed with GPS (Global Positioning System) during 1990–1994, a high-angle reverse fault was detected in the Shikoku-Kinki region, southwest Japan. The active blind fault is characterized by reverse dip-slip (0.7±0.2  m yr−1 within a layer 17–26  km deep) with a length of 208±5  km, a (down-dip) width of 9±2  km, a dip-angle of 51°±2° and a strike direction of 40°±2° (NE). Evidence from the geological investigation of subfaults close to the southwestern portion of the fault, two historical earthquakes ( M L=7.0, 1789 and 6.4, 1955) near the centre of the fault, and an additional inversion analysis of the baseline changes recorded by the nationwide permanent GPS array from 18 January to 31 December 1995 partially demonstrates the existence of the fault, and suggests that it might be a reactivation of a pre-existing fault in this region. The fact that hardly any earthquakes ( M L>2.0) occurred at depth on the inferred fault plane suggests that the fault activity was largely aseismic. Based on the parameters of the blind fault estimated in this study, we evaluated stress changes in this region. It is found that shear stress concentrated and increased by up to 2.1 bar yr−1 at a depth of about 20  km around the epicentral area of the 1995 January 17  Kobe earthquake ( M L=7.2, Japan), and that the earthquake hypocentre received a Coulomb failure stress of about 5.6 bar yr−1 during 1990–1994. The results suggest that the 1995  Kobe earthquake could have been induced or triggered by aseismic fault movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号