首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
During a series of flights in the winters 1991/92 to 1994/95 total stratospheric NO2 was measured by means of the DOAS (Differential Optical Absorption Spectroscopy) technique on board a C160 (Transall) aircraft. In an area covering 60°W to 60°E, and 16°N to 86°N, the total stratospheric NO2 was observed to vary markedly with latitude and season (winter and spring). In the mid-winter Arctic vortex extremely low total stratospheric NO2 (< 3.1014/cm2) was always found, generally larger amounts of NO2 occurred outside the vortex in winter and towards the spring both inside and outside the vortex. This behaviour of stratospheric NO2 can be explained by the denoxification of the wintertime polar stratosphere. Ambient to the vortex in mid-winter however, sudden increases of total stratospheric NO2 by about a factor of 3 were observed. These sudden increases in stratospheric NO2 coincide with a change in the wavenumber 2 of the geopotential height at 60°N, which indicates that most likely the events are caused by planetary waves efficiently transporting air masses rich in NOx from lower to higher latitudes. The monitoring of stratospheric NO2, during latitudinal traverses ranging from the Arctic (80°N) to the Subtropics (18°N) in spring also unexpectedly showed a large variability in total stratospheric NO2 at mid-latitudes. Since photochemistry almost certainly can be excluded, it is proposed that the observed variability may be due to the planetary wave activity of the stratospheric surf zone, known to dynamically connect the tropical and the polar stratosphere.  相似文献   

2.
Zenith sky observations of BrO over Bremen (53°N) are reported for the period of September 1994 to January 1996. BrO differential slant columns between 90° and 80° solar zenith angle showed a strong seasonal variation between a winter maximum of 1.9·1014 molec/cm2 and a summer minimum of 0.6·1014 molec/cm2. The seasonal variation in BrO twilight values is shown to be inversely correlated with NO2 columns in agreement with current knowledge of gas phase chemistry of bromine. In contrast to model predictions, no significant difference between morning and evening BrO measurements was observed. During a 6 day polar vortex excursion to mid-latitudes OClO could be measured above Bremen indicating chlorine activation in the vortex air. No significant increase in BrO differential slant columns was detected during this time.  相似文献   

3.
Presented here are measurements of BrO and OClO performed by ground-based UV-visible zenith-sky viewing spectrometers developed by the Norwegian Institute for Air Research (NILU). Measurements were taken at Ny-Ålesund, Spitsbergen (79° N, 11° E), in winter and spring1996 and 1997 and at Andøya (69.3° N, 16° E) from summer 1998 until summer 1999. AM and PM differential slant column densities (DSCDs) at 90°SZA of BrO and OClO reached their maxima during polar vortex conditions in the winter months and were anti-correlated to temperature andNO2. Comparison of BrO with a 3-D chemical transport model showed good agreement for seasonal trends and non-vortex conditions. BrO AM/PM ratios were underestimated by the model for vortex conditions, indicating the need for better quantification of BrO source and sink reaction rates. The detection of OClO above 200 K at the 475 K isentropic level indicates the possible activation of chlorine on sulphate particles. Several episodes of boundary layer ozone depletion due to marine-derived BrO were evident in our zenith-skyspectra during April 1997 in Ny-Ålesund.  相似文献   

4.
Abstract

The 2009–10 Arctic stratospheric winter, in comparison with other recent winters, is mainly characterized by a major Sudden Stratospheric Warming (SSW) in late January associated with planetary wavenumber 1. This event led to a large increase in the temperature of the polar stratosphere and to the reversal of the zonal wind. Unlike other major SSW events in recent winters, after the major SSW in January 2010 the westerlies and polar vortex did not recover to their pre-SSW strength until the springtime transition. As a result, the depletion of the ozone layer inside the polar vortex over the entire winter was relatively small over the past 20 years. The other distinguishing feature of the 2010 winter was the splitting of the stratospheric polar vortex into two lobes in December. The vortex splitting was accompanied by an increase in the temperature of the polar stratosphere and a weakening of the westerlies but with no reversal. The splitting occurred when, in addition to the high-pressure system over northeastern Eurasia and the northern Pacific Ocean, the tropospheric anticyclone over Europe amplified and extended to the lower stratosphere. Analysis of wave activity in the extratropical troposphere revealed that two Rossby wave trains propagated eastward to the North Atlantic several days prior to the vortex splitting. The first wave train propagated from the subtropics and mid-latitudes of the eastern Pacific Ocean over North America and the second one propagated from the northern Pacific Ocean. These wave trains contributed to an intensification of the tropospheric anticyclone over Europe and to the splitting of the stratospheric polar vortex.  相似文献   

5.
In‐situ aerosol measurements were performed in the northern hemispheric stratosphere up to altitudes of 21 km between 13 November 1996 and 14 January 1997, inside and outside of the polar vortex during the Airborne Polar Experiment (APE) field campaign. These are measurements of particle size distributions with a laser optical particle counter of the FSSP‐300 type operated during 9 flights on the Russian M‐55 high‐altitude research aircraft Geophysika. For specific flights, the FSSP‐300 measurements are compared with balloon‐borne data (launched from Kiruna, Sweden). It was found that the stratospheric aerosol content reached levels well below the background concentrations measured by the NASA operated ER‐2 in 1988/89 in the northern hemisphere. During the APE campaign, no PSC particle formation was observed at flight altitudes although the temperatures were below the NAT condensation point during one flight. The measured correlations between ozone and aerosol give an indication of the subsidence inside the 1996/97 polar vortex. Despite the lower aerosol content in the winter 1996/97 compared to the 1989 background, the heterogeneous reactivity of the aerosol (as calculated from the measured data with additional model input) is comparable. This is due to the dependency of the reactive uptake coefficients on the atmospheric water vapor content. Under the described assumptions the reaction rates on the background aerosol are significantly smaller than for competing gas phase chlorine activation, as can be expected for stratospheric background conditions especially inside the polar vortex.  相似文献   

6.
The present paper examines the vortex breakdown and large-scale stirring during the final warming of the Southern Hemisphere stratosphere during the spring of 2005. A unique set of in situ observations collected by 27 superpressure balloons (SPBs) is used. The balloons, which were launched from McMurdo, Antarctica, by the Stratéole/VORCORE project, drifted for several weeks on two different isopycnic levels in the lower stratosphere. We describe balloon trajectories and compare them with simulations obtained on the basis of the velocity field from the GEOS-5 and NCEP/NCAR reanalyses performed with and without VORCORE data. To gain insight on the mechanisms responsible for the horizontal transport of air inside and outside the well-isolated vortex we examine the balloon trajectories in the framework of the Lagrangian properties of the stratospheric flow. Coherent structures of the flow are visualized by computing finite-time Lyapunov exponents (FTLE). A combination of isentropic analysis and FTLE distributions reveals that air is stripped away from the vortex’s interior as stable manifolds eventually cross the vortex’s edge. It is shown that two SPBs escaped from the vortex within high potential vorticity tongues that developed in association with wave breaking at locations along the vortex’s edge where forward and backward FTLE maxima approximately intersect. The trajectories of three SPBs flying as a group at the same isopycnic level are examined and their behavior is interpreted in reference to the FTLE field. These results support the concept of stable and unstable manifolds governing transport of air masses across the periphery of the stratospheric polar vortex.  相似文献   

7.
沈熙  徐海明  胡景高 《气象科学》2017,37(6):718-726
本文采用1979—2014年NCEP/NCAR月平均再分析资料、CMAP和GPCP月平均降水资料,分析了北半球平流层极涡崩溃早晚的环流特征及其与南亚降水的关系。结果表明,北半球平流层极涡崩溃时间存在明显的年际变化特征。极涡崩溃偏早(偏晚)年,自3月开始异常信号从平流层向下传播,之后的4月,从平流层到对流层高层极区温度异常偏高(偏低),极涡异常偏弱(偏强),极夜急流异常偏弱(偏强)。结果还表明,5月南亚降水异常与平流层极涡崩溃时间的早晚存在显著相关,5月南亚降水异常与平流层极涡崩溃早晚年平流层异常信号的下传有关。当平流层极涡崩溃偏晚年,4月平流层极区表现为位势高度异常偏低,而中纬度则位势高度场异常偏高,并伴随位势高度异常场的向下传播,5月该位势高度异常场下传至阿拉伯海北部大陆上空对流层顶,形成有利于降水的环流场,导致南亚降水偏多。反之,则相反。  相似文献   

8.
在对逐日气象资料进行纬向谐波分析的基础上, 对比和讨论了2007/2008年冬季强极涡期间和2008/2009冬季弱极涡期间平流层和对流层不同波数的行星波的变化特征, 特别关注强极涡或弱极涡发生之后, 500 hPa 沿60°N和30°N行星波1波和2波振幅和位相的差异, 以及相应的500 hPa位势场的差异, 进而讨论为什么不同的平流层极涡异常会对东亚有不同的影响, 特别讨论为什么同一种极涡异常, 对我国南北方近地面气温的影响会不同。结果表明:平流层极涡发生异常时, 平流层行星波活动有明显的异常。随着极涡异常的下传, 对流层行星波的振幅和位相也有明显的变化, 而且, 对于不同的纬度带, 其变化又有不同, 表现为:2008年1月强极涡发生之后, 500 hPa行星波1波和2波的扰动都向南伸, 而2009年1月的弱极涡(SSW)期间和之后, 1波和2波的扰动都偏北; 在对流层, 强极涡和弱极涡发生之后不但行星波1波和2波的振幅有所差异, 其位相也有明显的不同。特别是, 其位相的差异还随纬度而变化。就同一年(或者说对于同是强极涡或者同是弱极涡)而言, 无论是1波还是2波, 在60°N和30°N附近的扰动相比, 几乎反位相。这样就使得它们的500 hPa 位势场也有明显不同:在东半球, 主要表现为乌拉尔高压和东亚大槽的强度和位置不同。2008年1月强极涡发生之后, 乌拉尔高压和东亚大槽东移, 不利于冷空气向欧亚大陆北部(包括我国北方)的输送, 使这些地区的温度偏高;而2009年1月弱极涡之后, 东亚大槽西退, 利于冷空气向欧亚大陆北部输送, 导致这些地区较冷。对于同一种极涡异常(如2008强极涡或者2009弱极涡)由于南方和北方行星波扰动的位相不同, 对南方和北方冷暖空气的输送也就不一样。所以同一种极涡异常对(我国)南北地区的温度影响是不同的。  相似文献   

9.
Vertical Profile of Night-Time Stratospheric OClO   总被引:1,自引:0,他引:1  
The first night-time observation of the vertical profile of OClO wasperformed by the AMON balloon-borne spectrometer during the SESAME arcticcampaign, launched from Kiruna in northern Scandinavia. The flight, which tookplace inside the polar vortex on February 10, 1995, reveals mixing ratios of45±10 pptv at 20 km. These results are in excellent agreement with theREPROBUS 3D model simulations, which indicate that the observed OClOcorresponds to daytime ClO and BrO mixing ratios of 1.2 ppbv and 10 pptv,respectively.  相似文献   

10.
Dynamical changes in the Arctic and Antarctic lower stratosphere from autumn to spring were analysed using the NCEP/NCAR, ERA40 and FUB stratospheric analyses for three periods: 1979–1999, 1979–2005, and 1965–2005. We found a weakening of the Arctic vortex in winter and a strengthening in spring between 1979/1980 and 1998/1999, with corresponding changes in the zonal mean circulation. The vortex formed earlier in autumn and broke down later in spring. These changes however were statistically not significant due to the high interannual dynamical variability in northern hemisphere (NH) winter and spring and the relatively short time series. In the Antarctic, the vortex formed earlier in autumn, intensified in late spring, and broke down later. The changes of the Antarctic vortex were at all levels and for both autumn and spring transitions larger and more significant than the changes of the Arctic vortex. These changes of the 1980s and early to mid 1990s were however not representative of a long-term change. The dynamically more active winters in the Arctic and Antarctic since 1998/1999 led to an enhanced weakening of the polar vortex in winter, and to a reduction of the polar vortex intensification in spring. As two of the recent Arctic major warmings occurred rather early in winter the polar vortex could recover in late winter and the delay in spring breakdown further increased. In contrast, the increase in Antarctic vortex persistence did no longer appear when including the recent winters due to the dominant impact of the three recent dynamically active Antarctic winters in 2000, 2002, and 2004. The long-term changes of 1965/1966–2005 were smaller in amplitude and partly opposite to the trends since the 1980s. There is no significant long-term change in the Arctic vortex lifetime or spring persistence, while the Antarctic vortex shows a long-term deepening and shift towards later spring transitions. The changes in the stratospheric dynamical situation could be attributed in both hemispheres to changes in the dynamical forcing from the troposphere.  相似文献   

11.
This study uses multiple sea surface temperature(SST) datasets to perform a parallel comparison of three super El Ni os and their effects on the stratosphere. The results show that, different from ordinary El Ni os, warm SST anomalies appear earliest in the western tropical Pacific and precede the super El Ni o peak by more than 18 months. In the previous winter,relative to the mature phase of El Ni o, as a precursor, North Pacific Oscillation-like circulation anomalies are observed. A Pacific–North America(PNA) teleconnection appears in the extratropical troposphere during the mature phase, in spite of the subtle differences between the intensities, as well as the zonal position, of the PNA lobes. Related to the negative rainfall response over the tropical Indian Ocean, the PNA teleconnection in the winter of 1997/98 is the strongest among the three super El Ni os. The northern winter stratosphere shows large anomalies in the polar cap temperature and the circumpolar westerly, if the interferences from other factors are linearly filtered from the circulation data. Associated with the positive PNA response in a super El Ni o winter, positive polar cap temperature anomalies and circumpolar easterly anomalies,though different in timing, are also observed in the mature winters of the three super El Ni os. The stratospheric polar vortex in the next winter relative to the 1982/83 and 1997/98 events is also anomalously weaker and warmer, and the stratospheric circulation conditions remain to be seen in the coming winter following the mature phase of the 2015/16 event.  相似文献   

12.
The Northern Hemisphere stratospheric polar vortex is linked to surface weather. After Stratospheric Sudden Warmings in winter, the tropospheric circulation is often nudged towards the negative phase of the Northern Annular Mode (NAM) and the North Atlantic Oscillation (NAO). A strong stratospheric vortex is often associated with subsequent positive NAM/NAO conditions. For stratosphere?Ctroposphere associations to be useful for forecasting purposes it is crucial that changes to the stratospheric vortex can be understood and predicted. Recent studies have proposed that there exist tropospheric precursors to anomalous vortex events in the stratosphere and that these precursors may be understood by considering the relationship between stationary wave patterns and regional variability. Another important factor is the extent to which the inherent variability of the stratosphere in an atmospheric model influences its ability to simulate stratosphere?Ctroposphere links. Here we examine the lower stratosphere variability in 300-year pre-industrial control integrations from 13 coupled climate models. We show that robust precursors to stratospheric polar vortex anomalies are evident across the multi-model ensemble. The most significant tropospheric component of these precursors consists of a height anomaly dipole across northern Eurasia and large anomalies in upward stationary wave fluxes in the lower stratosphere over the continent. The strength of the stratospheric variability in the models was found to depend on the variability of the upward stationary wave fluxes and the amplitude of the stationary waves.  相似文献   

13.
Vertical column abundances of HCl, ClONO2, HF and HNO3 have been obtained from infrared solar absorption measurements made at Aberdeen, UK (57°N, 2°W) during the periods January 13 1994 - May 8 1994 and November 23 1994 - April 19 1995. The measurements reveal the partitioning of inorganic chlorine (Cly) inside and outside the polar vortex during these two winter and spring periods. Stratospheric temperatures within the northern polar vortex during 1993/94 were not cold throughout January and most of February. The measurements reported here suggest that following a brief period of chlorine activation in late February and early March, the active chlorine within the vortex recovered rapidly to form ClONO2 resulting in in-vortex ClONO2 columns of 7 × 1015 molecules cm-2. In contrast, measurements during January 1995 suggest extensive invortex activation with in-vortex HCl + ClONO2 as low as 3.6×1015 molecules cm-2. High day-to-day variability in the ClONO2 columns observed during February is evidence for the transport of ClONO2 rich air from high to mid latitudes during the late winter. The implications for mid latitude O3 loss are discussed. A preliminary comparison of the HCl, ClONO2, and HNO3 column data from winter 94/95 with a three-dimensional chemical transport model shows that the model generally reproduces well the day-to-day variability and absolute magnitude of the observed columns, especially for HNO3 outside of the vortex.  相似文献   

14.
涡动在南北半球平流层极涡崩溃过程中作用的比较   总被引:3,自引:1,他引:2  
魏科  陈文  黄荣辉 《大气科学》2008,32(2):206-219
比较了南北半球春季平流层极涡的崩溃过程以及涡动在此崩溃过程中的作用。极涡的崩溃时间以平流层极夜急流核区最后一次西风转换为东风的时间来确定。结果表明南北半球平流层极涡的崩溃过程有着共同的特点,涡动和非绝热加热过程都对极涡的崩溃起着重要的作用,在极涡崩溃前平流层行星尺度波动活动明显,极涡崩溃以后,这种波动活动便迅速减弱。其中从对流层上传的行星波决定着极涡的具体崩溃时间。两个半球的差别主要表现在南半球极涡崩溃过程一般始于平流层高层,然后逐渐下传,而北半球这种下传不是很明显。其次,北半球平流层极涡崩溃偏晚年,极涡的减弱有两次过程,第一次为快速变化过程,第二次变化比较缓慢,而南半球平流层极涡崩溃无论早晚年只有一次减弱过程。长期的变化趋势分析表明南北半球平流层极涡的崩溃时间逐渐推迟,特别是20世纪90年代中后期以来,这种推迟更加明显。进一步的研究还发现,伴随着平流层极涡的崩溃过程平流层和对流层存在强烈的动力耦合,南北半球极涡迅速减弱前,各自半球的环状模指数也由负指数增加为正指数,表明低层环流对于平流层极涡的崩溃起到重要的作用;同时极涡不同强度所对应的低层环状模指数也不同,这可能与不同强度平流层极涡对于上传的行星波的反射有关。  相似文献   

15.
Two cases of simultaneous nighttime measurements of NO2 and OClO in the winter polar stratosphere are analyzed in order to test our present knowledge of halogen chemistry in the presence of high amount of NO2 at low temperature. Comparisons with Lagrangian model calculations using several hypotheses are performed. First simulations, using the admitted constant rates of chemical reaction, strongly underestimate the measured OClO while the NO2 profiles are correctly reproduced. If uncertainties in actinic fluxes calculations are taken into account, simulation results do not show a significant reduction of the underestimation. A better agreement can be achieved if the formation of unstable isomers of ClONO2 and of BrONO2 occurs in the cold conditions of the polar stratosphere. An approximate value of the branching ratios of the channels leading to ClONO2 and ClOONO, and to BrONO2 and BrOONO, necessary to reproduce both OClO and NO2 is given and discussed.  相似文献   

16.
2019-2020冬季北极平流层极涡异常并且持续的偏强,偏冷.利用NCEP再数据和OMI臭氧数据,本文分析了此次强极涡事件中平流层极涡的动力场演变及其对地面暖冬天气和臭氧低值的影响.此次强极涡的形成是由于上传行星波不活跃.持续的强极涡使得2020年春季的最后增温出现时间偏晚.平流层正NAM指数向下传播到地面,与地面AO指数和NAO指数相一致,欧亚大陆和北美地面气温均比气候态偏暖,在欧亚大陆的一些地区,2020年1月和2月的气温甚至偏高了 10K.2020年2月以来北极臭氧出现了2004年以来的最低值,2020年3-4月60°-90°N的平均臭氧柱总量比气候态偏低了 80DU.  相似文献   

17.
A new lightweight in situ instrument designed to measure ClO was flown on a balloon launched into the arctic vortex at dawn on February 3, 1995 at Kiruna, Sweden during the Second European Stratospheric Arctic and Mid-latitude Experiment (SESAME), together with instruments to measure ozone and long-lived tracers. Observations on ascent and descent at different solar zenith angles are compared to results from Lagrangian and box model calculations that assume the airmasses at similar potential temperatures had comparable photochemical histories. Between 20 and 22 km, in a region where ClO was significantly enhanced, a model constrained by currently recommended rate parameters significantly underestimates the abundances of ClO that were observed on ascent at high solar zenith angles, whereas the agreement is much better if a smaller ClO-Cl2O2 equilibrium constant, one inferred from previous ER-2 aircraft observations of ClO in the Arctic during nighttime, is assumed. On ascent, ClO is additionally enhanced in a narrow region between 20 and 21 km. We believe the most plausible explanation for this feature is rapid photolysis of OClO produced by the slow bimolecular reaction ClO + ClO over the 48 hours prior to the observations when the airmass was warmed to 225 K by adiabatic compression while in polar darkness. These results suggest that under special circumstances, OClO can be produced by a reaction other than one involving BrO, and, hence, OClO is not necessarily a universal proxy for BrO abundances in the perturbed polar vortex.  相似文献   

18.
热带加热异常影响冬季平流层极涡强度的数值模拟   总被引:1,自引:0,他引:1  
饶建  任荣彩  杨扬 《大气科学》2014,38(6):1159-1171
本文利用大气环流模式SAMIL/LASG,通过选择两种对流参数化方案,研究了热带加热异常对热带外平流层模拟的影响。结果表明,因不同对流参数化方案引起的热带对流加热状况的差异,可显著影响模式对北半球冬季平流层极涡强度的模拟偏差。与采用Manabe对流参数化方案相比,采用Tiedtke参数化方案可以显著改善对平流层极涡强度的模拟,使平流层极涡“过强”及极区“过冷”的模拟偏差得到明显改善。研究其中的影响过程发现,由于Manabe方案最大凝结潜热加热高度过低,在对流层中低层;而Tiedtke方案的最大凝结潜热加热位置在对流层中上层,因而Tiedtke(Manabe)方案时热带大气温度在对流层中上层较为偏暖(偏冷),在平流层低层较为偏冷(偏暖)。自秋季开始,与热带对流层高层温度的暖偏差相联系,热带外对流层高层以及热带平流层低层出现伴随的温度冷偏差;与之对应,平流层中纬度从秋季开始也出现持续的温度暖偏差。另外,随着秋冬季节平流层行星波活动的出现,Tiedtke方案时热带外地区行星波1波的强度也明显强于Manabe方案,使得秋冬季节涡动引起的向极热通量在Tiedtke方案时明显偏强,从而造成了冬季平流层极区温度偏暖、极涡强度偏弱。  相似文献   

19.
陈文  魏科 《大气科学进展》2009,26(5):855-863
We investigated the interannual variations of the winter stratospheric polar vortex in this paper. EOF analysis shows that two modes of variability dominate the stratospheric polar vortex on interannual timescales. The leading mode (EOF1) reflects the intensity variation of the polar vortex and is characterized by a geopotential height seesaw between the polar region and the mid-latitudes. The second one (EOF2) exhibits variation in the zonal asymmetric part of the polar vortex, which mainly describes the stationary planetary wave activity. As the strongest interannual variation signal in the atmosphere, the QBO has been shown to influence mainly the strength of the polar vortex. On the other hand, the ENSO cycle, as the strongest interannual variation signal in the ocean, has been shown to be mainly associated with the variation of stationary planetary wave activity in the stratosphere. Possible influences of the stratospheric polar vortex on the tropospheric circulation are also discussed in this paper.  相似文献   

20.
Ozone loss rates from ozonesonde data reported in the Match experiments of winters 1994/95 and 1995/96 inside the Arctic polar vortex are compared with simulations of the same winters performed using the SLIMCAT 3D chemistry and transport model. For 1994/95 SLIMCAT reproduces the location and timing of the diagnosed ozone destruction, reaching 10 ppbv/sunlit hour in late January as observed. SLIMCAT underestimates the loss rates observed in February and March by 1–3 ppbv/sunlit hour. By the end of March, SLIMCAT ozone exceeds the observations by 25–35%. In January 1995 the ozonesonde-derived loss rates at levels above 525 K are not chemical in origin but due to poor conservation of air parcels. Correcting temperature biases in the model forcing data significantly improved the agreement between the model and observed ozone at the end of winter 1994/95, increasing ozone destruction in SLIMCAT in February and March. The SLIMCAT simulation of winter 1995/96 does not reproduce the maximum ozone loss rates diagnosed by Match of 13 ppbv/sunlit hour. Comparing the data for the two winters reveals that the SLIMCAT photochemistry is least able to reproduce observed losses at low temperatures or when low temperatures coincide with high solar zenith angles (SZA). When cold (T = 192 K), high SZA (90°)matches are excluded from the 1995/96 analysis, agreement between the diagnoses and SLIMCAT is better with ozone loss rates of up to 6 ppbv/sunlit hour. For the rest of the winter SLIMCAT consistently underestimates the Match rates of ozone loss by 1–3 ppbv/sunlit hour. In March 1996 the monthly mean SLIMCAT ozone is 50% greater than observations at 430–540 K. In both winters, ozone destruction rates peaked more rapidly and declined more slowly in the Match observations than in the SLIMCAT simulations. The differences between the observed and modelled cumulative ozone losses demonstrate that the total ozone destruction by the end of the winter is sensitive to errors in the instantaneous ozone loss rates of 1–3 ppbv/sunlit hour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号