首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
用扩散电场法估算CHTEM-I系统的探测深度   总被引:3,自引:2,他引:1       下载免费PDF全文
时间域航空电磁系统的探测深度是一项关键技术参数,在系统研制设计和资料解释中都有重要作用.当目标层与围岩电性差异不大或目标层引起的异常响应不明显时,常规的估算探测深度方法不再适用,为克服这种缺陷,本文提出了一种系统探测深度的估算方法,该方法通过模拟电场在均匀半空间模型和层状模型中的扩散过程,记录电场最大幅值在地下的瞬时位置,将系统的探测深度定义为观测到的响应值等于给定的噪声水平时,对应时刻的地下介质中感应电场幅度的最大值对应的深度.论文以我国自主研制的直升机时间域航空电磁系统CHTEM-I为例,根据对不同条件下的计算结果的分析,给出了探测深度与模型电导率、飞行高度和噪声水平之间的关系曲线,并总结出一些能够提高系统探测深度的建议.结果表明半空间模型电导率在0.000295~0.0422 S/m范围内,CHTEM-I系统可以在噪声水平与t-0.5成正比条件下达到300 m的探测深度.本文方法的估算结果不受模型层厚薄,或目标层与围岩电性差异小等因素影响,因而具有较高的实用性.文中的结论对时间域航空电磁系统设计有理论指导意义,也可用于其它时间域电磁勘探系统探测深度的估算.  相似文献   

2.
An integrated electromagnetic and nuclear magnetic resonance (NMR) method is proposed for investigating highly conductive soil areas. Using a simple model of a homogeneous half-space and the same antenna for both methods, a significant improvement in the NMR data interpretation is obtained. A case study has shown fair agreement between the results from computer modelling, field tests, and data from a nearby observation well. The electromagnetic method and the half-space model were selected for easy integration into an existing instrument used for the NMR method. A more accurate knowledge of the conductivity distribution with depth will further improve the final result.  相似文献   

3.
接地导线源电磁场全域有效趋肤深度   总被引:3,自引:2,他引:1       下载免费PDF全文
为了更好地推进广域电磁法的发展和应用,本文以接地长导线源为例,研究了可控源电磁场全场域的有效趋肤深度.利用频域电偶极源在均匀半空间产生电磁场的闭合表达式,计算了不同电磁场分量定义的有效趋肤深度,并讨论了在不同频率、不同偏移距、不同电导率情况下,有效趋肤深度的变化特性.根据有效趋肤深度随偏移距的变化特征以及与平面波趋肤深度之间的关系,利用多项式拟合的办法在五个不同频率范围内给出了适用于全场域的有效趋肤深度快速估算公式.研究结果表明:不同分量定义的有效趋肤深度是不同的,但是它们随偏移距、频率、电导率等参数的变化趋势是类似的,而且在一定范围内都趋近于平面波趋肤深度.理论模型的研究表明,有效趋肤深度可以作为测量参数选取和数据解释工作的参考依据.  相似文献   

4.
A mathematical formulation for the electric potential from point current-sources coaxial with a metal casing has been obtained. The excitation caused by the axial point-sources will produce currents in the pipe. By assuming that the pipe can be divided into many cylindrical ring segments with constant axially-directed current, the solution of the fields inside and outside the pipe can be formulated in an integral form. The integral equation applied to the segmented pipe yields a set of simultaneous linear equations which are solved for the currents in the pipe; these are then used to calculate the potentials anywhere outside the pipe in the medium. This solution has been used to study the distribution of the potentials in a half-space for a single current-source at and beyond the bottom of a finite length of casing. For a casing 0.1 m in radius and 0.006 m in wall thickness with a conductivity of 106 S/m, in a half-space of 10-2 S/m, it was found that only in a region very near the pipe does the pipe exert substantial influence on the fields of a point-source 100 casing diameters beyond the end of the pipe. It appears that cross-hole resistivity surveys can be implemented without corrections for the casing if the source is located at least 50–100 casing diameters beyond the end of the casing. Hole-to-surface surveys are much more affected by the pipe. For a pipe-source separation of 100 casing diameters, the surface measurements must not be closer than a half pipe length for a 5% or less field distortion.  相似文献   

5.
文中推导出单轴各向异性媒质半空间上方垂直磁偶极源电磁场的精确解析表达式. 应用圆柱波函数的球面波展开式和超几何函数理论,场分量中的索末菲尔德型积分被表示成快速、绝对收敛的球面波函数系展开式;展开系数是以物性参数为复宗量的勒让德多项式. 该展开式数学物理意义明显,并且不受场点和源点的位置、媒质的物性参数和频率等条件的限制. 利用本文的结果可十分方便地计算和分析任意场点处的电磁场分布.  相似文献   

6.
The soil-structure system is modelled as a uniform vertical beam, which terminates in a base or foundation mass; this mass is attached to the surface of an elastic half-space. Using known force-displacement relations for the coupled vibrations of a rigid disc on an elastic half-space, the natural frequencies and response to a transverse harmonic force, applied at the tip of the beam, are determined through a continuum approach. Effectively the problem reduces to a beam with frequency-dependent boundary conditions. A parametric study shows that changes in the three ratios, Young's modulus for the beam to that for the half-space, the radius of the base mass to the length of the beam, L, and the second moment of area of the beam cross-section/L4, cause large variations in the maximum response, which due to interaction can be considerably smaller or larger than that for a comparable fixed-base cantilever beam. This dynamic behaviour can be explained by considering the variation of natural frequencies, mode shapes and modal damping factors with these ratios. A brief study of the response of the structure to a free-field harmonic acceleration, applied at the soil-structure interface, suggests that interaction depends upon material and geometric properties of the system, rather than on the nature of the excitation.  相似文献   

7.
The VLF filtering technique of Karous and Hjelt has been applied to fixed-loop step-response transient electromagnetic data. This allows the data measured in each channel to be converted to an equivalent current-density pseudosection. For a conductive half-space, the maximum value of the equivalent current density starts near the transmitter loop and migrates outwards as a function of delay time. The rate of migration tends to increase as a function of delay time, with the increase being faster for a surficial conductive layer than it is for a half-space. Theoretical and field examples show that the currents tend to be more persistent in the relatively conductive areas, so that a pseudosection which is the average of the current densities at all delay times will highlight the more conductive zones. In resistive ground, it is not so critical to average the pseudosections as a particular delay time may give a better idea of the conductivity structure. For example, the latest possible delay time will reveal the most conductive features.  相似文献   

8.
This review of analytic solutions is divided into two parts. The first part reviews electromagnetic induction in radially symmetric distributions of conductivity, and is appropriate to the study of global problems. In the second part, local problems of a specific nature are considered, the model being a half-space conductor with at least one lateral discontinuity separating regions of different uniform conductivities. In some problems, an approximate surface-boundary condition is used, and it is shown that the accuracy of the solutions has yet to be determined satisfactorily.  相似文献   

9.
核磁共振与瞬变电磁三维联合解释方法   总被引:3,自引:1,他引:2       下载免费PDF全文
传统核磁共振地下含水量解释多采用基于均匀半空间或层状导电模型的一维反演,分层给出地下含水信息.然而,这些方法忽略了地下复杂电阻率分布信息对结果的影响,也不能很好地反映局部三维含水构造.本文从三维电介质中核磁共振响应的正演理论出发,提出首先利用瞬变电磁数据进行基于等效导电平面法的快速电阻率成像,然后将成像结果作为核磁共振三维反演的电性模型,进行联合解释.激发磁场的分布采用有限元法直接求解,通过引入伪δ源实现电流源的加载,并强加散度条件排除了三维磁场模拟中"弱解"的影响.针对核磁共振灵敏度矩阵的病态性和数据中存在的干扰信号,提出考虑罚项的非线性拟合目标函数,利用线性化方法进行核磁共振反演.模型数据表明该方法能较准确反映地下三维含水构造,实测算例进一步证明了方法的有效性.本研究将促使核磁共振方法在岩溶、裂隙水、孤立水体等复杂水文地质条件及隧道、矿井灾害水源探测等方面得到有效应用.  相似文献   

10.
Summary A simple cylindrical model is employed to estimate the effect of non-flatness of the ground on the sub-surface electromagnetic field from a current-carrying cable on the surface. It is shown that, if the surface curvature is sufficiently small, the fields in the cylinder model are very similar to those for the conducting half-space model of the earth employed earlier. The results can be used to provide estimates of expected errors in electromagnetic direction-finding of a buried receiving terminal.The research reported here was supported in part by the Mine Safety Center, U.S. Bureau of Mines.  相似文献   

11.
针对当前瞬变电磁法探测能力有限的问题,利用一次磁场理论公式,分析相同磁矩下、不同发射线圈一次磁场分布及衰减规律,从而确定其信号深度影响范围;对水平层状介质相同磁矩下、不同发射线圈的二次场进行数值模拟,采用Guptasarma和Singh滤波算法及余弦变换法,利用均匀半空间解析公式进行验证,并对不同正演模型结果进行分析,总结发射磁矩决定探测深度大小。对磁矩相同条件下产生的结果数据进行拟合,得出有效探测深度与线圈边长2倍相当的结论,可为野外矿井生产与工程勘探提供施工布置与定量解释的指导依据,从而提高野外工作效率。  相似文献   

12.
传统的均匀分布异常体模型,不能准确描述地下介质的不规则性变化,采用随机介质进行替代,将使电导率这一物性参数更加接近于实际的电导率分布.本文结合地质结构中断裂带特征,采用Von Kármán函数建立三维随机介质模型,通过讨论Hurst指数与自相关长度对三维随机电导率模型建模产生的影响,进行参数优化建立所需的随机介质模型.利用一维傅里叶变换建立三维随机变化的条状断裂带异常体,三维傅里叶变换建立三维随机变化的背景围岩,准确地表征了油气藏断裂带特征.基于时域有限差分方法,实现了磁源激励下的三维随机介质航空时域电磁响应数值模拟.采用均匀半空间模型验证了数值模拟的正确性,分析了随机断裂带与均匀断裂带的电磁响应特征,结果表明随机断裂带可以准确描述地下介质的分布特征,而且与断裂带垂直方向的电磁响应特征清晰地描述了断裂带的倾向、走向与位置,为断裂带结构探测提供了理论依据和技术指导,三维随机断裂带模拟方法同样适用于其它三维随机介质的数值模拟.  相似文献   

13.
Responses of a multifrequency, multicoil airborne electromagnetic (AEM) system were modelled numerically for 3D electrical conductors embedded in a resistive bedrock and overlain by an overburden of low to moderate conductivity. The results cover a horizontal coplanar coil configuration and two frequencies, 7837 Hz and 51 250 Hz. The models studied are single or multiple, poor conductors (conductance lower than 0.1 S) embedded in a host rock of high but finite resistivity (5000 Ωm) and overlain by a layer of overburden with finite thickness and low to moderate conductivity (conductance up to 2 S). On the basis of the modelling results, limits of detectability for poor conductors have been studied for the various model structures. The results indicate that the anomaly from a steeply dipping, plate-like conductor will decrease significantly when the conductor is embedded in a weakly conductive host rock and is overlain by a conductive overburden. However, an anomaly is obtained, and its magnitude can even increase with increasing overburden conductivity or frequency. The plate anomaly remains practically constant when only the overburden thickness is varied. Changes in overburden conductivity will cause the plate-anomaly values to change markedly. If the plate conductance is less than that of the overburden, a local anomaly opposite in sign to the normal type of anomaly will be recorded. Another major consequence is that conductors interpreted with free-space models will be heavily overestimated in depth or underestimated in conductance, if in reality induction and current channelling in the host rock and overburden make even a slight contribution to the anomalous EM field. The lateral resolution for the horizontal coplanar coil system was found to be about 1.7 times the sensor altitude. Similarly, the lateral extension of a horizontal conductive ribbon, required to reach the semi-infinite (half-space) behaviour, is more than three times the sensor altitude. Finally, screening of a steeply dipping plate, caused by a small, conductive horizontal ribbon, is much more severe than screening of the same plate by an extensive horizontal layer.  相似文献   

14.
The transient response of a layered structure to plane wave excitation can be considered to be composed of a series of waves and a ground wave. For the case of a half-space of conductivity σ and permeability μ the maximum in the electric field is found at a depth z and time t when t=z2σμ/2. This formula can be used to estimate the depth to a buried horizontal conductor with an accuracy that depends upon the resistive contrast at the conductor's surface. The above ray type of solution can be converted to a solution composed of a number of modes by the use of a Poisson transform and the transformed solutions yield decay constants that are consistent with the previously reported results. In the case of a finite source, the maximum in the electric field is strongly directed. The direction depends upon the geometry of the source and the air-earth interface. Although the maximum varies with direction it can be shown that in some directions similar laws to that above are valid. The depth to a conductor can be estimated from the early part of the transients when the ground wave is removed. The removal of the ground wave from the transient is facilitated by the use of an apparent conductivity formula. Although these results were obtained under restrictive conditions they do provide some insight into the electrical transients that are encountered by studying more complex models.  相似文献   

15.
Airborne electromagnetic (AEM) surveys, when regionally extensive, may sample a wide-range of geological formations. The majority of AEM surveys can provide estimates of apparent (half-space) conductivity and such derived data provide a mapping capability. Depth discrimination of the geophysical mapping information is controlled by the bandwidth of each particular system. The objective of this study is to assess the geological information contained in accumulated frequency-domain AEM survey data from the UK where existing geological mapping can be considered well-established. The methodology adopted involves a simple GIS-based, spatial join of AEM and geological databases. A lithology-based classification of bedrock is used to provide an inherent association with the petrophysical rock parameters controlling bulk conductivity. At a scale of 1:625k, the UK digital bedrock geological lexicon comprises just 86 lithological classifications compared with 244 standard lithostratigraphic assignments. The lowest common AEM survey frequency of 3 kHz is found to provide an 87% coverage (by area) of the UK formations. The conductivities of the unsampled classes have been assigned on the basis of inherent lithological associations between formations. The statistical analysis conducted uses over 8 M conductivity estimates and provides a new UK national scale digital map of near-surface bedrock conductivity. The new baseline map, formed from central moments of the statistical distributions, allows assessments/interpretations of data exhibiting departures from the norm. The digital conductivity map developed here is believed to be the first such UK geophysical map compilation for over 75 years. The methodology described can also be applied to many existing AEM data sets.  相似文献   

16.
The Cole-Cole relaxation model has been found to provide good fits to multifrequency IP data and is derivable mathematically from a reasonable, albeit greatly simplified, physical model of conduction in porous rocks. However, the Cole-Cole model is used to represent the mutual impedance due to inductive or electromagnetic coupling on an empirical basis: this use has not been similarly justified by derivation from any simple physical representation of, say, a half-space, layered or uniform. A uniform conductive half-space can be represented as a simple subsurface loop with particular resistive and inductive properties. Based upon this, a mathematical expression for the mutual impedance between the two pairs of electrodes of a dipole-dipole array is derived and designated “model I”. It is seen that a degenerate case of model I is the Cole-Cole model with frequency exponent c= 1. Model I is thus more general than the Cole-Cole expression and must provide at least as good a fit to a set of field data. Provision for variation of c from unity could be made in model I equally well as for the Cole-Cole model although, at present, this would be a purely empirical alteration. Model I contains four parameters, one of which is, in effect, the resistivity of the half-space. Therefore only three parameters are involved in the model I expressions for normalized amplitude and for phase of the EM-coupling mutual impedance. Model I is compared with previously published “standard” values for two different dipole separations. Under particular constraints, model I is shown to provide better fits than the Cole-Cole model (with c= 1) over particular frequency ranges, specifically at very low frequencies and at moderately high frequencies where the model I phase curve follows the standard phase curve across the axis to positive values (negative coupling).  相似文献   

17.
Summary In low latitude the spatial distribution functions of the source field over the surface and the dimensions of the source, are important in any theory of electromagnetic induction developed for studying the conductivity structure of the Earth. The author has built up a mathematical structure for a theory of electromagnetic induction in anyn-layered earth model in low latitude. No simple solution is assumed for the horizontal distribution function of the source field and no assumption is made about the horizontal gradients of the source. The mathematical structure involves the concept of downward continuity of the field equations inside then-layered earth model. The resulting mathematical functions derived for anyn-layered earth model are complex. Hence a new matrix algebra of complex numbers is introduced by the author and this is built into the theory. From the upward continuity of the field equations, an inequality equation is derived in order to determine the heighth 0 at which the induction field of the earth becomes negligible compared with the source field. The comparison of such heights at two or more stations under the same influence of the source field can be used for the resolution of the lateral distribution of the earch conductivity structure at these stations. The application of the theory will follow in a subsequent paper.  相似文献   

18.
J. Liu  D. Elsworth  R. J. Matetic 《水文研究》1997,11(15):1945-1961
A methodology for calculating strains that accompany mining is used to estimate the post-mining modification of the hydraulic conductivity field and the change in the regional and local subsurface water system. The techniques yield reasonable agreement with recorded changes in water levels for reasonable and defensible choices of material parameters in validation exercises at an instrumented longwall site. Water level changes recorded above the twin panel longwall configuration are complex and varied. However, they may be explained through consideration of the mining-modified conductivity field alone. Changes in hydraulic conductivity are independently corroborated from the results of in situ permeability tests, conducted before and after mining, that confirm the overall influence of mining-induced strains. These resulting patterns of hydraulic conductivity enhancement enable direct explanation of observed water level changes. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
There are several kinds of coupling mechanisms which can convert mechanical, chemical or thermal energies due to seismic or volcanic activities into electromagnetic energies. As a result of concentrated efforts in laboratory and theoretical research, the basic relationship between the intensity of electromagnetic sources and changes in mechanical, chemical and thermal state is becoming established. Also with the progress of the electromagnetic simulation techniques, it has been possible to evaluate in situ sensitivity. Based on this progress and also due to extensive improvement in measuring techniques, many field experiments have been performed to elucidate subsurface geophysical processes underlying the preparation stage, onset, and subsequent healing stage of earthquakes and volcanic eruptions. In volcanic studies, many studies have reported the measurement of electromagnetic signals which were successfully interpreted in terms of various driving mechanisms. Although there have been numerous reports about the existence of precursory electromagnetic signals in seismic studies, only a few of them could be successfully explained by the proposed mechanisms, whereas coseismic phenomena are often consistent with those mechanisms including the absence of detectable signals. In many cases, one or two orders of higher sensitivity were required, especially for precursory signals. Generally, electromagnetic methods are more sensitive to near-surface phenomena. It will be necessary to discriminate electromagnetic signals due to these near-surface sources, which often possess no relationship with the crustal activities. Further efforts to enhance in situ sensitivity through improvements in observation techniques and in data processing techniques are recommended. At the same time, multi-disciplinary confirmation against the validity of electromagnetic phenomena will inevitably be necessary. A Network-MT observation technique has been developed to determine large-scale deep electrical conductivity structure. In the method, a telephone line network or purpose-built long baseline cables are utilized to measure voltage differences with long electrode separations. Because of the averaging effect of the electric fields, static shift problems due to small-scale, near-surface lateral heterogeneities can be alleviated. Several field experiments revealed regional scale deep electrical conductivity structures related to slab subduction or its stagnation, which enable us to elucidate underlying physical processes caused by the slab motion. The technique can also be applied to monitor the electric potential field related to crustal activities. The annual variation of the potential field and electrical conductivity in the French Alps were interpreted to be caused by the annual variation of lake water level. The method was also used to monitor the regional scale spatio-temporal variation of the SP field and electrical conductivity before and at the onset of earthquakes and volcanic eruptions.  相似文献   

20.
The solution for the potential distribution about a point source of current placed at the surface of a continuous half-space is obtained for two cases: (1) the resistivity increases linearly with depth; (2) the conductivity increases linearly with depth. In each case, an expression for the apparent resistivity is established and master curves are presented for both the Wenner and the Schlumberger configurations. The results can be used in the interpretation of electrical sounding data in specified geologic situations. Furthermore, they may be used as a first step in the development of solutions for the more complex electric sounding problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号