首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The Moodies Group in the Dycedale Syncline, Barberton Greenstone Belt consists of a 100–130 m-thick upward-fining succession that exhibits a transition from fluvial to tide-modified sedimentation. A basal, 10–30 m-thick conglomerate–sandstone interval of alluvial origin is overlain by stacked upward-fining, decimeter- to meter-scale cycles within which three facies are recognized: 1) conglomerate lag; 2) cross-bedded sandstone; and 3) interlaminated sandstone–siltstone and mudstone. Within the cycles, the abundance of mudstone drapes increases upwards. Structureless conglomerates and cross-beds lacking mudstone drapes record braided-alluvial processes. In contrast, cross-beds with mudstone drapes and interlaminated sandstone–siltstone and mudstone are products of flows modified by various tidal beats. Sand and/or silt transport took place during the ebb and flood stages and mudstone accumulated during slack water phases. Alternating thick–thin laminations reflect dominant and subordinate, twice-daily tides. Thicker groupings of foresets and thicker intervals of vertically stacked sandstone–siltstone and mudstone laminations are interpreted as spring tide deposits whereas thinner groupings of foresets and thinner laminations record neap tides. Desiccated mudstone drapes on foresets indicate that bedforms rarely were locally exposed during some portion of the tidal cycle. Abundant exposure structures in the interlaminated sandstone–siltstone and mudstone facies indicate that the cycles are upward shoaling. The stacked upward-fining cycles are attributed to alternating subaerial exposure and fluvial influx followed by marine inundation, probably related to absolute sea level fluctuations. Lack of high-order vegetation on the Archean landscape promoted rapid lateral migration or avulsion of tidally influenced fluvial channels.

The association of facies within the 100–130 m-thick upward-fining succession is comparable to Holocene and ancient paleovalley fills characterized by basal alluvial gradational upwards into estuarine facies. However, in the absence of vegetation, the land–ocean interface in the Archean probably consisted of laterally extensive fan or braid deltas rather than point sources of sediment characteristic of most modern rivers. The abrupt up-section change from syntectonic, high-energy, alluvial–fluvial flash flood deposits to tide-influenced sedimentation implies a proximal source that provided sediment to a shoreline influenced by strong tidal action. Possible Holocene analogues are orogenic settings such as the Canterbury Plains of New Zealand, the Indo-Gangetic Plains of India and strike-slip settings such as the Gulf of Aqaba but all three examples lack a direct transition to tidally influenced sedimentation.  相似文献   


2.
The study deals with the depositional environment of Jumara Dome sediments. The Jumara Dome is an important outcrop of Bathonian to Oxfordian sediments amongst the Kachchh Mainland exposures. On the basis of facies analysis three associations have been documented, namely, G-1 consisting of low energy facies comprising of cross-bedded sandstone, massive sandstone, grey shale and thin bedded sandstone, bioclastic — lithoclastic grainstone, bioclastic — lithoclastic packstone, microbioclastic packstone/wackestone, bioturbated laminated wackestone to mudstone and pelagic lime mudstone; G-II consisting of moderate energy facies comprising of laminated sandstone and grapestone or agglutinated grainstone; G-III consisting of high energy facies comprising of interbedded gypsiferous shale and sandstone/siltstone, oolitic grainstone to conglomerate and bioclastic grainstone. The facies associations reflect an ideal shallowing upward sequence representing slope, bioclast bar, lagoon and inner shelf. Presence of wide range of facies indicates that the rocks of the studied area were deposited during the fluctuating sea level, interrupted by the storms, in the shallow marine environment.  相似文献   

3.
Depositional models that use heterogeneity in mud‐dominated successions to distinguish and diagnose environments within the offshore realm are still in their infancy, despite significant recent advances in understanding the complex and dynamic processes of mud deposition. Six cored intervals of the main body of the Mancos Shale, the lower Blue Gate Member, Uinta Basin, were examined sedimentologically, stratigraphically and geochemically in order to evaluate facies heterogeneity and depositional mechanisms. Unique sedimentological and geochemical features are used to identify three offshore environments of deposition: the prodelta, the mudbelt and the sediment‐starved shelf. Prodelta deposits consist of interlaminated siltstone and sandstone and exhibit variable and stressed trace fossil assemblages, and indicators of high sedimentation rates. The prodelta was dominated by river‐fed hyperpycnal flow. Mudbelt deposits consist of interlaminated siltstone and sandstone and are characterized by higher bioturbation indices and more diverse trace fossil assemblages. Ripples, scours, truncations and normally graded laminations are abundant in prodelta and mudbelt deposits indicating dynamic current conditions. Mudbelt sediment dispersal was achieved by both combined flow above storm wave base and current‐enhanced and wave‐enhanced sediment gravity flows below storm wave base. Sediment‐starved shelf deposits are dominantly siltstone to claystone with the highest calcite and organic content. Bioturbation is limited to absent. Sediment‐starved shelf deposits were the result of a combination of shelfal currents and hypopycnal settling of sediment. Despite representing the smallest volume, sediment‐starved shelf deposits are the most prospective for shale hydrocarbon resource development, due to elevated organic and carbonate content. Sediment‐starved shelf deposits are found in either retrogradational to aggradational parasequence sets or early distal aggradational to progradational parasequence sets, bounding the maximum flooding surface. An improved framework classification of offshore mudstone depositional processes based on diagnostic sedimentary criteria advances our predictive ability in complex and dynamic mud‐dominated environments and informs resource prospectivity.  相似文献   

4.
Integrated ichnological and sedimentological analyses of core samples from the Upper Jurassic Ula Formation in the Norwegian Central Graben were undertaken to quantify the influence of storm waves on sedimentation. Two main facies associations (offshore and shoreface) that form a progradational coarsening upward succession are recognizable within the cores. The offshore deposits are characterized by massive to finely laminated mudstones and fine‐grained sandstones, within a moderately to highly bioturbated complex. The trace fossil assemblage is dominated by deposit‐feeding structures (for example, Planolites, Phycosiphon and Rosselia) and constitutes an expression of the proximal Zoophycos to distal Cruziana ichnofacies. The absence of grazing behaviours and dominance of deposit‐feeding ichnofossils is a reflection of the increased wave energies present (i.e. storm‐generated currents) within an offshore setting. The shoreface succession is represented by highly bioturbated fine‐grained to medium‐grained sandstones, with intervals of planar and trough cross‐bedding, thin pebble lags and bivalve‐rich shell layers. The ichnofossil assemblage, forming part of the Skolithos ichnofacies, is dominated by higher energy Ophiomorpha nodosa ichnofossils and lower energy Ophiomorpha irregulaire and Siphonichnus ichnofossils. The presence of sporadic wave‐generated sedimentary structures and variability in ichnofossil diversity and abundance attests to the influence of storm‐generated currents during deposition. As a whole, the Ula Formation strongly reflects the influence of storm deposits on sediment deposition; consequently, storm‐influenced shoreface most accurately describes these depositional environments.  相似文献   

5.
The Kaskapau Formation spans Late Cenomanian to Middle Turonian time and was deposited on a low‐gradient, shallow, storm‐dominated muddy ramp. Dense well log control, coupled with exposure on both proximal and distal margins of the basin allows mapping of sedimentary facies over about 35 000 km2. The studied portion of the Kaskapau Formation is a mudstone‐dominated wedge that thins from 700 m in the proximal foredeep to 50 m near the forebulge about 300 km distant. Regional flooding surfaces permit mapping of 28 allomembers, each of which represent an average of ca 125 kyr. More than 200 km from shore, calcareous silty claystone predominates, whereas 100 to 200 km offshore, mudstone and siltstone predominate. From about 30 to 100 km offshore, centimetre‐bedded very fine sandstone and mudstone record along‐shelf (SSE)‐directed storm‐generated geostrophic flows. Five to thirty kilometres from shore, decimetre‐bedded hummocky cross‐stratified fine sandstone and mudstone record strongly oscillatory, wave‐dominated flows whereas some gutter casts indicate shore‐oblique, apparently mostly unidirectional geostrophic flows. Nearshore facies are dominated by swaley cross‐stratified or intensely bioturbated clean fine sandstone, interpreted as recording, respectively, areas strongly and weakly affected by discharge from distributary mouths. Shoreface sandstones grade locally into river‐mouth conglomerates and sandstones, including conglomerate channel‐fills up to 15 m thick. Locally, brackish lagoonal shelly mudstones are present on the extreme western margin of the basin. There is no evidence for clinoform stratification, which indicates that the Kaskapau sea floor had extremely low relief, lacked a shelf‐slope break, and was probably nowhere more than a few tens of metres deep. The absence of clinoforms probably indicates a long‐term balance between rates of accommodation and sediment supply. Mud is interpreted to have been transported >250 km offshore in a sea‐bed nepheloid layer, repeatedly re‐suspended by storms. Fine‐grained sediment accumulated up to a ‘mud accommodation envelope’, perhaps only 20 to 40 m deep. Continuous re‐working of the sea floor by storms ensured that excess sediment was redistributed away from areas that had filled to the ‘accommodation envelope’, being deposited in areas of higher accommodation further down the transport path. The facies distributions and stratal geometry of the Kaskapau shelf strongly suggest that sedimentary facies, especially grain‐size, were related to distance from shore, not to water depth. As a result, the ‘100 to >300 m’ depth interpreted from calcareous claystone facies for the more central parts of the Interior Seaway, might be a significant overestimate.  相似文献   

6.
The modern Eel River shelf and analogous Pleistocene Rio Dell Formation in northern California provide an ideal opportunity to combine the advantages of studying a modern environment with those of studying an ancient sequence, and thereby enables further understanding of muddy-shelf processes. The modern shelf is the site of accumulation of a thick deposit of Holocene mud. Both large-scale sediment distribution patterns and small-scale stratigraphy on the shelf indicate that river floods play an important role in sediment accumulation, even on a high-energy, ‘storm-dominated’ coast. The major factors in preservation of this flood ‘signature’ are the cohesive behaviour of fine-grained sediments and episodically rapid rates of sediment input. The Rio Dell Formation includes approximately 400 m of mostly fine-grained shelf deposits that accumulated offshore from a palaeo-Eel River mouth. The shelf sediments comprise four depositional sequences. Sequence 1 records progradation from outer to inner shelf depths. Facies trends closely resemble across-shelf trends on the modern shelf, suggesting that processes were similar. Detailed examination of these deposits provides insight into the nature and role of various processes on both the ancient and modern shelf. Muddy facies of the Rio Dell sequence are characterized by bioturbated, clayey silts, interbedded with event layers of several types. Clay-rich silt layers are interpreted as flood deposits and physically stratified, coarse-silt layers are interpreted to record transport and deposition of coarse silt on the midshelf during storms. Sediment-transport calculations and consideration of grain-size distributions of bioturbated sediments, which form the bulk of the Rio Dell sequence, suggest that these sediments are the result of biological homogenization of the fine-grained flood deposits and of the coarser-grained storm deposits. The results of this study in general indicate that fine-grained shelf deposits do preserve a distinguishable, if subtle, record of depositional processes.  相似文献   

7.
The Upper Cretaceous part of the Great Valley Sequence provides a unique opportunity to study deep-marine sedimentation within an arc-trench gap. Facies analysis delineates submarine fan facies similar to those described from other ancient basins. Fan models and facies of Mutti and Ricci-Lucchi allow reconstruction of the following depositional environments: basin plain, outer fan, midfan, inner fan, and slope. Basin plain deposits are characterized by hemipelagic mudstone with randomly interbedded thin sandstone beds exhibiting distal turbidite characteristics. Outer fan deposits are characterized by regularly interbedded sandstone and mudstone, and commonly exhibit thickening-upward (negative) cycles that constitute depositional lobes. The sandstone occurs as proximal to distal turbidites without channeling. Midfan deposits are characterized by the predominance of coarse-grained, thick, channelized sandstone beds that commonly are amalgamated. Thinning-upward (positive) cycles and braided channelization also are common. Inner fan deposits are characterized by major channel-fill complexes (conglomerate, pebbly sandstone, and pebbly mudstone) enclosed in mudstone and siltstone. Positive cycles occur within these channel-fill complexes. Much of the fine-grained material consists of levee (overbank) deposits that are characterized by rhythmically interbedded thin mudstone and irregular sandstone beds with climbing and starved ripples. Slope deposits are characterized by mudstone with little interbedded sandstone; slumping and contortion of bedding is common. Progressions of fan facies associations can be described as retrogradational and progradational suites that correspond, respectively, to onlapping and offlapping relations in the basin. The paleoenvironments, fan facies associations, and tectonic setting of the Late Cretaceous fore-arc basin are similar to those of modern arc—trench systems.  相似文献   

8.
The Gongila Formation in the Hawal Basin displays lithological characteristics, textural variations and sedimentary structures that facilitate palaeoenvironmental reconstruction. The 41 m thick Gongila succession is divisible into: (i) a mudstone facies association (at the bottom) composed of fossiliferous limestone, clay shale, and sharp-based, graded and swaly-bedded shell debris; and (ii) a cross-stratified sandstone facies association that constitutes the uppermost 60% of the entire succession. The cross-stratified sandstone facies association is further subdivided, on the basis of sedimentary structures, into: (i) a lower interval represented by a coarsening upward fine- to medium-grained sandstone, siltstone and shale in which units characterised by parallel lamination and hummocky cross-stratification pass upward through a zone of small-scale low angle cross-stratification into units characterised by planar cross-stratification and sparse Teichichnus and Skolithos burrow traces; and (ii) an upper interval dominated by fine- to medium-grained sandstone and bioturbated siltstone characterised by erosive based, high angle tangential foresets, subhorizontal laminations and burrow structures belonging to the Thalassinoides, Ophiomorpha and Skolithos ichnogenera.The overall sequence of the Gongila Formation represents progradation on a wave influenced coast, passing from shelf mudstone at the base to lower and upper shoreface sandstones at the top. Each facies association displays an alternation between relatively high energy conditions when sediment was mainly deposited by decelerating suspension laden currents, and relatively low energy conditions when wave reworked fine-grained sediment as it was deposited from suspension. The influence of storms in these conditions is inferred from the associated lithofacies, textural characteristics and sedimentary structures.  相似文献   

9.
Pliocene age deposits of the palaeo‐Orinoco Delta are evaluated in the Mayaro Formation, which crops out along the western margin of the Columbus Basin in south‐east Trinidad. This sandstone‐dominated interval records the diachronous, basinwards migration of the shelf edge of the palaeo‐Orinoco Delta, as it prograded eastwards during the Pliocene–Pleistocene (ca 3·5 Ma). The basin setting was characterized by exceptionally high rates of growth‐fault controlled sediment supply and accommodation space creation resulting in a gross basin‐fill of around 12 km, with some of the highest subsidence rates in the world (ca 5 to 10 m ka?1). This analysis demonstrates that the Mayaro Formation was deposited within large and mainly wave‐influenced shelf‐edge deltas. These are manifested as multiple stacks of coarsening upward parasequences at scales ranging from tens to hundreds of metres in thickness, which are dominated by storm‐influenced and wave‐influenced proximal delta‐front sandstones with extensive, amalgamated swaley and hummocky cross‐stratification. These proximal delta‐front successions pass gradationally downwards into 10s to 100 m thick distal delta front to mud‐dominated upper slope deposits characterized by a wide variety of sedimentary processes, including distal river flood and storm‐related currents, slumps and other gravity flows. Isolated and subordinate sandstone bodies occur as gully fills, while extensive soft sediment deformation attests to the high sedimentation rates along a slope within a tectonically active basin. The vertical stratigraphic organization of the facies associations, together with the often cryptic nature of parasequence stacking patterns and sequence stratigraphic surfaces, are the combined product of the rapid rates of accommodation space creation, high rates of sediment supply and glacio‐eustasy in the 40 to 100 Ka Milankovitch frequency range. The stratigraphic framework described herein contrasts strikingly with that described from passive continental margins, but compares favourably to other tectonically active, deltaic settings (for example, the Baram Delta Province of north‐west Borneo).  相似文献   

10.
The Lower Permian Wasp Head Formation (early to middle Sakmarian) is a ~95 m thick unit that was deposited during the transition to a non‐glacial period following the late Asselian to early Sakmarian glacial event in eastern Australia. This shallow marine, sandstone‐dominated unit can be subdivided into six facies associations. (i) The marine sediment gravity flow facies association consists of breccias and conglomerates deposited in upper shoreface water depths. (ii) Upper shoreface deposits consist of cross‐stratified, conglomeratic sandstones with an impoverished expression of the Skolithos Ichnofacies. (iii) Middle shoreface deposits consist of hummocky cross‐stratified sandstones with a trace fossil assemblage that represents the Skolithos Ichnofacies. (iv) Lower shoreface deposits are similar to middle shoreface deposits, but contain more pervasive bioturbation and a distal expression of the Skolithos Ichnofacies to a proximal expression of the Cruziana Ichnofacies. (v) Delta‐influenced, lower shoreface‐offshore transition deposits are distinguished by sparsely bioturbated carbonaceous mudstone drapes within a variety of shoreface and offshore deposits. Trace fossil assemblages represent distal expressions of the Skolithos Ichnofacies to stressed, proximal expressions of the Cruziana Ichnofacies. Impoverished trace fossil assemblages record variable and episodic environmental stresses possibly caused by fluctuations in sedimentation rates, substrate consistencies, salinity, oxygen levels, turbidity and other physio‐chemical stresses characteristic of deltaic conditions. (vi) The offshore transition‐offshore facies association consists of mudstone and admixed sandstone and mudstone with pervasive bioturbation and an archetypal to distal expression of the Cruziana Ichnofacies. The lowermost ~50 m of the formation consists of a single deepening upward cycle formed as the basin transitioned from glacioisostatic rebound following the Asselian to early Sakmarian glacial to a regime dominated by regional extensional subsidence without significant glacial influence. The upper ~45 m of the formation can be subdivided into three shallowing upward cycles (parasequences) that formed in the aftermath of rapid, possibly glacioeustatic, rises in relative sea‐level or due to autocyclic progradation patterns. The shift to a parasequence‐dominated architecture and progressive decrease in ice‐rafted debris upwards through the succession records the release from glacioisostatic rebound and amelioration of climate that accompanied the transition to broadly non‐glacial conditions.  相似文献   

11.
以珠江口盆地白云凹陷钻井、测井、地震和古生物资料为基础,结合前人研究成果,系统的分析了白云凹陷晚渐新统到早中新统沉积相发育特征及凹陷沉积充填演化过程。研究结果表明,珠海组下部发育大型陆架边缘三角洲沉积,地震反射特征表明该三角洲发育三期;钻遇水下分支河道、支流间湾、河口坝及远砂坝微相,沉积物以富砂为特征,发育冲刷-充填构造、递变层理及较粗的水平潜穴等多种构造;珠海组上部为浅海相,沉积物以海相砂泥岩互层为主,此时期陆架坡折带位于白云凹陷南坡;珠江组沉积时期,海平面升降旋回频繁,陆架坡折带迁至凹陷北坡。随着古珠江流域扩大,沉积物输入量增加,在珠江组下部发育了深水扇,沉积物以细-粗砂岩为主,夹少量粉砂岩及深海泥岩,发育颗粒流、液化流、浊流及碎屑流等四种主要的重力流,钻遇内扇水道,中扇废弃水道及水道间漫溢沉积,外扇深海泥沉积;珠江组上部为半深海相,沉积物以深海泥岩为主。   相似文献   

12.
S.J. MAZZULLO 《Sedimentology》2006,53(5):1015-1047
Lithostratigraphy, depositional facies architecture, and diagenesis of upper Pliocene to Holocene carbonates in northern Belize are evaluated based on a ca 290 m, continuous section of samples from a well drilled on Ambergris Caye that can be linked directly to outcrops of Pleistocene limestone, and of overlying Holocene sediments. Upper Pliocene outer‐ramp deposits are overlain unconformably by Pleistocene and Holocene reef‐rimmed platforms devoid of lowstand siliciclastics. Tectonism controlled the location of the oldest Pleistocene platform margin and coralgal barrier reef, and periodically affected deposition in the Holocene. A shallow, flat‐topped, mostly aggradational platform was maintained in the Holocene by alternating periods of highstand barrier‐reef growth and lowstand karstification, differential subsidence, and the low magnitude of accommodation space increases during highstands. Facies in Pleistocene rocks to the lee of the barrier reef include: (i) outer‐shelf coralgal sands with scattered coral patch reefs; (ii) a shoal–water transition zone comprising nearshore skeletal and oolitic sands amidst scattered islands and tidal flats; and (iii) micritic inner‐shelf deposits. Four glacio‐eustatically forced sequences are recognized in the Pleistocene section, and component subtidal cycles probably include forced cycles and autocycles. Excluding oolites, Holocene facies are similar to those in the Pleistocene and include mud‐mounds, foraminiferal sand shoals in the inner shelf, and within the interiors of Ambergris and surrounding cayes, mangrove swamps, shallow lagoons, and tidal and sea‐marginal flats. Meteoric diagenesis of Pliocene and Pleistocene rocks is indicated by variable degrees of mineralogic stabilization, generally depleted whole‐rock δ18O and δ13C values, and meniscus and whisker‐crystal cements. Differences in the mineralogy and geochemistry of the Pliocene and Pleistocene rocks are attributed to variable extent of meteoric alteration. Dolomitization in the Pliocene carbonates may have begun syndepositionally and continued into the marine shallow‐burial environment. Positive dolomite δ18O and δ13C values suggest precipitation from circulating, near‐normal marine fluids that probably were modified somewhat by methanogenesis. Sedimentologic and diagenetic attributes of the Pliocene–Pleistocene rocks in the study area are similar to those in the Bahamas with which they share a common history of sea‐level fluctuations and climate change.  相似文献   

13.
The Quilalar Formation and correlative Mary Kathleen Group in the Mount Isa Inlier, Australia, conformably overlie rift-related volcanics and sediments and non-conformably overlie basement rocks. They represent a thermal-relaxation phase of sedimentation between 1780 and 1740 Ma. Facies analysis of the lower siliciclastic member of the Quilalar Formation and the coeval Ballara Quartzite permits discrimination of depositional systems that were restricted areally to either N-S-trending marginal platform or central trough palaeogeographic settings. Four depositional systems, each consisting of several facies, are represented in the lower Quilalar Formation-Ballara Quartzite; these are categorized broadly as storm-dominated shelf (SDS), continental (C), tide-dominated shelf (TDS) and wave-dominated shoreline (WDS). SDS facies consist either of black pyritic mudstone intervals up to 10 m thick, or mudstone and sandstone associated in 6–12-m-thick, coarsening-upward parasequences. Black mudstones are interpreted as condensed sections that developed as a result of slow sedimentation in an outer-shelf setting starved of siliciclastic influx. Vertical transition of facies in parasequences reflects flooding followed by shoaling of different shelf subenvironments; the shoreface contains evidence of subaerial exposure. Continental facies consist of fining-upward parasequences of fluvial origin and tabular, 0·4–4-m-thick, aeolian parasequences. TDS facies are represented by stacked, tabular parasequences between 0·5 and 5 m thick. Vertical arrangement of facies in parasequences reflects flooding and establishment of a tidal shelf followed by shoaling to intertidal conditions. WDS facies are preserved in 0·5–3-m-thick, stacked, tabular parasequences. Vertical transition of facies reflects initial flooding with wave reworking of underlying arenites along a ravinement surface, followed by shoaling from lower shoreface to foreshore conditions. Parasequences are stacked in retrogradational and progradational parasequence sets. Retrogradational sets consist of thin SDS parasequences in the trough, and C, TDS and probably WDS parasequences on the platforms. Thick SDS parasequences in the trough, and TDS, subordinate C and probably WDS parasequences on the platforms make up progradational parasequence sets. Depositional systems are associated in systems tracts that make up 40–140-m-thick sequences bounded by type-2 sequence boundaries that are disconformities. Transgressive systems tracts consist of C, TDS and probably WDS depositional systems on the platforms and the SDS depositional system and suspension mudstone deposits in the trough. The transgressive systems tract is characterized by retrogradational parasequence sets and developed in response to accelerating rates of sea-level rise following lowstand. Condensed-section deposits in the trough, and the thickest TDS parasequences on the platforms reflect maximum rates of sea-level rise and define maximum flooding surfaces. Highstand systems tract deposits are progradational. Early highstand systems tracts are represented by TDS and probably WDS depositional systems on the platforms and suspension mudstone deposits in the trough and reflect decreasing rates of sea-level rise. Later highstand systems tracts consist of the progradational SDS depositional system in the trough and, possibly, thin continental facies on the platforms. This stage of sequence development is related to slow rates of sea-level rise, stillstand and slow rates of fall. Lowstand deposits of shelf-margin systems tracts are not recognized but may be represented by shoreface deposits at the top of progradational SDS parasequence sets.  相似文献   

14.
摘 要湖南省桂阳县莲塘镇石龙村上泥盆统锡矿山组以台地相灰岩、白云质灰岩、灰质白云岩为主。该组下部发育典型的风暴岩沉积。风暴沉积标志包括:渠铸型、竹叶状砾屑放射状组构、丘状或洼状交错层理、平行层理、递变层理、块状层理。风暴岩包括4种岩相类型:A-具块状层理的“竹叶状”砾屑灰岩(底部为冲刷侵蚀面或冲刷渠),B-具递变层理的砾屑灰岩,C-具丘状、洼状交错层理的砂屑灰岩,D-具均质或水平层理的泥状灰岩。它们组成4种典型的风暴沉积序列:A—D序列、A—C—D序列、B—C—D序列、B—D序列。湘东南上泥盆统风暴岩的首次发现表明晚泥盆世该区位于低纬度的风暴作用带,它对认识泥盆纪的古气候具有重要意义.  相似文献   

15.
Jeju Island is a Quaternary shield volcano built upon the Yellow Sea continental shelf off the Korean Peninsula. Decades of borehole drilling reveals that the shield‐forming lavas of the island are underlain by extensive hydrovolcanic deposits (the Seoguipo Formation), which are about 100 m thick and show diverse depositional features. This study provides criteria for distinguishing between hydrovolcanic deposits formed by primary (pyroclastic) and secondary (resedimentation) processes in subaerial and submarine settings based on the observations of several selected cores from the formation. Five facies associations are identified, including: (i) primary hydrovolcanic deposits formed by pyroclastic surges and co‐surge fallouts in tuff rings (facies association PHTR); (ii) primary hydrovolcanic deposits formed by Surtseyan fallout and related pyroclastic transport processes in tuff cones (facies association PHTC); (iii) secondary hydrovolcanic deposits formed by debris flows, hyperconcentrated flood flows, sheet floods and rill flows in subaerial settings (facies association RHAE); (iv) secondary hydrovolcanic deposits formed in submarine settings under the influence of waves, tides and occasional mass flows (facies association RHMAR); and (v) non‐volcaniclastic and fine‐grained deposits formed in nearshore to offshore settings (facies association NVMAR). The primary hydrovolcanic facies associations (PHTR and PHTC) are distinguished from one another on the basis of distinct lithofacies characteristics and vertical sequence profiles. These facies differ from the secondary hydrovolcanic and non‐volcaniclastic facies associations (RHAE, RHMAR and NVMAR) because of their distinctive sedimentary structures, textures and compositions. The depositional processes and settings of some massive and crudely stratified volcaniclastic deposits, which occur in many facies associations, could not be discriminated unambiguously even with microscopic observations. Nevertheless, these facies associations could generally be distinguished because they occur typically in packets or sequences, several metres to tens of metres thick and bounded by distinct stratigraphic discontinuities, and comprise generally distinct sets of lithofacies. The overall characteristics of the Seoguipo Formation suggest that it is composed of numerous superposed phreatomagmatic volcanoes intercalated with marine or non‐marine, volcaniclastic or non‐volcaniclastic deposits. Widespread and continual hydrovolcanic activity, together with volcaniclastic sedimentation, is inferred to have persisted for more than a million years in Jeju Island under the influence of fluctuating Quaternary sea‐levels, before effusion of the shield‐forming lavas. Extensive distribution of hydrovolcanic deposits in the subsurface of Jeju Island highlights that there can be significant differences in the eruption style, growth history and internal structure between shelfal shield volcanoes and oceanic island volcanoes.  相似文献   

16.
Dunes and bars are common elements in tide‐dominated shelf settings. However, there is no consensus on a unifying terminology or a systematic classification for thick sets of cross‐stratified sandstones. In addition, their ichnological attributes have hardly been explored. To address these issues, the properties, architecture and ichnology of compound cross‐stratified sandstone bodies contained in the Lower Cambrian Gog Group of the southern Canadian Rocky Mountains are described here. In these transgressive sandstones, five types of compound cross‐stratified sandstone are distinguished based on foreset geometry, sedimentary structures and internal heterogeneity. These represent four broad categories of subtidal sandbodies: (i) compound‐dune fields; (ii) sand sheets; (iii) sand ridges; and (iv) isolated dune patches; tidal bars comprise a fifth category but are not present in the Gog Group. Compound‐dune fields are characterized by sigmoidal and planar cross‐stratified sandstone in coarsening‐upward and thickening‐upward packages (Type 1); these are mostly unburrowed, or locally contain representatives of the Skolithos ichnofacies, but are intercalated with intensely bioturbated sandstone containing the archetypal Cruziana ichnofacies. Sand‐sheet complexes, also composed of compound dunes, cover more extensive subtidal areas, and comprise three adjacent subenvironments: core, front and margin. The core is characterized by thick‐bedded sets of cross‐stratified sandstone (Type 2). A decrease of bedform size at the front is recorded by wedges of thinner‐bedded, low‐angle and planar cross‐stratified sandstone (Type 3) exhibiting dense Skolithos pipe‐rock ichnofabric. The margin is characterized by interbedded sandstone and mudstone, and hummocky cross‐stratified sandstone. Sand‐sheet deposits exhibit clear trends in trace‐fossil distribution along the sediment transport path, from non‐bioturbated beds in the core to Skolithos ichnofacies at the front, and a depauperate Cruziana ichnofacies at the margin. Tidal sand ridges are large elongate sandbodies characterized by large sigmoid‐shaped reactivation surfaces (Type 4). Sand ridges display clear ichnological trends perpendicular to the axis of the ridge, with no bioturbation or a poorly developed Skolithos ichnofacies in the core, a depauperate Cruziana ichnofacies in lee‐side deposits, and Cruziana ichnofacies at the margin. While both tidal ridges and tidal bars migrate by means of lateral accretion, the latter occur in association with channels while the former do not. Because tidal bars tend to occur in brackish‐water marginal‐marine settings, their ichnofauna are typically of low diversity, representing a depauperate Cruziana ichnofacies. Isolated dune patches developed on sand‐starved areas of the shelf, and are represented by lenticular sandbodies with sigmoidal reactivation surfaces (Type 5); they typically lack trace fossils, but the interfingering muddy deposits are intensely bioturbated by a high‐diversity fauna recording the Cruziana ichnofacies. The variety of sandbody types in the Gog Group reflects varying sediment supply and location on the inner continental shelf. These, in turn, governed substrate mobility, grain size, turbidity, water‐column productivity and sediment organic matter which controlled trace fossil distribution.  相似文献   

17.
Shallow marine deposits comprising the Silurian Gray Sandstone Formation (GSF) exhibit pronounced process regime changes through time. The formation was deposited on the southern shelf of the Lower Palaeozoic Welsh Basin (UK), and conformably overlies the Coralliferous Formation. The basal Lithofacies Assemblage A (of Sheinwoodian age) is dominated by a storm‐dominated process regime, comprising shoreface and offshore shelf facies associations. The overlying Lithofacies Assemblage B records a mixed process regime, with units being deposited under both storm‐ and tide‐influenced conditions. Tidal‐influence prevailed during deposition of the overlying Lithofacies Assemblage C, with proximal to distal facies variations across a significant tide‐influenced river delta being observed. A return to storm‐dominated shoreface conditions is seen in the succeeding Lithofacies Assemblage D. Lithofacies Assemblage E (Homerian age) records the return of a tide‐influenced river delta to the area, prior to the conformable transition into the overlying Old Red Sandstone (ORS) Red Cliff Formation (of Ludlow age). Northward thickening of the formation across southern Pembrokeshire into the Musselwick Fault indicates a tectonic control on sedimentation, the formation infilling accommodation space developed in an intra‐shelf half‐graben. Recurring changes in process regime from storm‐ to tide‐influenced sedimentation may be related to the onset and subsequent cessation of tidal resonance in sub‐basins across the shelf area which itself was probably controlled by episodic tectonism. It is proposed that the Coralliferous and Gray Sandstone formations comprise the newly erected Marloes Group. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The Lower Cambrian Chilhowee Group of northeastern Tennessee consists of the Unicoi, Hampton and Erwin Formations, and is divided into four facies. The conglomerate facies occurs only within the lower 200 m of measured section (the Unicoi Formation) and consists of fine-grained to pebbly quartz wacke with rare thin beds of laminated siltstone. Low-angle to horizontally laminated, fine-grained sandstone with laminae and lenses of granules and pebbles represents upper flow-regime, overbank deposition within a braided stream system that was close to a coastline. Medium-scale, planar-tabular cross-stratified conglomerate in which megaripple bedforms are preserved is interpreted as representing deposition in interbar pools of braided channels, as flood stage waned and larger bedforms ceased to migrate. Large-scale, planar-tabular cross-stratified conglomerate beds represent migration of large transverse bars within a broad braided stream channel during high flood stage. The sandstone facies occurs throughout the Chilhowee Group, and is therefore interbedded with all other facies. It consists of mainly medium- to very coarse-grained, subarkosic to arkosic arenite. Thinly interbedded, laminated siltstone and sandstone, which may exhibit wavy or lenticular bedding, represents deposition during slack water periods between ebb and flood tides. Large-scale planar-tabular and trough cross-stratification reflects deposition within the deepest areas of subtidal channels, whereas medium-scale cross-stratification represents deposition in shallower water on shoals separating channels. Fining- and thinning-upward sequences most likely resulted from the longshore migration of channels and shoals. The hummocky facies occurs only in the Erwin Formation and consists of horizontally laminated to hummocky stratified, fine-grained arkosic to subarkosic arenite interbedded with equal amounts of bioturbated mudstone. It represents deposition between storm and fairweather wave-base by combined-flow storm currents. The quartz arenite facies is characterized by an absence of fine-grained units and lithologically consists of a super-mature, medium- to coarse-grained quartz arenite. Large-scale planar-tabular cross-stratification and abundant low-angle cross-stratification with rare symmetrical ripples (lower quartz arenite facies) occurs interbedded with the braided fluvial conglomerate facies, and was deposited within either a ridge-and-runnel system or a system of nearshore bars. Large-scale, planar-tabular cross-stratification (upper quartz arenite facies), which forms the top of two 40 m-thick coarsening-upward sequences of the type: hummocky faciessandstone faciesquartz arenite facies, probably represents deposition on sand ridges that formed on a sand-starved shelf as transgression caused the detachment and reworking of shoreface channel-shoal couplets. Palaeocurrent data for the Chilhowee Group are unimodal but widely dispersed from 0° to 180°, and exhibit a minor mode to the west. The data are interpreted to reflect the influence of longshore, tidal and storm currents. The ichnofossil assemblage changes upsection from one characterized only by Paleophycus to a Skolithos ichnofacies and finally to a Cruziana ichnofacies. The facies sequence, biogenic and palaeocurrent data reflect the interaction through time of (I) non-marine and marine processes; and (2) transgression coupled with shoreline progradation. The Chilhowee Group represents an overall deepening from terrestrial deposition to a marine shoreface that experienced both longshore and tidal currents, and finally to a storm shelf environment that periodically shoaled upward.  相似文献   

19.
The southern margin of the vast Yangtze platform in central Guizhou Province, China, retreated during the Anisian (early Middle Triassic) by shedding skeletal debris and boundstone blocks into the margin of the adjacent basin. Anisian platform deposits are shoaling-up cycles that commonly terminated in subaerial exposure. Platform-margin facies are obscured by massive dolomitization and mechanical erosion. Distal basin deposits are terrigenous mudstone and siltstone. At the basin margin a wedge of mixed carbonate and terrigenous rocks consists of (A) thin-bedded dolostone and limestone, (B) lime breccia with thin-bedded mudstone, and (C) lime mudstone with breccia. Blocks within the breccias indicate that the shelf margin contained extensive boundstone formed by ‘Tubiphytes,’encrusting organisms, and early marine cement. Interspersed thin beds of skeletal packstone represent unlithified skeletal debris at the platform margin. The profile of the shelf margin from detailed mapping indicates 1.7–2.7 km of platform-margin retreat during deposition of a basin-margin wedge 250 m thick. Intertonguing of various basin-margin facies reflects alternating minor episodes of advance and retreat of the margin. Near-parallelism of the tongues suggests low relief at the platform margin. An upward stratigraphic progression to more distal, carbonate-free, terrigenous basin facies indicates a cessation of carbonate production on the platform owing to emergence during early Anisian time. Retreat may have occurred entirely by collapse of blocks less than 100 m wide and 30 m thick, the largest observed dimensions. A re-entrant in the margin 7 km wide and 10 km deep could also reflect collapse. Retreat occurred along 175 km of the platform margin. The lack of platform-margin facies along this front suggests 3–7 km of retreat and a total area of 875 km2. The Anisian platform-margin retreat in Guizhou is one of relatively few examples of platform-margin retreat in the geological record.  相似文献   

20.
Cross‐bedded grainstones on carbonate ramps and shelves are commonly related to the locus of major wave energy absorption such as shorelines, shoals or shelf breaks. In contrast, on the Early Tortonian carbonate platform of Menorca (Balearic Islands), coarse‐grained, cross‐bedded grainstones are found at a distance from the palaeoshoreline where they were deposited below the wavebase. Excellent exposures along continuous outcrops on the sea cliffs of Menorca reveal the depositional profile and three‐dimensional distribution of the different facies belts of the Tortonian ramp depositional system. Basinward from the palaeoshoreline, fan deltas and beach deposits pass into 5‐km‐wide gently dipping bioturbated dolopackstone (inner and middle ramp), then into 12–20°‐dipping dolograinstone/rudstone clinobeds (ramp slope) and, finally, into subhorizontal fine‐grained basinal dolowackestone to dolopackstone (outer ramp). In this Miocene example, coarse‐grained grainstones exist in five different settings other than beach deposits: (1) on the middle ramp, where cross‐bedded grainstones were deposited by currents roughly parallel to the shoreline at 40–70 m estimated water depth and are interbedded with gently dipping bioturbated dolomitized packstones; (2) on the upper slope, where clinobeds are composed mostly of in situ rhodoliths and red‐algae fragments; (3) on the lower slope, as small‐scale bedforms (small three‐dimensional subaqueous dunes) migrating parallel to the slope; (4) at the transition between the lower slope and the outer ramp, where mollusc‐rich and rhodolithic rudstones and grainstones, interbedded in dolomitized laminated wackestones containing abundant planktonic foraminifera, infill slide/slump scars as upslope‐backstepping bodies (backsets); (5) at the toe of the slope, where coarse skeletal grainstones indicate bedform migration parallel to the platform margin, induced by currents at more than 150 m estimated water depth. This Late Miocene example also illustrates how changes in intrabasinal environmental conditions (nutrients and/or temperature) may produce changes in stratal patterns and facies architecture if they affect the biological system. Two depositional sequences compose the Miocene platform on Menorca, where a reef‐rimmed platform prograded onto an earlier distally steepened ramp. The transition from the ramp to the reef‐rimmed platform was effected by an increase in accommodation space caused by ecological changes, promoting a shift from a grain‐ to a framework‐producing biota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号