首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the last thirty years great strides have been made by large-scale operational numerical weather prediction models towards improving skills for the medium range time-scale of 7 days. This paper illustrates the use of these current forecasts towards the construction of a consensus multimodel forecast product called the superensemble. This procedure utilizes 120 of the recent-past forecasts from these models to arrive at the training phase statistics. These statistics are described by roughly 107 weights. Use of these weights provides the possibility for real-time medium range forecasts with the superensemble. We show the recent status of this procedure towards real-time forecasts for the Asian summer monsoon. The member models of our suite include ECMWF, NCEP/EMC, JMA, NOGAPS (US Navy), BMRC, RPN (Canada) and an FSU global spectral forecast model. We show in this paper the skill scores for day 1 through day 6 of forecasts from standard variables such as winds, temperature, 500 hPa geopotential height, sea level pressure and precipitation. In all cases we noted that the superensemble carries a higher skill compared to each of the member models and their ensemble mean. The skill matrices we use include the RMS errors, the anomaly correlations and equitable threat scores. For many of these forecasts the improvements of skill for the superensemble over the best model was found to be quite substantial. This real-time product is being provided to many interested research groups. The FSU multimodel superensemble, in real-time, stands out for providing the least errors among all of the operational large scale models.  相似文献   

2.
This study entails the implementation of an experimental real time forecast capability for tropical cyclones over the Bay of Bengal basin of North Indian Ocean. This work is being built on the experience gained from a number of recent studies using the concept of superensemble developed at the Florida State University (FSU). Real time hurricane forecasts are one of the major components of superensemble modeling at FSU. The superensemble approach of training followed by real time forecasts produces the best forecasts for tracks and intensity (up to 5 days) of Atlantic hurricanes and Pacific typhoons. Improvements in track forecasts of about 25–35% compared to current operational forecast models has been noted over the Atlantic Ocean basin. The intensity forecasts for hurricanes are only marginally better than the best models. In this paper, we address tropical cyclone forecasts over the Bay of Bengal for the years 1996–2000. The main result from this study is that the position and intensity errors for tropical cyclone forecasts over the Bay of Bengal from the multimodel superensemble are generally less than those of all of the participating models during 1- to 3-day forecasts. Some of the major tropical cyclones, such as the November 1996 Andhra Pradesh cyclone and October 1999 Orissa super cyclone were well handled by this superensemble approach. A conclusion from this study is that the proposed approach may be a viable way to construct improved forecasts of Bay of Bengal tropical cyclone positions and intensity.  相似文献   

3.
A number of physical factors have been introduced to improve limited area model forecasts. The factors include land surface fluxes, shallow convection and radiation. The model including these additional physical factors (modified physics) is run for five cases of monsoon depression which made landfall over the Indian coast, and the results are compared with those of the control run. The forecasts are verified by computing the root mean square and mean errors. The differences in these skill scores between the two model runs are tested for their statistical significance. It is found that the modified physics has a statistically significant effect on the model skill with the maximum impact on the mean sea level pressure and the temperature. Detailed analyses of mean sea level pressure, wind, rainfall and temperature further confirm that the modified physics has maximum impact on mean sea level pressure and temperature and marginal impact on wind and rainfall. Furthermore, analyses of some model parameters related to physics at a grid point for one case of depression were done. The results show that the inclusion of the land surface physics, shallow convection and radiative processes have produced a better precipitation forecast over the grid point.  相似文献   

4.
The temporal and spatial variability of the various meteorological parameters over India and its different subregions is high. The Indian subcontinent is surrounded by the complex Himalayan topography in north and the vast oceans in the east, west and south. Such distributions have dominant influence over its climate and thus make the study more complex and challenging. In the present study, the climatology and interannual variability of basic meteorological fields over India and its six homogeneous monsoon subregions (as defined by Indian Institute of Tropical Meteorology (IITM) for all the four meteorological seasons) are analysed using the Regional Climate Model Version 3 (RegCM3). A 22-year (1980–2001) simulation with RegCM3 is carried out to develop such understanding. The National Centre for Environmental Prediction/National Centre for Atmospheric Research, US (NCEP-NCAR) reanalysis 2 (NNRP2) is used as the initial and lateral boundary conditions. The main seasonal features and their variability are represented in model simulation. The temporal variation of precipitation, i.e., the mean annual cycle, is captured over complete India and its homogenous monsoon subregions. The model captured the contribution of seasonal precipitation to the total annual precipitation over India. The model showed variation in the precipitation contribution for some subregions to the total and seasonal precipitation over India. The correlation coefficient (CC) and difference between the coefficient of variation between model fields and the corresponding observations in percentage (COV) is calculated and compared. In most of the cases, the model could represent the magnitude but not the variability. The model processes are found to be more important than in the corresponding observations defining the variability. The model performs quite well over India in capturing the climatology and the meteorological process. The model shows good skills over the relevant subregions during a season.  相似文献   

5.
In this study, we present the mean seasonal features of the Indian summer monsoon circulation in the National Centre for Medium Range Weather Forecasting (NCMRWF) global data assimilation and forecast system. The large-scale budgets of heat and moisture are examined in the analyzed and model atmosphere. The daily operational analyses and forecasts (day 1 through day 5) produced for the summer seasons comprising June, July and August of 1995 and 1993 have been considered for the purpose. The principal aim of the study is two-fold. Primarily, to comprehend the influence of the systematic errors over the Indian summer monsoon, secondarily, to analyze the performance of the model in capturing the interseasonal variability. The heat and moisture balances show reduction in the influx of heat and moisture in the model forecasts compared to the analyzed atmosphere over the monsoon domain. Consequently, the diabatic heating also indicates reducing trend with increase in the forecast period. In effect, the strength of Indian summer monsoon, which essentially depends on these parameters, weakens considerably in the model forecasts. Despite producing feeble monsoon circulation, the model captures interseasonal variability realistically. Although, 1995 and 1993 are fairly normal monsoon seasons, the former received more rainfall compared to the latter in certain pockets of the monsoon domain. This is clearly indicated by the analyzed and model atmosphere in terms of energetics.  相似文献   

6.
During the field cruises of the Indian Ocean Experiment (INDOEX) extensive measurements on the atmospheric chemical and aerosol composition are undertaken to study the long-range transport of air pollution from south and southeast Asia towards the Indian Ocean during the dry monsoon season in 1998 and 1999. The present paper discusses the temporal and spatial variations in aerosols and aerosol forcing during the winter monsoon season (January-March) for INDOEX first field phase (FFP) in 1998 and INDOEX intensive field phase (IFP) in 1999. An interactive chemistry/aerosol model (LMDZ.3.3) is used to investigate the variation in the spatial distribution of tropospheric sulphate aerosols during 1998 and 1999. The model results depict major enhancement in the sulphate aerosol concentrations, radiative forcing (RF) and optical depth over the Indian subcontinent and adjoining marine areas between INDOEX-FFP and IFP. A significant increase in transport of sulphate aerosols from the continents to the Indian Ocean region has also been simulated during the winter monsoon in 1999. The mean RF over INDOEX-FFP in 1998 is found to be ?1.2 Wm–2 while it increased to ?1.85 Wm–2 during INDOEX-IFP in 1999. Model results reveal a mean sulphate aerosol optical depth (AOD) of 0.08 and 0.14 over Indian subcontinent during 1998 and 1999, respectively. The model results suggest that elevated AOD downwind of source regions in India can significantly affect the regional air quality and adjoining marine environments.  相似文献   

7.
The duration and extreme fluctuations of prolonged wet or dry spells associated with intraseasonal variability during extreme monsoon have devastating impacts on agrarian-based economy over Indian subcontinent. This study examines the potential predictability limit of intraseasonal transitions between rainy to non-rainy phases (i.e., active to break phases) or vice versa over central Indian region during extreme monsoon using very high-resolution (0.25° × 0.25°) daily rainfall datasets. The present study reveals that the transitions from both active to break and break to active conditions are more predictable by ~8 days during the weak monsoon (WM) years compared to the strong monsoon (SM) years. Such asymmetric behavior in the limit of predictability could be linked to the distinct differences in the large-scale seasonal mean background instability during SM and WM years. The achievability of such predictability is further evaluated in a state-of-the-art climate model, the climate forecast system (CFSv2). It is demonstrated that the observed asymmetry in predictability limit could be reproducible in the CFSv2 model, irrespective of its spatial resolution. This study provides impetus for useful dynamical prediction of wet/dry spells at extended range during the extreme monsoon years.  相似文献   

8.
Skilful prediction of the monthly and seasonal summer monsoon rainfall over India at a smaller spatial scale is a major challenge for the scientific community. The present study is aimed at achieving this objective by hybridising two mathematical techniques, namely synthetic superensemble (SSE) and supervised principal component regression (SPCR) on six state-of-the art Global Climate Models (GCMs). The performance of the mathematical model is evaluated using correlation analysis, the root mean square error, and the Nash–Sutcliffe efficiency index. Results feature reasonable improvement over central India, which is a zone of maximum rainfall activity in the summer monsoon season. The study also highlights improvement in the monthly prediction of rainfall over raw GCMs (15–20% improvement) with exceptional improvement in July. The developed model is also examined for anomalous years of monsoon and it is found that the model is able to capture the signs of anomalies over different gridpoints of the Indian domain.  相似文献   

9.
The circulation patterns over the Indian Ocean and the surrounding continents have been studied during June 2009 and July 2002 to explain the failure of Indian summer monsoon (ISM) rainfall. This study presents evidences that the failure of the ISM during these 2?months was probably due to the development of cyclonic circulation anomaly over the Western Asia and anticyclonic circulation anomalies downstream of Eastern Asia. These circulation anomalies were associated with the equatorward advection of cold air up to 10°N. This may be due to the equatorward intrusion of midlatitude Rossby waves. We hypothesize that the intrusion of midlatitude Rossby wave is responsible for breaking the east?Cwest circulation cell over the Indian region into two cells and weakening it. The weak east?Cwest cell reduces the strength of the easterly wind field usually present over the monsoonal region, thus reducing the cross-equatorial moisture transport into the Indian subcontinent and decreasing monsoon rainfall.  相似文献   

10.
The present study describes an analysis of Asian summer monsoon forecasts with an operational general circulation model (GCM) of the European Centre for Medium Range Weather Forecasts (ECMWF), U.K. An attempt is made to examine the influence of improved treatment of physical processes on the reduction of systematic errors. As some of the major changes in the parameterization of physical processes, such as modification to the infrared radiation scheme, deep cumulus convection scheme, introduction of the shallow convection scheme etc., were introduced during 1985–88, a thorough systematic error analysis of the ECMWF monsoon forecasts is carried out for a period prior to the incorporation of such changes i.e. summer monsoon season (June–August) of 1984, and for the corresponding period after relevant changes were implemented (summer monsoon season of 1988). Monsoon forecasts of the ECMWF demonstrate an increasing trend of forecast skill after the implementation of the major changes in parameterizations of radiation, convection and land-surface processes. Further, the upper level flow is found to be more predictable than that of the lower level and wind forecasts display a better skill than temperature. Apart from this, a notable increase in the magnitudes of persistence error statistics indicates that the monsoon circulation in the analysed fields became more intense with the introduction of changes in the operational forecasting system. Although, considerable reduction in systematic errors of the Asian summer monsoon forecasts is observed (up to day-5) with the introduction of major changes in the treatment of physical processes, the nature of errors remain unchanged (by day-10). The forecast errors of temperature and moisture in the middle troposphere are also reduced due to the changes in treatment of longwave radiation. Moreover, the introduction of shallow convection helped it further by enhancing the vertical transports of heat and moisture from the lower troposphere. Though, the hydrological cycle in the operational forecasts appears to have enhanced with the major modifications and improvements to the physical parameterization schemes, certain regional peculiarities have developed in the simulated rainfall distribution over the monsoon region. Hence, this study suggests further attempts to improve the formulations of physical processes for further reduction of systematic forecast errors.  相似文献   

11.
A state-of-the-art regional climate modelling system, known as PRECIS (Providing REgional Climates for Impacts Studies) developed by the Hadley Centre for Climate Prediction and Research, UK is applied over the Indian domain to investigate the impact of global warming on the cyclonic disturbances such as depressions and storms. The PRECIS simulations at 50 × 50 km horizontal resolution are made for two time slices, present (1961–1990) and the future (2071–2100), for two socioeconomic scenarios A2 and B2. The model simulations under the scenarios of increasing greenhouse gas concentrations and sulphate aerosols are analysed to study the likely changes in the frequency, intensity and the tracks of cyclonic disturbances forming over north Indian Ocean (Bay of Bengal and Arabian Sea) and the Indian landmass during monsoon season. The model overestimates the frequency of cyclonic disturbances over the Indian subcontinent in baseline simulations (1961–1990). The change is evaluated towards the end of present century (2071–2100) with respect to the baseline climate. The present study indicates that the storm tracks simulated by the model are southwards as compared to the observed tracks during the monsoon season, especially for the two main monsoon months, viz., July and August. The analysis suggests that the frequency of cyclonic disturbances forming over north Indian Ocean is likely to reduce by 9% towards the end of the present century in response to the global warming. However, the intensity of cyclonic disturbances is likely to increase by about 11% compared to the present.  相似文献   

12.
The impact of different land-surface parameterisation schemes for the simulation of monsoon circulation during a normal monsoon year over India has been analysed. For this purpose, three land-surface parameterisation schemes, the NoaH, the Multi-layer soil model and the Pleim-Xiu were tested using the latest version of the regional model (MM5) of the Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) over the Indian summer monsoon region. With respect to different land-surface parameterisation schemes, latent and sensible heat fluxes and rainfall were estimated over the Indian region. The sensitivity of some monsoon features, such as Somali jet, tropical easterly jet and mean sea level pressure, is discussed. Although some features of the Indian summer monsoon, such as wind and mean sea level pressure, were fairly well-simulated by all three schemes, many differences were seen in the simulation of the typical characteristics of the Indian summer monsoon. It was noticed from the results that the features of the Indian summer monsoon, such as strength of the low-level westerly jet, the cross-equatorial flow and the tropical easterly jet were better simulated by NoaH compared with verification analysis than other land-surface schemes. It was also observed that the distribution of precipitation over India during the peak period of monsoon (July) was better represented with the use of the NoaH scheme than by other schemes.
U. C. MohantyEmail:
  相似文献   

13.
The precipitation climatology and the underlying climate mechanisms of the eastern Mediterranean, West Asia, and the Indian subcontinent are reviewed, with emphasis on upper and middle tropospheric flow in the subtropics and its steering of precipitation. Holocene climate change of the region is summarized from proxy records. The Indian monsoon weakened during the Holocene over its northernmost region, the Ganges and Indus catchments and the western Arabian Sea. Southern regions, the Indian Peninsula, do not show a reduction, but an increase of summer monsoon rain across the Holocene. The long-term trend towards drier conditions in the eastern Mediterranean can be linked to a regionally complex monsoon evolution. Abrupt climate change events, such as the widespread droughts around 8200, 5200 and 4200 cal yr BP, are suggested to be the result of altered subtropical upper-level flow over the eastern Mediterranean and Asia.The abrupt climate change events of the Holocene radically altered precipitation, fundamental for cereal agriculture, across the expanse of late prehistoric-early historic cultures known from the archaeological record in these regions. Social adaptations to reduced agro-production, in both dry-farming and irrigation agriculture regions, are visible in the archaeological record during each abrupt climate change event in West Asia. Chronological refinement, in both the paleoclimate and archaeological records, and transfer functions for both precipitation and agro-production are needed to understand precisely the evident causal linkages.  相似文献   

14.
The northeast monsoon rainfall (NEMR) contributes about 20–40 % of annual rainfall over the North Indian Ocean (NIO). In the present study, the relationship between the NEMR and near-surface atmospheric wind convergence (NSAWC) over the NIO is demonstrated using high-resolution multisatellite data. The rainfall product from the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis and near-surface wind product from the Cross-Calibration Multi-Platform available at 0.25° × 0.25° spatial resolution are used for the study. Large-scale NSAWC and divergence maps over the tropical Indian Ocean are generated at monthly scale from the wind product for the period of 1988–2010. A preliminary analysis is carried out for two consecutive anomalous Indian Ocean Dipole (IOD) years 2005 (negative) and 2006 (positive). The distinct spatial patterns of rainfall rate and NSAWC fields over the NIO clearly show the evolution of the anomalous IOD events in the south eastern equatorial Indian Ocean (EEIO). The spatially averaged time-series of pentad NSAWC over the south EEIO box suggests that the variability occurs in phase with rainfall rate during both the northeast monsoon years. Furthermore, the scatter plot between area-averaged pentad rainfall and convergence over the south EEIO box for the period of 1998–2010 shows statistically significant linear correlation which reveals that NSAWC plays a key role in regulating the NEMR.  相似文献   

15.
An accurate tropical cyclone track and intensity forecast is very important for disaster management. Specialized numerical prediction models have been recently used to provide high-resolution temporal and special forecasts. Hurricane Weather Research and Forecast (HWRF) model is one of the emerging numerical models for tropical cyclone forecasting. This study evaluates the performance of HWRF model during the post monsoon tropical cyclone Nilofar on the north Indian Ocean basin. The evaluation uses the best track data provided by the Indian Meteorological Department (IMD) and the Joint Typhoon Warning Centre (JTWC). Cyclone track, central pressure, and wind speed are covered on this evaluation. Generally, HWRF was able to predict the Nilofar track with track error less than 230 km within the first 66 h of forecast time span. HWRF predicted more intense tropical cyclone. It predicted the lowest central pressure to be 922 hPa while it reached 950 hPa according to IMD and 937 hPa according to JTWC. Wind forecast was better as it predicted maximum wind speed of 122 kt while it reached 110 and 115 kt according to IMD and JTWC, respectively.  相似文献   

16.
Due to the limitations of model performances, the predictive skills of current climate models for the Asian-Australian summer monsoon precipitation are still poor. The prediction based on the combination of statistical and dynamic approaches is an effective way to improve the predictive skills. We used such method to identify the predictable modes of the Asian-Australian summer monsoon precipitation with clear physical interpretation from the historical observational data. Then we combined the principal components time series of these modes predicted by the coupled models, which is derived from the seasonal prediction experiments in the ENSEMBLES project, and the corresponding spatial patterns derived from the above observational analysis to reconstruct the precipitation field. These formed a statistical-dynamic seasonal prediction model for the Asian-Australian summer monsoon precipitation. We analyzed the predictive skills of the model at 1-, 4-and 7-month leads. The result shows that the forecast skills of the statistical-dynamic prediction model are higher than those of the simple dynamic predictions. In addition, the predictive skills of the Multi-Model Ensemble (MME) mean are superior to those of any individual models. Therefore, it is very necessary to implement multi-model ensemble prediction for the monsoon precipitation.  相似文献   

17.
东北印度洋地理位置独特,其沉积物记录了青藏高原隆升及孟加拉扇的“源-汇”过程、印度季风与东亚季风的“海-气”交互作用、印-太暖池热传输的演变与高纬气候之间的相位关系等关键信息,是喜马拉雅地区“构造-气候-沉积”耦合演化的良好记录载体,是探讨多圈层相互作用、探索古气候与古环境演化的理想“窗口”。本文系统总结了近年来有关东北印度洋季风与表层环流特征、沉积物组成及物源、气候环境演化以及环境磁学记录等方面的研究进展。分析表明,东北印度洋为典型的季风风场,表层环流受季风影响强烈,夏季和冬季环流差异明显。沉积物类型丰富,包括河流输运而来的陆源碎屑、钙质和硅质为主的生物沉积以及火山物质等。但目前对于该区域的沉积物的具体组成、“源-汇”过程、迁移历史、季风演化与青藏高原隆升、高纬气候变化之间相互关系等方面的认识尚存在较大的分歧。同时,受样品获取难度大、磁学信号稀释严重等因素的限制,环境磁学作为一种在示踪沉积物物质来源、恢复古气候和古环境等方面被普遍认可的技术手段,在东北印度洋区并没有得到充分的发挥与应用。因此,未来需要在前人研究的基础上,将目光向东北印度洋更南、更深处延伸,对其“源-汇”过程进行全面分析。在研究方法上进一步拓展,采用更高精度的技术手段提取磁学信号,加大环境磁学的应用,寻找有效的替代性指标,解决该地区季风演化、古海洋环境变化等气候环境问题,为该地区环境气候研究提供新认识。并尝试开展地磁场长期变化(paleosecular variation, PSV)研究,建立东北印度洋的PSV记录,辅助修正全球地磁场模型,探究地球深部动力过程。  相似文献   

18.
Sea-breeze-initiated convection and precipitation have been investigated along the east coast of India during the Indian southwest monsoon season. Sea-breeze circulation was observed on approximately 70–80% of days during the summer months (June–August) along the Chennai coast. Average sea-breeze wind speeds are greater at rural locations than in the urban region of Chennai. Sea-breeze circulation was shown to be the dominant mechanism initiating rainfall during the Indian southwest monsoon season. Approximately 80% of the total rainfall observed during the southwest monsoon over Chennai is directly related to convection initiated by sea-breeze circulation.  相似文献   

19.
Performance of a hybrid assimilation system combining 3D Var based NGFS (NCMRWF Global Forecast System) with ETR (Ensemble Transform with Rescaling) based Global Ensemble Forecast (GEFS) of resolution T-190L28 is investigated. The experiment is conducted for a period of one week in June 2013 and forecast skills over different spatial domains are compared with respect to mean analysis state. Rainfall forecast is verified over Indian region against combined observations of IMD and NCMRWF. Hybrid assimilation produced marginal improvements in overall forecast skill in comparison with 3D Var. Hybrid experiment made significant improvement in wind forecasts in all the regions on verification against mean analysis. The verification of forecasts with radiosonde observations also show improvement in wind forecasts with the hybrid assimilation. On verification against observations, hybrid experiment shows more improvement in temperature and wind forecasts at upper levels. Both hybrid and operational 3D Var failed in prediction of extreme rainfall event over Uttarakhand on 17 June, 2013.  相似文献   

20.
The Indian subcontinent is characterized by complex topography and heterogeneous land use-land cover. The Himalayas and the Tibetan Plateau are spread across the northern part of the continent. Due to its highly variable topography, understanding of the prevailing synoptic weather systems is complex over the region. The present study analyzes the energetics of Indian winter monsoon (IWM) over the Indian subcontinent using outputs of mesoscale model (MM5) forced with National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), US, initial and boundary conditions. MM5 modeling framework, designed to simulate or predict mesoscale atmospheric circulations, is having a limited-area, non-hydrostatic and terrain following 12 sigma levels. The IWM energetics is studied using MM5 model outputs. Prior to this model’s validity and deviation from the corresponding observations (NCEP/NCAR) is assessed. The model’s overestimation/underestimation of wind, temperature and specific humidity at upper troposphere proves that the model has difficulty in picking up corresponding fields at all the model grid points because of terrain complexity over the Himalayas and Tibetan Plateau. Hence, the model fields deviate from the corresponding observations. However, model results match well with the winter global energy budget calculated using reanalysis dataset by Peixoto and Oort (1992). It suggests MM5 model’s fitness in simulating large scale synoptic weather systems. And, thus the model outputs are used for calculation of energetics associated with IWM. It is observed that beyond \(15^{{\circ }}\hbox {N}\) lower as well as upper level convergence of diabatic heating, which represents continental cooling and sinking of heat from atmosphere to land mass (i.e., surface is cooler than surrounding atmosphere) dominates. The diabatic heating divergence (cooling of continents) is found over ocean/sea and whole of the China region, Tibetan and central Himalayas (because of excess condensation than evaporation). The adiabatic generation of kinetic energy depends on the cross isobaric flow (north to south in winter, i.e., the present study shows strong circulation during IWM). It is found that wind divergence of model concludes lower level convergence over study region (i.e., strong winter circulation in the model fields).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号