首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical model to simulate the penetration of the piezocone penetrometer in cohesive soils is presented here. The elasto-plastic coupled field equations of the saturated cohesive soils (given by Voyiadjis and Abu-Farsakh) is used in this analysis. The numerical simulation of the piezocone penetration is implemented into a finite element program. The analytical model is used to analyze the miniature piezocone penetration tests (PCPT) conducted at LSU calibration chambers. Simulation of the piezocone penetration is done for two cases. In the first case, the soil–penetrometer interface friction is neglected, while in the second case, the soil–penetrometer interface friction is taken into consideration. The constraint approach is used to model the soil–piezocone interface friction in which the Mohr–Coulomb frictional model is used to define the sliding potential. Analysis is done for three different soil specimens with different stress histories. The results of the numerical simulations are compared with the experimental measurements of the miniature piezocone penetration tests (PCPT) in cohesive soil specimens conducted in LSU calibration chambers. The resulting excess pore pressure distribution and its dissipation using the numerical model are compared with some available prediction methods. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
吉小明 《岩土力学》2006,27(Z1):305-310
基于混合物理论孔隙-裂隙岩体的双重孔隙介质水力耦合计算的微分方程,利用伽辽金有限元法提出了相应的有限元公式,并基于岩体分类指标(RQD,RMR)提出了与岩体应变状态相关的渗透系数计算公式。编制了裂隙岩体双重介质流固耦合的2-D有限元程序,给出的验证算例表明,该程序是合理和实用的。同时将该程序用于隧道开挖的模拟计算,探讨渗流效应对开挖隧道围岩变形与渗流场的影响。计算结果表明,在隧道设计中不考虑渗流的影响是偏于不安全的。  相似文献   

3.
The equations governing the dynamic behavior of saturated porous media as well as a finite element spatial discretization of these equations are summarized. A three-parameter time integration scheme called the Hilber–Hughes–Taylor α-method is used together with a predictor/multi-corrector algorithm, instead of the widely used Newmark's method, to integrate the spatially discrete finite element equations. The new time integration scheme possess quadratic accuracy and desirable numerical damping characteristics. The proposed numerical solution and bounding surface plasticity theory to describe the constitutive behaviour of soil have been implemented as the computer code DYSAC2. Predictions made by DYSAC2 code are verified using dynamic centrifuge test results for a clay embankment. Importance of initial state of a soil on its dynamic behaviour is demonstrated.  相似文献   

4.
This paper outlines the development as well as implementation of a numerical procedure for coupled finite element analysis of dynamic problems in geomechanics, particularly those involving large deformations and soil-structure interaction. The procedure is based on Biot’s theory for the dynamic behaviour of saturated porous media. The nonlinear behaviour of the solid phase of the soil is represented by either the Mohr Coulomb or Modified Cam Clay material model. The interface between soil and structure is modelled by the so-called node-to-segment contact method. The contact algorithm uses a penalty approach to enforce constraints and to prevent rigid body interpenetration. Moreover, the contact algorithm utilises a smooth discretisation of the contact surfaces to decrease numerical oscillations. An Arbitrary Lagrangian–Eulerian (ALE) scheme preserves the quality and topology of the finite element mesh throughout the numerical simulation. The generalised-α method is used to integrate the governing equations of motion in the time domain. Some aspects of the numerical procedure are validated by solving two benchmark problems. Subsequently, dynamic soil behaviour including the development of excess pore-water pressure due to the fast installation of a single pile and the penetration of a free falling torpedo anchor are studied. The numerical results indicate the robustness and applicability of the proposed method. Typical distributions of the predicted excess pore-water pressures generated due to the dynamic penetration of an object into a saturated soil are presented, revealing higher magnitudes of pore pressure at the face of the penetrometer and lower values along the shaft. A smooth discretisation of the contact interface between soil and structure is found to be a crucial factor to avoid severe oscillations in the predicted dynamic response of the soil.  相似文献   

5.
In this paper, a fully coupled thermo-hydro-mechanical model is presented for two-phase fluid flow and heat transfer in fractured/fracturing porous media using the extended finite element method. In the fractured porous medium, the traction, heat, and mass transfer between the fracture space and the surrounding media are coupled. The wetting and nonwetting fluid phases are water and gas, which are assumed to be immiscible, and no phase-change is considered. The system of coupled equations consists of the linear momentum balance of solid phase, wetting and nonwetting fluid continuities, and thermal energy conservation. The main variables used to solve the system of equations are solid phase displacement, wetting fluid pressure, capillary pressure, and temperature. The fracture is assumed to impose the strong discontinuity in the displacement field and weak discontinuities in the fluid pressure, capillary pressure, and temperature fields. The mode I fracture propagation is employed using a cohesive fracture model. Finally, several numerical examples are solved to illustrate the capability of the proposed computational algorithm. It is shown that the effect of thermal expansion on the effective stress can influence the rate of fracture propagation and the injection pressure in hydraulic fracturing process. Moreover, the effect of thermal loading is investigated properly on fracture opening and fluids flow in unsaturated porous media, and the convective heat transfer within the fracture is captured successfully. It is shown how the proposed computational model is capable of modeling the fully coupled thermal fracture propagation in unsaturated porous media.  相似文献   

6.
In this paper, a fully coupled numerical model is presented for the finite element analysis of the deforming porous medium interacting with the flow of two immiscible compressible wetting and non-wetting pore fluids. The governing equations involving coupled fluid flow and deformation processes in unsaturated soils are derived within the framework of the generalized Biot theory. The displacements of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the present formulation. The other variables are incorporated into the model using the experimentally determined functions that define the relationship between the hydraulic properties of the porous medium, i.e. saturation, relative permeability and capillary pressure. It is worth mentioning that the imposition of various boundary conditions is feasible notwithstanding the choice of the primary variables. The modified Pastor–Zienkiewicz generalized constitutive model is introduced into the mathematical formulation to simulate the mechanical behavior of the unsaturated soil. The accuracy of the proposed mathematical model for analyzing coupled fluid flows in porous media is verified by the resolution of several numerical examples for which previous solutions are known. Finally, the performance of the computational algorithm in modeling of large-scale porous media problems including the large elasto-plastic deformations is demonstrated through the fully coupled analysis of the failure of two earth and rockfill dams. Furthermore, the three-phase model is compared to its simplified one which simulates the unsaturated porous medium as a two-phase one with static air phase. The paper illustrates the shortcomings of the commonly used simplified approach in the context of seismic analysis of two earth and rockfill dams. It is shown that accounting the pore air as an independent phase significantly influences the unsaturated soil behavior.  相似文献   

7.
In this paper, we present a numerical model for simulating two-phase (oil–water and air–water) incompressible and immiscible flow in porous media. The mathematical model which is based on a fractional flow formulation is formed of two nonlinear partial differential equations: a mean pressure equation and a water saturation equation. These two equations can be solved in a sequential manner. Two numerical methods are used to discretize the equations of the two-phase flow model: mixed hybrid finite elements are used to treat the pressure equation, h-based Richards' equation and the diffusion term in the saturation equation, the advection term in the saturation equation is treated with the discontinuous finite elements. We propose a better way to calculate the nonlinear coefficients contained in our equations on each element of the discretized domain. In heterogeneous porous media, the saturation becomes discontinuous at the interface between two porous media. We show in this paper how to use the capillary pressure–saturation relationship in order to handle the saturation jump in the mixed hybrid finite element method. The two-phase flow simulator is verified against analytical solutions for some flow problems treated by other authors.  相似文献   

8.
A poroelastic numerical model is presented to evaluate three-dimensional consolidation due to groundwater withdrawal from desaturating anisotropic porous media. This numerical model is developed based on the fully coupled governing equations for groundwater flow in deforming variably saturated porous media and the Galerkin finite element method. Two different cases of unsaturated aquifers are simulated for the purpose of comparison: a cross-anisotropic soil aquifer, and a corresponding isotropic soil aquifer composed of a geometrically averaged equivalent material. The numerical simulation results show that the anisotropy has a significant effect on the shapes of three-dimensional hydraulic head distribution and displacement vector fields. Such an effect of anisotropy is caused by the uneven partitioning of the hydraulic pumping stress between the vertical and horizontal directions in both groundwater flow field and solid skeleton deformation field. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
A two-dimensional computational model is developed here in order to simulate the continuous advance of the Earth Pressure Balance (EPB) Shield during the tunneling process in cohesive soils. The model is based on the combination of the plane strain “transverse–longitudinal” sections that can incorporate the three-dimensional deformation of the soil around and ahead of the shield face. This model is capable of prediciting the soil response due to the shield tunneling before the event, especially in soft ground conditions. An elasto-plastic finite element analysis that is based on the coupled theory of mixtures for inelastic porous media for finite deformation is used in this work to describe the time-dependent deformation of the saturated cohesive soils. The results of this model are compared with the in situ field measurements of the N-2 tunnel project excavated in 1981 in San Francisco using the EPB shield tunneling machine. Reasonable agreement is found between the observed field measurements and the predicted deformations of the soil using the proposed numerical simulation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
黄雨  张锋  叶为民 《岩土力学》2006,27(Z2):21-24
基于Biot两相饱和多孔介质固结理论,采用有效应力有限单元法对降雨作用下饱和土质边坡的性状进行了数值模拟。对于土的本构行为,采用了一个可以考虑“松冈-中井破坏准则”的弹塑性模型来模拟。首先对降雨作用下边坡变形的数值分析方法进行了简要介绍。然后,应用这种方法,对一个边坡的工程实例进行了降雨变形分析。计算结果较好地描述了边坡降雨变形的发展情况,反映了降雨作用下边坡性状的基本特征,并得到了一些有益的结论。  相似文献   

11.
The theoretical aspects of fully coupled thermohydromechanical behaviour of saturated porous media are presented. The non-linear behaviour of soil skeleton is assumed. A new concept called ‘thermal void ratio state surface’ is introduced to include thermal effects, and the stress state level influence on volume changes. The fluid phase flows according to Darcy's law and energy transport is assumed to follow Fourier's law classically. Variation of water permeability, water and solid unit weight due to thermal effects and pore pressure changes are included. A finite element package is developed based on final matrix form obtained from discretization of integral form of field equations by finite element method and integration in time. A very good agreement between the theoretical predictions and the experimental results was obtained for the several simple problems proposed by other authors. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
Modeling the flow in highly fractured porous media by finite element method (FEM) has met two difficulties: mesh generation for fractured domains and a rigorous formulation of the flow problem accounting for fracture/matrix, fracture/fracture, and fracture/boundary fluid mass exchanges. Based on the recent theoretical progress for mass balance conditions in multifractured porous bodies, the governing equations for coupled flow and deformation in these bodies are first established in this paper. A weak formulation for this problem is then established allowing to build a FEM. Taking benefit from recent development of mesh‐generating tools for fractured media, this weak formulation has been implemented in a numerical code and applied to some typical problems of hydromechanical coupling in fractured porous media. It is shown that in this way, the FEM that has proved its efficiency to model hydromechanical phenomena in porous media is extended with all its performances (calculation time, couplings, and nonlinearities) to fractured porous media. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A quasi-Newton algorithm is implemented for the solution of multi-dimensional, linear consolidation problems. The study is motivated by the need to implement an efficient equation-solving technique for the solution of large systems of equations typical in problems of consolidation of saturated porous media. The proposed procedure obviates the need to reassemble and re-factorize the global coefficient matrix every load increment, albeit the time step may be held variable in the analysis. The method employs the combined techniques of ‘line search’ and BFGS updates applied to the coupled equations. A numerical example is presented to show that the proposed method is computationally more efficient than the conventional direct equation-solving scheme, particularly when solving large systems of finite element equations.  相似文献   

14.
加瑞  张稳军 《岩土力学》2015,36(Z1):685-690
同位素密度静力触探仪(ND-CPT)是一种把同位素密度仪并入到静力触探仪的探头中,同时测量锥尖阻力、侧壁摩阻力、孔隙水压力和密度的新型原位测试仪器。根据ND-CPT测量的密度为 射线源和检测器之间回转椭球体内土体的平均密度 的原理,首先建立了可以计算回转椭球体内土体的平均密度 的后向散射模型和平均值模型,然后调查了ND-CPT贯入各种非均质地层时的测量密度 剖面与实际密度 剖面的区别,结果表明在地层分界处附近的测量密度 与实际密度 有较大差别,最后对ND-CPT在实际工程中测量的有明海底泥的测量密度 剖面进行了理解,得到了海底泥的实际密度 剖面。研究结果可为利用ND-CPT准确划分地层提供依据。  相似文献   

15.
In this paper, a numerical model is developed for the fully coupled hydro‐mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non‐wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two‐phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid skeleton is accounted. The cohesive crack model is integrated into the numerical modeling by means of which the nonlinear fracture processes occurring along the fracture process zone are simulated. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three‐phase formulation. The other variables are incorporated into the model via the experimentally determined functions, which specify the relationship between the hydraulic properties of the fracturing porous medium, that is saturation, permeability and capillary pressure. The spatial discretization is implemented by employing the extended finite element method, and the time domain discretization is performed using the generalized Newmark scheme to derive the final system of fully coupled nonlinear equations of the hydro‐mechanical problem. It is illustrated that by allowing for the interaction between various processes, that is the solid skeleton deformation, the wetting and the non‐wetting pore fluid flow and the cohesive crack propagation, the effect of the presence of the geomechanical discontinuity can be completely captured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
侯晓萍  陈胜宏 《岩土力学》2020,41(4):1437-1446
采用复合单元法建立了模拟裂隙多孔介质变饱和流动的数值模型。该模型具有以下特点:裂隙不需要离散成特定单元,而是根据几何位置插入到孔隙基质单元中形成复合单元;在复合单元中,分别建立裂隙流和孔隙基质流的计算方程,二者通过裂隙?基质界面产生联系并整合成复合单元方程;复合单元方程具有和常规有限单元方程相同的格式,因此,可以使用常规有限单元方程的求解技术。采用欠松弛迭代、集中质量矩阵以及自适应时步调节等技术,开发了裂隙多孔介质变饱和流动计算程序。通过模拟一维干土入渗和复杂裂隙含水层内的流动问题,验证了该模型的合理性和适用性。模拟结果为进一步认识非饱和裂隙含水层地下水流动特性提供了理论依据。  相似文献   

17.
The surface subsidence above a compacting saturated oil reservoir is the main topic of this paper. From a literature review, it is obvious that extensive efforts have been conducted for investigating this phenomenon in various situations. Herein, a numerical model, based on the finite element method, was used for simulating three-dimensional three-phase fluid flow in a deforming saturated oil reservoir. The mathematical formulation describes a fully coupled governing equation system which consists of the equilibrium and continuity equations for three immiscible fluids flowing in a porous media. An elastoplastic soil model, based on a Mohr Coulomb yield surface, was utilized. The finite element method was applied to obtain simultaneous solutions to the governing equations where the displacements and the fluid pressures are the primary unknowns. The final discretized equations are solved by a direct solver using fully implicit procedures. A linear analysis was used to study the stability conditions of the present model. Finally, a series of simulations were conducted to indicate the validity and the utility of the developed model.  相似文献   

18.
A finite element algorithm for frictionless contact problems in a two‐phase saturated porous medium, considering finite deformation and inertia effects, has been formulated and implemented in a finite element programme. The mechanical behaviour of the saturated porous medium is predicted using mixture theory, which models the dynamic advection of fluids through a fully saturated porous solid matrix. The resulting mixed formulation predicts all field variables including the solid displacement, pore fluid pressure and Darcy velocity of the pore fluid. The contact constraints arising from the requirement for continuity of the contact traction, as well as the fluid flow across the contact interface, are enforced using a penalty approach that is regularised with an augmented Lagrangian method. The contact formulation is based on a mortar segment‐to‐segment scheme that allows the interpolation functions of the contact elements to be of order N. The main thrust of this paper is therefore how to deal with contact interfaces in problems that involve both dynamics and consolidation and possibly large deformations of porous media. The numerical algorithm is first verified using several illustrative examples. This algorithm is then employed to solve a pipe‐seabed interaction problem, involving large deformations and dynamic effects, and the results of the analysis are also compared with those obtained using a node‐to‐segment contact algorithm. The results of this study indicate that the proposed method is able to solve the highly nonlinear problem of dynamic soil–structure interaction when coupled with pore water pressures and Darcy velocity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, liquefaction potential of loose sand deposit subjected to an earthquake loading is evaluated. The analysis is performed by using a finite element technique incorporating the equations of dynamics of saturated porous elastoplastic media. The soil response is modelled by an anisotropic hardening rule, similar to that as proposed by Poorooshasb and Pietruszczak.1 The concept is based on the theory of bounding surface plasticity incorporating a non-associated flow rule and the idea of reflected plastic potential. The present paper provides a modified formulation to that discussed in Reference 1. Modifications are aimed at simplifying the concept for numerical implementations.  相似文献   

20.
We present a locally mass conservative scheme for the approximation of two-phase flow in a porous medium that allows us to obtain detailed fine scale solutions on relatively coarse meshes. The permeability is assumed to be resolvable on a fine numerical grid, but limits on computational power require that computations be performed on a coarse grid. We define a two-scale mixed finite element space and resulting method, and describe in detail the solution algorithm. It involves a coarse scale operator coupled to a subgrid scale operator localized in space to each coarse grid element. An influence function (numerical Greens function) technique allows us to solve these subgrid scale problems independently of the coarse grid approximation. The coarse grid problem is modified to take into account the subgrid scale solution and solved as a large linear system of equations posed over a coarse grid. Finally, the coarse scale solution is corrected on the subgrid scale, providing a fine grid representation of the solution. Numerical examples are presented, which show that near-well behavior and even extremely heterogeneous permeability barriers and streaks are upscaled well by the technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号