首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modification of land use is known to be a major climate change driver to the local warming and air quality in cities. Despite the reduction of NOx over the years, the Selangor state has captured a higher level of O_3 in year 2011. The measurement result has shown that the surge in O_3 level was attributed to the reduction of NO_x/NMHC ratio. This paper hence attempted to identify the role of land use change from 1999 to 2011 on the ground ozone air quality in the tropical urban conurbation, Greater Kuala Lumpur(GKL), Selangor, Malaysia. With the state-of-the-art chemical weather prediction tool, WRFChem, the external synoptic factors and emission inventory were controlled when comparing the chronological land use changes. The results showed that the urban-induced temperature and wind bias in the tropical region has induced stronger wind to disperse the NO_x and carries the TVOC from the suburban to the downwind urban region. The reduction of NO_x/TVOC has gradually shifted towards the optimum O_3 formation regime in 2011. The formation of highly concentrated ozone becomes more sensitive to the increment of TVOC as the NO_x level reduces in the urban. This highlights the essential involvement of TVOC in the ozone formation in lieu of the NOx reduction in the tropical city, a region with growing emitter of reactive biogenic ozone precursors.  相似文献   

2.
减缓全球变暖与温室气体吸收汇研究进展   总被引:28,自引:8,他引:20  
对减缓全球气候变化与温室气体“汇”的最新研究进展作了较为详尽的综述。针对目前温室气体汇研究中的主要前沿科学问题进行了深入分析:包括汇的定义、种类及方法学问题,土地利用变化和森林以及农业土壤汇的种类及计算中存在的一些问题,人类活动对自然生态系统源汇状况的影响等;对还估算各种温室气体源汇的不确定性作了分析总结;在列举了一些气候变化框架公约缔约国及发展中国家对《京都议定书》中引入温室气体“汇”的看法及态  相似文献   

3.
This work evaluates the changes of nitrate-nitrogen (NO3-N), ammonium-nitrogen (NH4-N), total phosphorus (P) and chemical oxygen demand (COD) concentrations in stream waters as related to the land use/land cover (LULC) alterations within eight small (5–39 km2) tile-drained catchments in the southern part of The Czech Republic in the period 1993–2010, when massive grassing of arable land took place. The robust tools of seasonal Mann–Kendall trend test and LOcally WEighted Scatterplot Smoothing methods were employed to reveal trends of the monitored parameters with adjustment to hydrology. Using principal component analysis and multiple regressions, statistically significant factors with highest impacts on the assessed water quality parameters were identified. Besides indicators of LULC changes in the catchments and their various zones, information of built tile drainage systems were used along with factors reflecting point pollution sources such as the population number, sewerage type and proximity to a watercourse, effectiveness of wastewater treatment, and number of livestock units. The change in LULC was essential only for NO3-N concentrations, when grassing of arable land, presence of water ponds, areas of permanent cultures and also areas of drained land explained up to 90.6 % NO3-N variability and nitrate-nitrogen concentrations showed a significantly decreasing trend in all monitored catchments during the evaluated period. LULC changes within infiltration vulnerable zones were discovered as less important for the assessed water quality parameters compared to LULC changes in the whole catchment area. However, for NH4-N, P and COD, the results did not enable a definite quantification of the effects of LULC changes. The influence of non-point pollution sources on these parameters was revealed as uncertain and was heavily overshadowed by point sources, in particular by wastewater management, and livestock numbers, although the proportion of arable land in tile drainage subcatchments was discovered fundamental in case of the COD. The increasing numbers of livestock, population, and changes in sewage treatment led in some catchments to significant worsening of water quality. Achieved findings may be critical for supporting water quality policy and management decisions.  相似文献   

4.
Zhong  Zhangqi  Zhang  Xu  Shao  Wei 《Natural Hazards》2019,95(1-2):401-418

Sulfur oxides (SOX) emissions embodied in trade (SEET) may play an important role in affecting national responsibilities toward pollutant emission reduction within the context of global greenhouse gas emission policy. This paper analyzes the change of the SEET associated with energy consumption from the perspective of a country and a sector between 1995 and 2011, exploring the evolution characteristic of the sources and flows of the SEET for 39 countries, as well as measuring the production-based and consumption-based global SOX emissions’ inventory and investigating the impact of international trade on the allocation of national pollutant emissions’ reduction obligations. One important finding is that the volume of SOX emissions embodied in global trade increased dramatically from 1995 to 2011, and the global SOX emissions stemming from anthropogenic energy consumption are mostly from China and the USA. Another important finding is that, referring to specific sectors, whether seen from the total SEET or from the sources of SEET or from the total SOX emissions occurring from economic consumption and production, energy sectors, like electricity, gas, and water supply and coke, refined petroleum, and nuclear fuel, are the main contributors to the increase in the global SOX emissions. Notably, however, our results show that the sector of agriculture, hunting, forestry, and fishing should be allocated more SOX emission reduction responsibilities under a consumption-based emissions’ accounting inventory.

  相似文献   

5.
Vegetation is a natural source of Volatile Organic Compounds (VOC) that plays an important role in atmospheric chemistry. The main objective of the current study is to implement a model to quantify process-based VOC emissions from plants that focuses on the relationship between the sensitivity of VOC emission estimates to spatial resolution data, based on scientific knowledge and vegetation dynamics derived from satellite observations. The Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were elected to examine this issue using different resolutions of satellite-derived products: 22m from the DEIMOS-1 satellite, and 250m and 1000m provided by MODIS. The study is focused on an area of 80×80km2 in Portugal for 2011. Detailed land cover and meteorological data are also included in the emission quantification algorithm. The primary outcomes were determined using a multi-scale analysis showing spatial and temporal variations in the vegetation parameters and modeling results. The results confirm that the emissions model is highly sensitive to the spatial resolution of the satellite-derived data, resulting in about a 30% difference in total isoprene emissions for the study area.  相似文献   

6.
To demonstrate the atmospheric emission characteristics of cadmium (Cd), which is considered an important contaminant to human health and environment, a comprehensive emission inventory of Cd has been established by applying the best available emission factors and activity data for the first time. This inventory covers major anthropogenic sources in China and a bottom-up approach is adopted to compile the inventory for the sources where possible. The total emissions of Cd are estimated at about 743.77 metric tons for the year 2009, of which the contributions of industrial processes and combustion sources are approximately 56.6 and 43.4 %, respectively. Nonferrous metals smelting including copper, lead, and zinc, ranks as the leading source accounting for about 40.6 % of the total. The high contribution results from the rapid growth of nonferrous metallurgical industry that reflects a new focus of Cd emission pollution in China. Cd emissions from coal combustion are estimated at approximately 273.69 metric tons, with a share of 36.8 %, in which industrial coal-burning sector is thought to be the primary source. Moreover, Cd emissions are spatially allocated onto grid cells with a resolution of 0.5° × 0.5°, indicating that the emissions are mainly distributed among the regions of eastern, central and southern China. In addition, the uncertainties in the inventory are quantified by using a Monte Carlo simulation, and the overall uncertainty falls within a range of ?15 to 48 %. It implies that more field tests for industrial coal combustion and metals smelting process are very necessary.  相似文献   

7.
Soil and sand fine particles, which may be resuspended as fine dust in the atmosphere, contain a variety of anthropogenic and natural organic components. Samples of fine soil and sand particles (sieved to <125 μM) were collected from the Riyadh area in the summer of 2003 and extracted with a mixture of dichloromethane and methanol (3:1, v:v). The derivatized total extracts were analyzed by gas chromatography–mass spectrometry in order to characterize the composition and sources of the organic components. Both anthropogenic and natural biogenic inputs were the major sources of the organic compounds in these extracts. Discarded plastics and vehicular emission products were the major anthropogenic sources in the fine particles from populated areas of the city. Their tracers were plasticizers, UCM, n-alkanes, hopanes and traces of steranes. Vegetation was the major natural source of organic compounds in samples from outside Riyadh and included n-alkanols, n-alkanoic acids, n-alkanes, methyl alkanoates, sterols and triterpenoids. Carbohydrates had high concentrations (42–54%) in all samples and indicate sources from decomposition of cellulose and/or the presence of viable microbiota such as bacteria and fungi. The results were also compared with the data obtained in winter 2002 and showed that anthropogenic inputs were higher in summer than in winter, whereas the opposite trend was observed for natural inputs.  相似文献   

8.
The area of the city of Tsumeb in northern Namibia is strongly affected by gaseous emissions and by dust fallout from the local smelter. This is also reflected in increased concentrations of lead and arsenic in blood and urine of the residents. Consequently, modeling of the dispersion of dust and SO2 emissions from the smelter was used in this study to delineate the contaminated area and to assess the health risks. The modeling results were verified by ground-based geochemical survey of soil and grass in the area. The results of modeling revealed that the concentrations of SO2 in the Tsumeb town were relatively low, whereas the highest dust fallout concentrations were found around the Tsumeb smelter. The Tsumeb town residential area was less affected due to favorable landscape morphology between the smelter and the city (the Tsumeb Hills).The results of modeling of dust fallout and geochemical survey coincided very well. Since the anthropogenic contamination was bound only to the surface layer of soil, the local soils were sampled at two depth horizons: topsoil and the deeper soil horizon. This enabled us to distinguish between the anthropogenic contamination of soil surface from natural (geogenic) concentrations of studied metals in the deeper part of the soil profile. Concentrations of metals in grass correlated with the concentration of metals in topsoil.In contrast to a good conformity with the modeling of dust fallout from the smelter and geochemical survey, the results of modeling of SO2 contents in the air, and total sulfur content in soils were different. Differences can be explained by additional sources of contamination, as for example a sulfate-rich dust fallout from local tailings ponds and slag dumps that were not considered in the SO2 dispersion model.The results of the present investigation can be used by the mining companies in the management of air quality, assessment of the efficacy of applied remediation measures, and in reducing the impact of dust fallout on the local ecosystem. The Municipal Administration may use these results to plan further development of the city of Tsumeb, especially in terms of further expansion of housing construction.  相似文献   

9.

This paper reports proton mass spectrometry data on aromatic volatile organic compounds (VOCs) (benzene, toluene, phenol, styrene, xylene, and propylbenzene) obtained in different Russian regions along the Trans-Siberian Railway from Moscow to Vladivostok, based on expedition data retrieved using the TRO-ICA-12 mobile laboratory in the summer of 2008. The contribution of aromatic VOCs to ozone formation in the cities and regions along the measurement route has been estimated quantitatively. The greatest contribution of aromatic VOCs to ozone formation is characteristic of large cities along the Trans-Siberian Railway (up to 7.5 ppbv O3) specified by the highest concentrations of aromatic VOCs (1–1.7 ppbv) and nitrogen oxides (>20 ppbv). The results obtained are indicative of a considerable contribution (30–50%) of anthropogenic emissions of VOCs to photochemical ozone generation in the large cities along the Trans-Siberian Railway in hot and dry weather against the background of a powerful natural factor such as isoprene emissions controlling the regional balance of ground-level ozone in warm seasons.

  相似文献   

10.
Variations of He gas concentration are widely applied in studies devoted to the location of faults and to monitor seismic activities. Up to now, its migration mechanism in soil is not fully understood. A systematic soil gas survey across an active fault in NW Taiwan provides the opportunity to closely examine the mechanism of He migration in the fault zone. Significant spatial and temporal correlations observed between soil N2 and He gas support the hypothesis that N2 is the probable carrier gas for He emission in the studied area. Based on N2/Ar ratios and N2 isotopic results, the excess soil N2 in this study is considered to be largely derived from ancient atmospheric air which was dissolved in groundwater. Furthermore, observations rule out the possibility of CO2 being the dominant carrier gas for He in the studied area based on the C and He isotopic compositions and the relationship between concentrations of these gases. At least two soil gas sources, A and B, can be identified in the studied area. Source A is an abiogenic gas source characterized by excess N2 and He, and very low O2 and CO2 content. Source B, on the other hand, is a mixture of biogenic gas and atmospheric air. The development of the fault system is an important factor affecting the degree of mixture between sources A and B. Therefore, variations of soil gas composition, in particular those derived from source A, could be a useful proxy for tracing faults in the area.  相似文献   

11.
Mud volcanoes are important pathways for CH4 emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH4 were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH4 (>90%), “air” (i.e. N2 + O2 + Ar, 1–5%) and CO2 (1–5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH4 concentration (CH4 > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO2 up to 85%, and much lower CH4 content (<37%). High CH4 content (>90%) with low CO2 (<0.2%) are detected in the mud volcano gases collected in eastern Taiwan. It is suggestive that these gases are mostly of thermogenic origin based on C1 (methane)/C2 (ethane) + C3 (propane) and δ13CCH4 results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH4 concentration variations, <2%, were detected in four on-site short term field-monitoring experiments, at Yue-shi-jie A, B, Kun-shui-ping and Lo-shan A. Preliminary estimation of CH4 emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH4 could contribute up to 10% of total natural CH4 emissions in Taiwan.  相似文献   

12.
The freshwater marshes in northern China are heavily impacted by anthropogenic disturbances such as cultivation and fertilization and increased levels of nutrients (especially N and P) through atmospheric deposition and agricultural surface runoff. These disturbances have affected the emission of N2O from these systems. This laboratory study was conducted to determine the effects of increased inputs of inorganic N and P on N2O emission from marsh soil in response to different soil moisture conditions. The results showed that the emission of N2O increased with the enhancement of N inputs when the soil was submerged, but that the highest N treatment suppressed the emission of N2O when the soil was at 60% water holding capacity (WHC), which may have occurred due to an inadequate amount of available C. Furthermore, the results of this study indicated that a small amount of N fertilizer induced much more N2O evolution from freshwater wetland soil, while P fertilizer inputs appeared to stimulate the emission of N2O only during the first few days of the experiment. Additionally, soil that was treated with P appeared to absorb N2O when it was at 60% WHC after around 6 weeks of the incubation, which indicates that the input of P fertilizer might serve as a shift of source or N2O sink in wetland soils under non-flooded conditions. When compared to soil at 60% WHC, submerged soil had significantly higher N2O emissions, except when subjected to the medial N treatment. These findings indicate that the soil moisture condition had a significant effect on N2O emissions when the same amount of N or P was applied. Therefore, the effects of N and P fertilization in the northern temperate wetlands cannot be neglected from regional or national emissions of N2O.  相似文献   

13.
《Comptes Rendus Geoscience》2007,339(11-12):709-720
Multi-scale models were applied to assess the surface ozone changes in 2030. Several emission scenarios are considered, ranging from (a) a pessimistic anthropogenic emission increase to (b) an optimistic decrease of emissions, and including (c) a realistic scenario that assumes the implementation of control legislations [CLE]. The two extreme scenarios lead respectively to homogeneous global increase and decrease of surface ozone, whereas low and inhomogeneous changes associated with a slight global increase of ozone are found for the CLE scenario. Over western Europe, for the CLE scenario, the benefit of European emission reduction is significantly counterbalanced by increasing global ozone levels. Considering warmer conditions over Europe and future emission modifications, the human health exposure to surface ozone is found to be significantly worsened.  相似文献   

14.
农业温室气体清单方法研究最新进展   总被引:14,自引:0,他引:14  
为了履行气候变化框架公约的义务,缔约国要按时编制并提交国家温室气体清单。文章主要介绍温室气体清单指南中土壤CO2的排放和清除,稻田甲烷的排放,农业土壤中氧化亚氮的直接排放和间接排放等方面温室气体估算方法的研究进展。《2006年IPCC指南》中强调国家清单只报告管理土地CO2的排放和清除;采用六类土地利用类型体制,即:林地、农地、草地、湿地、居住地和其它地;提供了多层次的估算方法;稻田甲烷的季节排放因子变为日排放因子;农业土壤氧化亚氮的排放因子进一步修正;生物氮的固定不再作为氧化亚氮直接排放的排放源。清单方法改进的同时,我国编制农业温室气体清单面临巨大困难与挑战。  相似文献   

15.
In recent decades, humans have become a very important force in the Earth system, demonstrating that emissions (gaseous, liquid, and solid) are the cause of many of our environmental issues. These emissions are responsible for major global reorganizations of the biogeochemical cycles. The oceans are now a net sink of atmospheric CO2, whereas in their preindustrial state they were a source; the trophic state of the coastal oceans is progressively moving toward increased heterotrophy; and the terrestrial realm is now vacillating between trophic states, whereas in preindustrial times it was autotrophic. In this paper, we present model calculations that underscore the role of human-induced perturbations in changing Earth's climate, specifically the role of anthropogenic nitrogen and phosphorus in controlling processes in the global carbon cycle since the year 1850 with projections to the year 2035. Our studies show that since the late 1940's emissions of nitrogen and phosphorus have been sequestered in the terrestrial living phytomass and groundwater. This nutrient-enhanced fertilization of terrestrial biota, coupled with rising atmospheric CO2 and global temperature, has induced a sink of anthropogenic CO2 that roughly balances the emission of CO2 owing to land use change. In the year 2000, for example, the model-calculated terrestrial biotic sink was 1730 Mtons C/year, while the emission of CO2 from changes in land use was 1820 Mtons C/year, a net flux of 90 Mtons C/year emitted to the atmosphere. In the global aquatic environment, enhanced terrestrial inputs of biotically reactive phosphorus (about 8.5 Mtons P/year) and inorganic nitrogen (about 54 Mtons N/year), have induced increased new production and burial of organic carbon in marine sediments, which is a small sink of anthropogenic CO2. It is predicted that the response of the global land reservoirs of C, N, and P to sustained anthropogenic perturbations will be maintained in the same direction of change over the range of projected scenarios of global population increase and temperature change for the next 35 years. The magnitude of change is significantly larger when the global temperature increase is maximum, especially with respect to the processes of remobilization of the biotically important nutrients nitrogen and phosphorus.  相似文献   

16.
《Atmósfera》2014,27(2):165-172
In Mexico, approximately 7650 wildfires occur annually, affecting 263 115 hectares of land. In addition to their impact on land degradation, wildfires cause deforestation, damage to ecosystems and promote land use change; apart from being the source of emissions of toxic substances to the environment (i.e., hydrogen cyanide, black carbon and organic carbon). Black carbon is a short-lived greenhouse pollutant that also promotes snow and ice melting and decreased rainfall; it has an estimated global warming potential close to 5000.1 We present an estimate of the black carbon and organic carbon emissions from wildfires in Mexico from 2000 to 2012 using selected emission factors from the literature and activity data from local agencies. The results show average emissions of 5955 Mg/yr for black carbon and 62 085 Mg/yr for organic carbon. Black carbon emissions are estimated to be 14 888 Gg CO2 equivalent (CO2 eq) per year on average. With proper management of wildfires, such emissions can be mitigated. Moreover, improved air quality, conservation of ecosystems, improvement of visibility and maintenance of land use are a subset of the related co-benefits. Mitigating forest organic carbon emissions, which are ten times higher than black carbon emissions, would also prevent the morbidity and mortality impacts of toxic organic compounds in the environment.  相似文献   

17.
《Comptes Rendus Geoscience》2007,339(11-12):721-733
The life cycle of pollutants is affected by chemical as well as meteorological factors, such as wind, temperature, precipitation, solar radiation. Therefore, climatic changes induced by anthropogenic emissions of greenhouse gases may be expected to have significant effects on air quality. Because of the spatial variability of the pollutant emissions and climate-change signals, these effects are particularly relevant at the regional to local scales. This paper first briefly reviews modelling tools and methodologies used to study regional climate-change impacts on air quality. Patterns of regional precipitation, temperature, and sea-level changes emerging from the latest set of general circulation model projections are then discussed. Finally, the specific case of climate-change effects on summer ozone concentrations over Europe is presented to illustrate the potential impacts of climate change on pollutant amounts. It is concluded that climate change is an important factor that needs to be taken into account when designing future pollution-reduction policies.  相似文献   

18.
This paper describes the spatiotemporal changes pertaining to land use land cover (LULC) and the driving forces behind these changes in Doodhganga watershed of Jhelum Basin. An integrated approach utilizing remote sensing and geographic information system (GIS) was used to extract information pertaining to LULC change. Multi-date LULC maps were generated by analyzing remotely sensed images of three dates which include LandSat TM 1992, LandSat ETM+ 2001 and IRS LISS-III 2005. The LULC information was extracted by adopting on-screen image interpretation technique in a GIS environment at 1:25,000 scale. Based on the analysis, changes were observed in the spatial extent of different LULC types over a period of 13 years. Significant changes were observed in the spatial extent of forest, horticulture, built-up and agriculture. Forest cover in the watershed has decreased by 1.47 %, Agricultural by 0.93 % while as built-up area has increased by 0.92 %. The net decrease in forest cover and agriculture land indicate the anthropogenic interference into surrounding natural ecosystems. From the study it was found that the major driving forces for these changes were population growth and changes in the stream discharge. The changes in the stream discharge were found responsible for the conversion of agricultural land into horticulture, as horticulture has increased by 1.14 % in spatial extent. It has been found that increasing human population together with decreasing stream discharge account for LULC changes in the watershed. Therefore, the existing policy framework needs to focus upon mitigating the impacts of forces responsible for LULC change so as to ensure sustainable development of land resources.  相似文献   

19.
In the present study, two sampling and analytical methods for VOC determination in fumarolic exhalations related to hydrothermal-magmatic reservoirs in volcanic and geothermal areas and biogas released from waste landfills were compared: (a) Solid Traps (STs), consisting of three phase (Carboxen B, Carboxen C and Carbosieve S111) absorbent stainless steel tubes and (b) Solid Phase Micro Extraction (SPME) fibers, composed of DiVinylBenzene (DVB), Carboxen and PolyDimethylSiloxane. These techniques were applied to pre-concentrate VOCs discharged from: (i) low-to-high temperature fumaroles collected at Vulcano Island, Phlegrean Fields (Italy), and Nisyros Island (Greece), (ii) recovery wells in a solid waste disposal site located near Florence (Italy). A glass condensing system cooled with water was used to collect the dry fraction of the fumarolic gases, in order to allow more efficient VOC absorption avoiding any interference by water vapor and acidic gases, such as SO2, H2S, HF and HCl, typically present at relatively high concentrations in these fluids. Up to 37 organic species, in the range of 40–400 m/z, were determined by coupling gas chromatography to mass spectrometry (GC–MS). This study shows that the VOC compositions of fumaroles and biogas determined via SPME and ST are largely consistent and can be applied to the analysis of VOCs in gases released from different natural and anthropogenic environments. The SPME method is rapid and simple and more appropriate for volcanic and geothermal emissions, where VOCs are present at relatively high concentrations and prolonged gas sampling may be hazardous for the operator. The ST method, allowing the collection of large quantities of sample, is to be preferred to analyze the VOC composition of fluids from diffuse emissions and air, where these compounds are present at relatively low concentrations.  相似文献   

20.
In this study, several multivariate methods were used for forecasting hourly PM10 concentrations at four locations based on SO2 and meteorological data from the previous period. According to the results, boosted decision trees and multi-layer perceptrons yielded the best predictions. The forecasting performances were similar for all examined locations, despite the additional PM10 spatio-temporal analysis showed that the sites were affected by different emission sources, topographic and microclimatic conditions. The best prediction of PM10 concentrations was obtained for industrial sites, probably due to the simplicity and regularity of dominant pollutant emissions on a daily basis. Conversely, somewhat weaker forecast accuracy was achieved at urban canyon avenue, which can be attributed to the specific urban morphology and most diverse emission sources. In conclusion to this, the integration of advanced multivariate methods in air quality forecasting systems could enhance accuracy and provide the basis for efficient decision-making in environmental regulatory management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号